首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The adult bone marrow, situated within the bone cavity, comprises three distinct stem cell populations: hematopoietic stem cells (HSCs), mesenchymal stromal/stem cells (MSCs) and endothelial progenitor/stem cells (EPCs). HSCs are a well-characterized population of self-renewing cells that give rise to all blood cells. The definition of MSCs is more complex due to the limited understanding of MSC properties. In general, MSCs are considered multipotent stromal cells that are able to differentiate into various cell types, including osteoblasts, chondrocytes and adipocytes. Compared to HSCs and MSCs, EPCs are a newly discovered population of stem/progenitor cells with the capacity to differentiate into endothelial cells, the cells forming the inner lining of a blood vessel.  相似文献   

2.
Mesenchymal stem cells (MSCs) are the most popular among the adult stem cells in tissue engineering and regenerative medicine. Since their discovery and functional characterization in the late 1960s and early 1970s, MSCs or MSC‐like cells have been obtained from various mesodermal and non‐mesodermal tissues, although majority of the therapeutic applications involved bone marrow‐derived MSCs. Based on its mesenchymal origin, it was predicted earlier that MSCs only can differentiate into mesengenic lineages like bone, cartilage, fat or muscle. However, varied isolation and cell culturing methods identified subsets of MSCs in the bone marrow which not only differentiated into mesenchymal lineages, but also into ectodermal and endodermal derivatives. Although, true pluripotent status is yet to be established, MSCs have been successfully used in bone and cartilage regeneration in osteoporotic fracture and arthritis, respectively, and in the repair of cardiac tissue following myocardial infarction. Immunosuppressive properties of MSCs extend utility of MSCs to reduce complications of graft versus host disease and rheumatoid arthritis. Homing of MSCs to sites of tissue injury, including tumor, is well established. In addition to their ability in tissue regeneration, MSCs can be genetically engineered ex vivo for delivery of therapeutic molecule(s) to the sites of injury or tumorigenesis as cell therapy vehicles. MSCs tend to lose surface receptors for trafficking and have been reported to develop sarcoma in long‐term culture. In this article, we reviewed the current status of MSCs with special emphasis to therapeutic application in bone‐related diseases. J. Cell. Biochem. 111: 249–257, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

3.
Human mesenchymal stem cells (MSCs) derived from adult tissues have been considered a candidate cell type for cell‐based tissue engineering and regenerative medicine. These multipotent cells have the ability to differentiate along several mesenchymal lineages and possibly along non‐mesenchymal lineages. MSCs possess considerable immunosuppressive properties that can influence the surrounding tissue positively during regeneration, but perhaps negatively towards the pathogenesis of cancer and metastasis. The balance between the naïve stem state and differentiation is highly dependent on the stem cell niche. Identification of stem cell niche components has helped to elucidate the mechanisms of stem cell maintenance and differentiation. Ultimately, the fate of stem cells is dictated by their microenvironment. In this review, we describe the identification and characterization of bone marrow‐derived MSCs, the properties of the bone marrow stem cell niche, and the possibility and likelihood of MSC involvement in cancer progression and metastasis. J. Cell. Physiol. 222: 268–277, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
Induced pluripotent stem cells (iPSC) hold tremendous potential for personalized cell‐based repair strategies to treat musculoskeletal disorders. To establish human iPSCs as a potential source of viable chondroprogenitors for articular cartilage repair, we assessed the in vitro chondrogenic potential of the pluripotent population versus an iPSC‐derived mesenchymal‐like progenitor population. We found the direct plating of undifferentiated iPSCs into high‐density micromass cultures in the presence of BMP‐2 promoted chondrogenic differentiation, however these conditions resulted in a mixed population of cells resembling the phenotype of articular cartilage, transient cartilage, and fibrocartilage. The progenitor cells derived from human iPSCs exhibited immunophenotypic features of mesenchymal stem cells (MSCs) and developed along multiple mesenchymal lineages, including osteoblasts, adipocytes, and chondrocytes in vitro. The data indicate the derivation of a mesenchymal stem cell population from human iPSCs is necessary to limit culture heterogeneity as well as chondrocyte maturation in the differentiated progeny. Moreover, as compared to pellet culture differentiation, BMP‐2 treatment of iPSC‐derived MSC‐like (iPSC–MSC) micromass cultures resulted in a phenotype more typical of articular chondrocytes, characterized by the enrichment of cartilage‐specific type II collagen (Col2a1), decreased expression of type I collagen (Col1a1) as well as lack of chondrocyte hypertrophy. These studies represent a first step toward identifying the most suitable iPSC progeny for developing cell‐based approaches to repair joint cartilage damage. J. Cell. Biochem. 114: 480–490, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
Mesenchymal stem cells (MSCs) are a heterogeneous population of stem/progenitor cells with pluripotent capacity to differentiate into mesodermal and non‐mesodermal cell lineages, including osteocytes, adipocytes, chondrocytes, myocytes, cardiomyocytes, fibroblasts, myofibroblasts, epithelial cells, and neurons. MSCs reside primarily in the bone marrow, but also exist in other sites such as adipose tissue, peripheral blood, cord blood, liver, and fetal tissues. When stimulated by specific signals, these cells can be released from their niche in the bone marrow into circulation and recruited to the target tissues where they undergo in situ differentiation and contribute to tissue regeneration and homeostasis. Several characteristics of MSCs, such as the potential to differentiate into multiple lineages and the ability to be expanded ex vivo while retaining their original lineage differentiation commitment, make these cells very interesting targets for potential therapeutic use in regenerative medicine and tissue engineering. The feasibility for transplantation of primary or engineered MSCs as cell‐based therapy has been demonstrated. In this review, we summarize the current knowledge on the signals that control trafficking and differentiation of MSCs. J. Cell. Biochem. 106: 984–991, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
7.
Human mesenchymal stromal cells (MSCs) expanded in vitro for cell therapy approaches need to be carefully investigated for genetic stability, by employing both molecular and conventional karyotyping. Reliability of cytogenetic analysis may be hampered in some MSC samples by the difficulty of obtaining an adequate number of metaphases. In an attempt to overcome this problem, a methodology apt to evaluate the cell‐cycle structure on synchronous MSCs was optimised. Results obtained in five independent experiments by comparing cell‐cycle analysis of synchronous and asynchronous MSC populations evaluated at early and late culture passages documented that in synchronous MSCs, 30% of cells entered G2/M phase after about 27–28 h of culture, while in asynchronous MSCs only 8% of cells in G2/M phase could be observed at the same time point. Cytogenetic analysis on synchronous MSCs allowed us to obtain 20–25 valuable metaphases/slide, whereas only 0–4 metaphases/slide were detectable in asynchronous preparations. J. Cell. Biochem. 112: 1817–1821, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

