首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutations in PIK3CA are present in 10 to 15% of colorectal carcinomas. We aimed to examine how PIK3CA mutations relate to other molecular alterations in colorectal carcinoma, to pathologic phenotype and survival. PIK3CA mutation testing was carried out using direct sequencing on 757 incident tumors from the Melbourne Collaborative Cohort Study. The status of O-6-methylguanine-DNA methyltransferase (MGMT) was assessed using both immunohistochemistry and methyLight techniques. Microsatellite instability, CpG island phenotype (CIMP), KRAS and BRAF V600E mutation status, and pathology review features were derived from previous reports. PIK3CA mutation was observed in 105 of 757 (14%) of carcinomas, characterized by location in the proximal colon (54% vs. 34%; P<0.001) and an increased frequency of KRAS mutation (48% vs. 25%; P<0.001). High-levels of CIMP were more frequently found in PIK3CA-mutated tumors compared with PIK3CA wild-type tumors (22% vs. 11%; P = 0.004). There was no difference in the prevalence of BRAF V600E mutation between these two tumor groups. PIK3CA-mutated tumors were associated with loss of MGMT expression (35% vs. 20%; P = 0.001) and the presence of tumor mucinous differentiation (54% vs. 32%; P<0.001). In patients with wild-type BRAF tumors, PIK3CA mutation was associated with poor survival (HR 1.51 95% CI 1.04–2.19, P = 0.03). In summary, PIK3CA-mutated colorectal carcinomas are more likely to develop in the proximal colon, to demonstrate high levels of CIMP, KRAS mutation and loss of MGMT expression. PIK3CA mutation also contributes to significantly decreased survival for patients with wild-type BRAF tumors.  相似文献   

2.
Somatic mutations in TEK, the gene encoding endothelial cell tyrosine kinase receptor TIE2, cause more than half of sporadically occurring unifocal venous malformations (VMs). Here, we report that somatic mutations in PIK3CA, the gene encoding the catalytic p110α subunit of PI3K, cause 54% (27 out of 50) of VMs with no detected TEK mutation. The hotspot mutations c.1624G>A, c.1633G>A, and c.3140A>G (p.Glu542Lys, p.Glu545Lys, and p.His1047Arg), frequent in PIK3CA-associated cancers, overgrowth syndromes, and lymphatic malformation (LM), account for >92% of individuals who carry mutations. Like VM-causative mutations in TEK, the PIK3CA mutations cause chronic activation of AKT, dysregulation of certain important angiogenic factors, and abnormal endothelial cell morphology when expressed in human umbilical vein endothelial cells (HUVECs). The p110α-specific inhibitor BYL719 restores all abnormal phenotypes tested, in PIK3CA- as well as TEK-mutant HUVECs, demonstrating that they operate via the same pathogenic pathways. Nevertheless, significant genotype-phenotype correlations in lesion localization and histology are observed between individuals with mutations in PIK3CA versus TEK, pointing to gene-specific effects.  相似文献   

3.
A new cell line of human ovarian clear cell carcinoma (CCC), TU-OC-2, was established and characterized. The cells were polygonal in shape, grew in monolayers without contact inhibition and were arranged in islands like pieces of a jigsaw puzzle. The chromosome numbers ranged from 41 to 96. A low rate of proliferation was observed and the doubling time was 37.5 h. The IC50 values of cisplatin, 7-ethyl-10-hydroxycamptothecin (SN38), which is an active metabolite of camptothecin, and paclitaxel were 7.7 μM, 17.7 nM and 301 nM, respectively. The drug sensitivity assay indicated that TU-OC-2 was sensitive to SN38, but resistant to cisplatin and paclitaxel. Mutational analysis revealed that TU-OC-2 cells have no mutations of PIK3CA in exons 9 and 20 and of TP53 in exons 4–9. We observed the loss of ARID1A protein expression in TU-OC-2 cells by western blot analysis and in the original tumor tissue by immunohistochemistry. This cell line may be useful for studying the chemoresistant mechanisms of CCC and exploring novel therapeutic targets such as the ARID1A-related signaling pathway.  相似文献   

4.

Background

Abnormal activation of PI3K/AKT/mTOR (PAM) pathway, caused by PIK3CA mutation, KRAS mutation, PTEN loss, or AKT1 mutation, is one of the most frequent signaling abnormalities in breast carcinoma. However, distribution and frequencies of mutations in PAM pathway are unclear in breast cancer patients from the mainland of China and the correlation between these mutations and breast cancer outcome remains to be identified.