8.
Mesenchymal stem cells (MSCs) are recruited into the tumour microenvironment and promote tumour growth and metastasis. Tumour microenvironment‐induced autophagy is considered to suppress primary tumour formation by impairing migration and invasion. Whether these recruited MSCs regulate tumour autophagy and whether autophagy affects tumour growth are controversial. Our data showed that MSCs promote autophagy activation, reactive oxygen species production, and epithelial‐mesenchymal transition (EMT) as well as increased migration and invasion in A549 cells. Decreased expression of E‐cadherin and increased expression of vimentin and Snail were observed in A549 cells cocultured with MSCs. Conversely, MSC coculture‐mediated autophagy positively promoted tumour EMT. Autophagy inhibition suppressed MSC coculture‐mediated EMT and reduced A549 cell migration and invasion slightly. Furthermore, the migratory and invasive abilities of A549 cells were additional increased when autophagy was further enhanced by rapamycin treatment. Taken together, this work suggests that microenvironments containing MSCs can promote autophagy activation for enhancing EMT; MSCs also increase the migratory and invasive abilities of A549 lung adenocarcinoma cells. Mesenchymal stem cell‐containing microenvironments and MSC‐induced autophagy signalling may be potential targets for blocking lung cancer cell migration and invasion.  相似文献   

9.
There have been many clinical trials recently using ex vivo‐expanded human mesenchymal stem cells (MSCs) to treat several disease states such as graft‐versus‐host disease, acute myocardial infarction, Crohn's disease, and multiple sclerosis. The use of MSCs for therapy is expected to become more prevalent as clinical progress is demonstrated. However, the conventional 2‐dimensional (2D) culture of MSCs is laborious and limited in scale potential. The large dosage requirement for many of the MSC‐based indications further exacerbates this manufacturing challenge. In contrast, expanding MSCs as spheroids does not require a cell attachment surface and is amenable to large‐scale suspension cell culture techniques, such as stirred‐tank bioreactors. In the present study, we developed and optimized serum‐free media for culturing MSC spheroids. We used Design of Experiment (DoE)‐based strategies to systematically evaluate media mixtures and a panel of different components for effects on cell proliferation. The optimization yielded two prototype serum‐free media that enabled MSCs to form aggregates and proliferate in both static and dynamic cultures. MSCs from spheroid cultures exhibited the expected immunophenotype (CD73, CD90, and CD105) and demonstrated similar or enhanced differentiation potential toward all three lineages (osteogenic, chondrogenic, adipogenic) as compared with serum‐containing adherent MSC cultures. Our results suggest that serum‐free media for MSC spheroids may pave the way for scale‐up production of MSCs in clinically relevant manufacturing platforms such as stirred tank bioreactors. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:974–983, 2014  相似文献   