Methods

A total of 288 patients with invasive ductal breast cancer were recruited in this study. Mutations in PIK3CA (exons 4, 9 and 20), KRAS (exon 2) and AKT1 (exon 3) were detected using Sanger sequencing. PTEN loss was measured by immunohistochemistry assay. Correlations between these genetic aberrations and clinicopathological features were analyzed.

Results

The frequencies of PIK3CA mutation, KRAS mutation, AKT1 mutation and PTEN loss were 15.6%, 1.8%, 4.4% and 35.3%, respectively. However, except for PTEN loss, which was tied to estrogen receptor (ER) status, these alterations were not associated with other clinicopathological features. Survival analysis demonstrated that PIK3CA mutation, PTEN loss and PAM pathway activation were not associated with disease-free survival (DFS). Subgroup analysis of patients with ER positive tumors revealed that PIK3CA mutation more strongly reduced DFS compared to wild-type PIK3CA (76.2% vs. 54.2%; P = 0.011). PIK3CA mutation was also an independent factor for bad prognosis in ER positive patients.

Conclusions

AKT1, KRAS and PIK3CA mutations and PTEN loss all exist in women with breast cancer in the mainland China. PIK3CA mutation may contribute to the poor outcome of ER positive breast carcinomas, providing evidence for the combination of PI3K/AKT/mTOR inhibitors and endocrine therapy.  相似文献   

5.
The phosphoinositide-3-kinase (PI3K) pathway is commonly deregulated in breast cancer through several mechanisms, including PIK3CA mutation and loss of phosphatase and tensin homolog (PTEN) and inositol polyphosphate 4-phosphatase-II (INPP4B). We aimed to evaluate the predictive relevance of these biomarkers to trastuzumab efficacy in HER2-positive disease. We evaluated the effect of trastuzumab in 43 breast cancer patients with HER2-overexpression who received neoadjuvant treatment. PIK3CA mutation was examined by direct sequencing and digital PCR assay, and PIK3CA copy number was assessed by digital PCR assay of pretreatment tissues. PTEN, pAkt, and INPP4B were assessed by immunohistochemistry. Direct sequencing detected mutant DNA in 21% of all patients, but the incidence increased to 49% using digital PCR. The pathological complete response (pCR) rate in patients with PIK3CA mutations was 29% compared with 67% for those without PIK3CA mutations (P = 0.093), when the mutation was defined as positive if the mutant proportion was more than 10% of total genetic content by digital PCR. Low PTEN expression was associated with less pCR compared to high expression (33% versus 72%, P = 0.034). There were no significant associations of PIK3CA copy number, pAKt, or INPP4B with trastuzumab efficacy. In multivariate analysis, activation of the PI3K pathway due to either PIK3CA mutation or low PTEN were related to poorer response to trastuzumab (OR of predictive pCR was 0.11, 95%CI; 0.03–0.48). In conclusion, activating the PI3K pathway is associated with low pCR to trastuzumab-based treatment in HER2-positive breast cancer. Combined analysis of PIK3CA mutation and PTEN expression may serve as critical indicators to identify patients unlikely to respond to trastuzumab.  相似文献   

6.
Mutated genes are rarely common even in the same pathological type between cancer patients and as such, it has been very challenging to interpret genome sequencing data and difficult to predict clinical outcomes. PIK3CA is one of a few genes whose mutations are relatively popular in tumors. For example, more than 46.6% of luminal-A breast cancer samples have PIK3CA mutated, whereas only 35.5% of all breast cancer samples contain PIK3CA mutations. To understand the function of PIK3CA mutations in luminal A breast cancer, we applied our recently-proposed Cancer Hallmark Network Framework to investigate the network motifs in the PIK3CA-mutated luminal A tumors. We found that more than 70% of the PIK3CA-mutated luminal A tumors contain a positive regulatory loop where a master regulator (PDGF-D), a second regulator (FLT1) and an output node (SHC1) work together. Importantly, we found the luminal A breast cancer patients harboring the PIK3CA mutation and this positive regulatory loop in their tumors have significantly longer survival than those harboring PIK3CA mutation only in their tumors. These findings suggest that the underlying molecular mechanism of PIK3CA mutations in luminal A patients can participate in a positive regulatory loop, and furthermore the positive regulatory loop (PDGF-D/FLT1/SHC1) has a predictive power for the survival of the PIK3CA-mutated luminal A patients.  相似文献   