10.
Hypoxia triggers physiological and pathological cellular processes, including proliferation, differentiation, and death, in several cell types. Mesenchymal stem cells (MSCs) derived from various tissues have self‐renewal activity and can differentiate towards multiple lineages. Recently, it has been reported that hypoxic conditions tip the balance between survival and death by hypoxia‐induced autophagy, although the underlying mechanism is not clear. The objectives of this study are to compare the effect of hypoxia on the self‐renewal of bone marrow‐derived mesenchymal stem cells (BM‐MSCs) and placental chorionic plate‐derived mesenchymal stem cells (CP‐MSCs) and to investigate the regulatory mechanisms of self‐renewal in each MSC type during hypoxia. The expression of self‐renewal markers (e.g., Oct4, Nanog, Sox2) was assessed in both cell lines. PI3K and stem cell factor (SCF) expression gradually increased in CP‐MSCs but were markedly downregulated in BM‐MSCs by hypoxia. The phosphorylation of ERK and mTOR was augmented by hypoxia in CP‐MSCs compared to control. Also, the expression of LC3 II, a component of the autophagosome and the hoof‐shaped autophagosome was detected more rapidly in CP‐MSCs than in BM‐MSCs under hypoxia. Hypoxia induced the expression of SCF in CP‐MSCs and increased SCF/c‐kit pathway promotes the self‐renewal activities of CP‐MSCs via an autocrine/paracrine mechanism that balances cell survival and cell death events by autophagy. These activities occur to a greater extent in CP‐MSCs than in BM‐MSCs through regulating the phosphorylation of mTOR. These findings will provide useful guidelines for better understanding the function of SCF/c‐kit in the self‐renewal and autophagy‐regulated mechanisms that promote of MSC survival. J. Cell. Biochem. 114: 79–88, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

11.
Osteoporosis is a severe skeletal disorder. Patients have a low bone mineral density and bone structural deterioration. Mounting lines of evidence suggest that inappropriate apoptosis of osteoblasts/osteocytes leads to maladaptive bone remodelling in osteoporosis. It has been suggested that transplantation of stem cells, including mesenchymal stem cells, may alter the trajectory of bone remoulding and mitigate osteoporosis in animal models. However, stem cells needed to be carefully stored and characterized before usage. In addition, there is great batch‐to‐batch variation in stem cell production. Here, we fabricated therapeutic polymer microparticles from the secretome and membranes of mesenchymal stem cells (MSCs). These synthetic MSCs contain growth factors secreted by MSCs. In addition, these particles display MSC surface molecules. In vitro, co‐culture with synthetic MSCs increases the viability of osteoblast cells. In a rat model of ovariectomy‐induced osteoporosis, injection of synthetic MSCs mitigated osteoporosis by reducing cell apoptosis and systemic inflammation, but increasing osteoblast numbers. Synthetic MSC offers a promising therapy to manage osteoporosis.  相似文献   

12.
Hematopoietic stem cell transplantation (HSCT) is the ultimate choice of treatment for patients with hematological diseases and cancer. The success of HSCT is critically dependent on the number and engraftment efficiency of the transplanted donor hematopoietic stem cells (HSCs). Various studies show that bone marrow‐derived mesenchymal stromal cells (MSCs) support hematopoiesis and also promote ex vivo expansion of HSCs. MSCs exert their therapeutic effect through paracrine activity, partially mediated through extracellular vesicles (EVs). Although the physiological function of EVs is not fully understood, inspiring findings indicate that MSC‐derived EVs can reiterate the hematopoiesis, supporting the ability of MSCs by transferring their cargo containing proteins, lipids, and nucleic acids to the HSCs. The activation state of the MSCs or the signaling mechanism that prevails in them also defines the composition of their EVs, thereby influencing the fate of HSCs. Modulating or preconditioning MSCs to achieve a specific composition of the EV cargo for the ex vivo expansion of HSCs is, therefore, a promising strategy that can overcome several challenges associated with the use of naïve/unprimed MSCs. This review aims to speculate upon the potential role of preconditioned/primed MSC‐derived EVs as “cell‐free biologics,” as a novel strategy for expanding HSCs in vitro.  相似文献   