7.
Mutations in PIK3CA, the gene encoding the p110α catalytic subunit of phosphoinositide 3-kinase (PI3K) have been shown to transform human mammary epithelial cells (MECs). These mutations are present in all breast cancer subtypes, including basal-like breast cancer (BLBC). Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), we identified 72 protein expression changes in human basal-like MECs with knock-in E545K or H1047R PIK3CA mutations versus isogenic MECs with wild-type PIK3CA. Several of these were secreted proteins, cell surface receptors or ECM interacting molecules and were required for growth of PIK3CA mutant cells as well as adjacent cells with wild-type PIK3CA. The proteins identified by MS were enriched among human BLBC cell lines and pointed to a PI3K-dependent amphiregulin/EGFR/ERK signaling axis that is activated in BLBC. Proteins induced by PIK3CA mutations correlated with EGFR signaling and reduced relapse-free survival in BLBC. Treatment with EGFR inhibitors reduced growth of PIK3CA mutant BLBC cell lines and murine mammary tumors driven by a PIK3CA mutant transgene, all together suggesting that PIK3CA mutations promote tumor growth in part by inducing protein changes that activate EGFR.PIK3CA1, the gene encoding the p110α catalytic subunit of phosphatidylinositide-3 kinase (PI3K), is one of the two most frequently mutated genes in breast cancer. Approximately 80% of these mutations occur in two hot spots in the helical domain (E545K, E542K) and in the catalytic domain (H1047R). PIK3CA activating mutations occur in ∼40% of luminal and HER2-enriched breast cancer subtypes and ∼10% of basal-like breast cancer (BLBC) (1). In this last tumor subtype, mutations in PIK3CA are the most frequent activating kinase mutation. Thus, understanding of how PIK3CA mutations operate in BLBC is important for identifying therapeutic targets in this subtype of the disease, which lacks approved targeted therapies.To elucidate mechanisms by which mutant PIK3CA transforms MECs, we used immortalized, nontumorigenic MCF10A cells, which exhibit basal-like gene expression. Although MCF10A cells require growth factors for proliferation (2), heterozygous knock-in of E545K or H1047R PIK3CA mutation allows growth factor-independent proliferation (3). These knock-in PIK3CA mutant MECs provide a robust model in which to study the impact of these mutations without the effects of random insertion and overexpression associated with ectopic gene transduction. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis of these cells identified 72 proteins concordantly altered by both PIK3CA mutations. A significant fraction of these were secreted proteins, cell surface receptors or ECM interacting molecules, suggesting PIK3CA mutations induce changes involving communication with the tumor microenvironment. This analysis identified a PI3K-induced amphiregulin (AREG)-EGFR-ERK signaling pathway that was required for growth of PIK3CA-mutant cells as well as adjacent PIK3CA-WT cells. In addition, these protein changes correlated with poor clinical outcome in BLBC. EGFR antagonists inhibited growth of PIK3CA mutant BLBC tumors, suggesting a potential therapeutic strategy for patients with this molecular subtype of breast cancer.  相似文献   

8.
INTRODUCTION: While mutations in PIK3CA are most frequently (45%) detected in luminal breast cancer, downstream PI3K/AKT/mTOR pathway activation is predominantly observed in the basal subtype. The aim was to identify proteins activated in PIK3CA mutated luminal breast cancer and the clinical relevance of such a protein in breast cancer patients. MATERIALS AND METHODS: Expression levels of 171 signaling pathway (phospho-)proteins established by The Cancer Genome Atlas (TCGA) using reverse phase protein arrays (RPPA) were in silico examined in 361 breast cancers for their relation with PIK3CA status. MAPK1/3 phosphorylation was evaluated with immunohistochemistry on tissue microarrays (TMA) containing 721 primary breast cancer core biopsies to explore the relationship with metastasis-free survival. RESULTS: In silico analyses revealed increased phosphorylation of MAPK1/3, p38 and YAP, and decreased expression of p70S6K and 4E–BP1 in PIK3CA mutated compared to wild-type luminal breast cancer. Augmented MAPK1/3 phosphorylation was most significant, i.e. in luminal A for both PIK3CA exon 9 and 20 mutations and in luminal B for exon 9 mutations. In 290 adjuvant systemic therapy naïve lymph node negative (LNN) breast cancer patients with luminal cancer, high MAPK phosphorylation in nuclei (HR = 0.49; 95% CI, 0.25–0.95; P = .036) and in tumor cells (HR = 0.37; 95% CI, 0.18–0.79; P = .010) was related with favorable metastasis-free survival in multivariate analyses including traditional prognostic factors. CONCLUSION: Enhanced MAPK1/3 phosphorylation in luminal breast cancer is related to PIK3CA exon-specific mutations and correlated with favorable prognosis especially when located in the nuclei of tumor cells.  相似文献   