13.
Mesenchymal stem cells (MSCs) possess a multi-lineage differentiation capacity that makes them important players in the field of regenerative medicine. MSC populations derived from different tissues or donors have been shown to exhibit variable gene expression patterns. Further, it is widely acknowledged that MSC isolates are heterogeneous mixtures of cells at different developmental stages. However, the heterogeneity of expression of lineage regulators has not been linked to differentiation potential of different MSC populations towards mesenchymal lineages. Here, we analyzed variation of expression of differentiation markers across whole population and between single differentiating cells of multipotent stromal cell populations derived from adipose tissue (AdMSCs) and skin (FBs) of seven donors. The results of the analyses show that all cell populations exhibit similar differentiation potential towards adipocyte, osteoblast and chondrocyte lineages despite tissue type- and donor-specific variations of expression of differentiation-associated genes. Further, we detected variable expression of lineage regulators in individual differentiating cells. Together, our data indicate that single cells of stromal cell populations could use distinct molecular mechanisms to reach a common cell fate.  相似文献   

14.
Mesenchymal stem cells (MSCs) have emerged as a potential cell‐based therapy for pulmonary emphysema in animal models. Our previous study demonstrated that human induced pluripotent stem cell–derived MSCs (iPSC‐MSCs) were superior over bone marrow–derived MSCs (BM‐MSCs) in attenuating cigarette smoke (CS)‐induced airspace enlargement possibly through mitochondrial transfer. This study further investigated the effects of iPSC‐MSCs on inflammation, apoptosis, and proliferation in a CS‐exposed rat model and examined the effects of the secreted paracrine factor from MSCs as another possible mechanism in an in vitro model of bronchial epithelial cells. Rats were exposed to 4% CS for 1 hr daily for 56 days. At days 29 and 43, human iPSC‐MSCs or BM‐MSCs were administered intravenously. We observed significant attenuation of CS‐induced elevation of circulating 8‐isoprostane and cytokine‐induced neutrophil chemoattractant‐1 after iPSC‐MSC treatment. In line, a superior capacity of iPSC‐MSCs was also observed in ameliorating CS‐induced infiltration of macrophages and neutrophils and apoptosis/proliferation imbalance in lung sections over BM‐MSCs. In support, the conditioned medium (CdM) from iPSC‐MSCs ameliorated CS medium‐induced apoptosis/proliferation imbalance of bronchial epithelial cells in vitro. Conditioned medium from iPSC‐MSCs contained higher level of stem cell factor (SCF) than that from BM‐MSCs. Deprivation of SCF from iPSC‐MSC‐derived CdM led to a reduction in anti‐apoptotic and pro‐proliferative capacity. Taken together, our data suggest that iPSC‐MSCs may possess anti‐apoptotic/pro‐proliferative capacity in the in vivo and in vitro models of CS‐induced airway cell injury partly through paracrine secretion of SCF.  相似文献   

15.
Despite significant progress in our understanding of mesenchymal stem cell (MSC) biology during recent years, much of the information is based on experiments using in vitro culture-selected stromal progenitor cells. Therefore, the natural cellular identity of MSCs remains poorly defined. Numerous studies have reported that CD44 expression is one of the characteristics of MSCs in both humans and mice; however, we here have prospectively isolated bone marrow stromal cell subsets from both human and mouse bone marrow by flow cytometry and characterized them by gene expression analysis and function assays. Our data provide functional and molecular evidence suggesting that primary mesenchymal stem and progenitor cells of bone marrow reside in the CD44(-) cell fraction in both mice and humans. The finding that these CD44(-) cells acquire CD44 expression after in vitro culture provides an explanation for the previous misconceptions concerning CD44 expression on MSCs. In addition, the other previous reported MSC markers, including CD73, CD146, CD271, and CD106/VCAM1, are also differentially expressed on those two cell types. Our microarray data revealed a distinct gene expression profile of the freshly isolated CD44(-) cells and the cultured MSCs generated from these cells. Thus, we conclude that bone marrow MSCs physiologically lack expression of CD44, highlighting the natural phenotype of MSCs and opening new possibilities to prospectively isolate MSCs from the bone marrow.  相似文献   

16.
Clinically reported reparative benefits of mesenchymal stromal cells (MSCs) are majorly attributed to strong immune‐modulatory abilities not exactly shared by fibroblasts. However, MSCs remain heterogeneous populations, with unique tissue‐specific subsets, and lack of clear‐cut assays defining therapeutic stromal subsets adds further ambiguity to the field. In this context, in‐depth evaluation of cellular characteristics of MSCs from proximal oro‐facial tissues: dental pulp (DPSCs) and periodontal ligament (PDLSCs) from identical donors provides an opportunity to evaluate exclusive niche‐specific influences on multipotency and immune‐modulation. Exhaustive cell surface profiling of DPSCs and PDLSCs indicated key differences in expression of mesenchymal (CD105) and pluripotent/multipotent stem cell–associated cell surface antigens: SSEA4, CD117, CD123 and CD29. DPSCs and PDLSCs exhibited strong chondrogenic potential, but only DPSCs exhibited adipogenic and osteogenic propensities. PDLSCs expressed immuno‐stimulatory/immune‐adhesive ligands like HLA‐DR and CD50, upon priming with IFNγ, unlike DPSCs, indicating differential response patterns to pro‐inflammatory cytokines. Both DPSCs and PDLSCs were hypo‐immunogenic and did not elicit robust allogeneic responses despite exposure to IFNγ or TNFα. Interestingly, only DPSCs attenuated mitogen‐induced lympho‐proliferative responses and priming with either IFNγ or TNFα enhanced immuno‐modulation capacity. In contrast, primed or unprimed PDLSCs lacked the ability to suppress polyclonal T cell blast responses. This study indicates that stromal cells from even topographically related tissues do not necessarily share identical MSC properties and emphasizes the need for a thorough functional testing of MSCs from diverse sources with respect to multipotency, immune parameters and response to pro‐inflammatory cytokines before translational usage.  相似文献   

17.
Adult bone marrow mesenchymal stromal cells (MSCs) have cross-functional, intrinsic potency that is of therapeutic interest. Their ability to regenerate bone, fat, and cartilage, modulate the immune system, and nurture the growth and function of other bone marrow hematopoietic stem/progenitor cells have all been evaluated by transplant applications of MSCs. These applications require the isolation and expansion scaled cell production. To investigate biophysical properties of MSCs that can be feasibly utilized as predictors of bioactivity during biomanufacturing, we used a low-density seeding model to drive MSCs into proliferative stress and exhibit the hallmark characteristics of in vitro aging. A low-density seeding method was used to generate MSCs from passages 1–7 to simulate serial expansion of these cells to maximize yield from a single donor. MSCs were subjected to three bioactivity assays in parallel to ascertain whether patterns in MSC age, size, and shape were associated with the outcomes of the potency assays. MSC age was found to be a predictor of adipogenesis, while cell and nuclear shape was strongly associated to hematopoietic-supportive potency. Together, these data evaluate morphological changes associated with cell potency and highlight new strategies for purification or alternatives to assessing MSC quality.  相似文献   

18.
19.
Acute lung injury (ALI) is a severe clinical condition responsible for high mortality and the development of multiple organ dysfunctions, because of the lack of specific and effective therapies for ALI. Increasing evidence from pre‐clinical studies supports preventive and therapeutic effects of mesenchymal stem cells (MSCs, also called mesenchymal stromal cells) in ALI/ARDS (acute respiratory distress syndrome). Therapeutic effects of MSCs were noticed in various delivery approaches (systemic, local, or other locations), multiple origins (bone marrow or other tissues), or different schedules of administrations (before or after the challenges). MSCs could reduce the over‐production of inflammatory mediators, leucocyte infiltration, tissue injury and pulmonary failure, and produce a number of benefit factors through interaction with other cells in the process of lung tissue repair. Thus, it is necessary to establish guidelines, standard operating procedures and evaluation criteria for translating MSC‐based therapies into clinical application for patients with ALI.  相似文献   

20.
Stem cells have been shown to have the potential to provide a source of cells for applications to tissue engineering and organ repair. The mechanisms that regulate stem cell fate, however, mostly remain unclear. Mesenchymal stem cells (MSCs) are multipotent progenitor cells that are isolated from bone marrow and other adult tissues, and can be differentiated into multiple cell lineages, such as bone, cartilage, fat, muscles and neurons. Although previous studies have focused intensively on the effects of chemical signals that regulate MSC commitment, the effects of physical/mechanical cues of the microenvironment on MSC fate determination have long been neglected. However, several studies provided evidence that mechanical signals, both direct and indirect, played important roles in regulating a stem cell fate. In this review, we summarize a number of recent studies on how cell adhesion and mechanical cues influence the differentiation of MSCs into specific lineages. Understanding how chemical and mechanical cues in the microenvironment orchestrate stem cell differentiation may provide new insights into ways to improve our techniques in cell therapy and organ repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号