9.
BackgroundARID1A alterations have been detected in 40% of endometrial carcinomas (ECs) and are associated with loss of its expression. The role of ARID1A in tumorigenesis and development is complex, and the prognostic role in EC remains controversial. Hence, it is of great significance to confirm the role of ARID1A in EC.MethodsA total of 549 EC patients (cohort A) from TCGA were evaluated to explore the prognostic role of ARID1A. NGS was performed for 13 EC patients (cohort B), and expression of ARID1A, CD3, CD8 and mismatch repair (MMR) proteins in 52 patients (cohort C) from our center was determined by immunohistochemistry (IHC). The Kaplan–Meier method was used to perform survival analyses.ResultsARID1A alterations were detected in 32% of EC patients and correlated with good disease-free survival (DFS, P = 0.004) and overall survival (OS, P = 0.0353). ARID1A alterations were found to co-occur with MMR-related gene mutations and correlated with higher PD-L1 expression. Patients concomitantly harboring ARID1A alterations and MMR-related gene mutations had the best prognosis (DFS: P = 0.0488; OS: P = 0.0024). A cohort from our center showed that ARID1A deficiency was an independent prognostic factor and predicted longer recurrence-free survival (P = 0.0476). ARID1A loss was associated with a tendency toward MSI-H (P = 0.0060). ARID1A alterations and expression loss were associated with a higher abundance of CD3+ (P = 0.0406) and CD8+ (P = 0.0387) T cells.ConclusionARID1A alterations and expression loss are tightly associated with MMR deficiency and a high abundance of tumor-infiltrating lymphocytes, which might contribute to the good prognosis of EC.  相似文献   

10.
Mutations in KRAS oncogene are recognized biomarkers that predict lack of response to anti- epidermal growth factor receptor (EGFR) antibody therapies. However, some patients with KRAS wild-type tumors still do not respond, so other downstream mutations in BRAF, PIK3CA and NRAS should be investigated. Herein we used direct sequencing to analyze mutation status for 676 patients in KRAS (codons 12, 13 and 61), BRAF (exon 11 and exon 15), PIK3CA (exon 9 and exon 20) and NRAS (codons12, 13 and 61). Clinicopathological characteristics associations were analyzed together with overall survival (OS) of metastatic colorectal cancer patients (mCRC). We found 35.9% (242/674) tumors harbored a KRAS mutation, 6.96% (47/675) harbored a BRAF mutation, 9.9% (62/625) harbored a PIK3CA mutation and 4.19% (26/621) harbored a NRAS mutation. KRAS mutation coexisted with BRAF, PIK3CA and NRAS mutation, PIK3CA exon9 mutation appeared more frequently in KRAS mutant tumors (P = 0.027) while NRAS mutation almost existed in KRAS wild-types (P<0.001). Female patients and older group harbored a higher KRAS mutation (P = 0.018 and P = 0.031, respectively); BRAF (V600E) mutation showed a higher frequency in colon cancer and poor differentiation tumors (P = 0.020 and P = 0.030, respectively); proximal tumors appeared a higher PIK3CA mutation (P<0.001) and distant metastatic tumors shared a higher NRAS mutation (P = 0.010). However, in this study no significant result was found between OS and gene mutation in mCRC group. To our knowledge, the first large-scale retrospective study on comprehensive genetic profile which associated with anti-EGFR MoAbs treatment selection in East Asian CRC population, appeared a specific genotype distribution picture, and the results provided a better understanding between clinicopathological characteristics and gene mutations in CRC patients.  相似文献   

11.
Poor data have been previously reported about the mutation rates in K-RAS, BRAF, and PIK3CA genes among patients with hepatocellular carcinoma (HCC). Here we further elucidated the role of these genes in pathogenesis of primary hepatic malignancies. Archival tumour tissue from 65 HCC patients originating from South Italy were screened for mutations in these candidate genes by direct sequencing. Overall, oncogenic mutations were detected in 15 (23%) patients for BRAF gene, 18 (28%) for PIK3CA gene, and 1 (2%) for K-RAS gene. Using statistical analysis, BRAF mutations were significantly correlated with the presence of either multiple HCC nodules (P=0.021) or higher proliferation rates (P=0.034). Although further extensive screenings are awaited in HCC patients among different populations, our findings clearly indicated that mutational activation of both BRAF and PIK3CA genes does contribute to hepatocellular tumorigenesis at somatic level in Southern Italian population.  相似文献   

12.
Expression of PIK3IP1 in the murine uterus during early pregnancy   总被引:1,自引:0,他引:1  
The ovarian steroid hormones, estrogen (E2) and progesterone (P4), are essential regulators of uterine functions necessary for development, embryo implantation, and normal pregnancy. ARID1A plays an important role in steroid hormone signaling in endometrial function and pregnancy. In previous studies, using high density DNA microarray analysis, we identified phosphatidylinositol-3-kinase interacting protein 1 (Pik3ip1) as one of the genes up-regulated by ARID1A. In the present study, we performed real-time qPCR and immunohistochemistry analysis to investigate the regulation of PIK3IP1 by ARID1A and determine expression patterns of PIK3IP1 in the uterus during early pregnancy. The expression of PIK3IP1 was strong at the uterine epithelial and stromal cells of the control mice. However, expression of PIK3IP1 was remarkably reduced in the Pgrcre/+Arid1af/f mice and progesterone receptor knock-out (PRKO) mice. During early pregnancy, PIK3IP1 expression was strong at day 2.5 of gestation (GD 2.5) and then slightly decreased at GD 3.5?at the epithelium and stroma. After implantation, PIK3IP1 expression was detected at the secondary decidualization zone. To determine the ovarian steroid hormone regulation of PIK3IP1, we examined the expression of PIK3IP1 in ovariectomized control, Pgrcre/+Arid1af/f, and PRKO mice treated with P4 or E2. P4 treatment increased the PIK3IP1 expression at the luminal and glandular epithelium of control mice. However, the PIK3IP1 induction was decreased in both the Pgrcre/+Arid1af/f and PRKO mice, compared to controls. Our results identified PIK3IP1 as a novel target of ARID1A and PGR in the murine uterus.  相似文献   

13.
14.
Activation of the PI3K/Akt pathway, a critical step for survival in cancer cells is often associated with decreased sensitivity to several chemotherapeutic drugs. PIK3CA gene amplification is observed in 16–24% of epithelial ovarian cancer (EOC) patients in conjunction with p53 mutations. A 900 bp long PIK3CA promoter is shown to be negatively regulated by p53 in ovarian surface epithelial cells but the consequence of chemotherapeutic drug treatments on this promoter in ovarian cancer cells is largely unknown. We aim to study the modulation of this promoter by cisplatin using an improved fusion reporter in ovarian cancer cells and tumor xenografts by non-invasive imaging approach. A PIK3CA sensor was developed using a bi-fusion reporter from a newly constructed library of bi- and tri-fusion vectors comprising of two mutant far red fluorescent proteins (mcherry/mch and tdTomato/tdt), a mutant firefly luciferase (fluc2), and a PET reporter protein (ttk). In vivo imaging of mice implanted with 293T cells transiently expressing these bi- and tri-fusion reporters along with respective controls revealed comparable activity of each reporter in the fusion background and fluc2-tdt as the most sensitive one. Repression of the PIK3CA sensor by drugs was inversely proportional to cellular p53 level in a germline (PA1) and in an EOC (A2780) cell line but not in a p53 deficient EOC (SKOV3) cell line. Bioluminescence imaging of tumor xenografts stably expressing the PIK3CA sensor in PA1 and A2780 cells exhibited attenuating activity without any change in SKOV3 tumors expressing the PIK3CA sensor after cisplatin treatment. Sequential mutation at p53 binding sites showed gradual increase in promoter activity and decreased effects of the drugs. These newly developed PIK3CA-fluc2-tdt and the mutant reporter sensors thus would be extremely useful for screening new drugs and for functional assessment of PIK3CA expression from intact cells to living subjects.  相似文献   

15.
《Translational oncology》2020,13(2):157-164
Gene amplifications of PIK3CA or KRAS induce a downstream activation of the AKT-mTOR or RAF-ERK-pathways. Interactions of the active AKT pathway have been implicated in the inflammatory tumor microenvironment. Nothing is known about these interactions or prognostic power in esophageal adenocarcinoma (EAC). We retrospectively analyzed a large cohort of 685 EAC considering KRAS and PIK3CA gene amplification using fluorescence in situ hybridization (FISH) and immunohistochemistry. These results were correlated with clinical and molecular data as well as the inflammatory tumor microenvironment. Amplifications of KRAS were seen in 94 patients (17.1%), PIK3CA amplifications in 23 patients (5.0%). KRAS amplifications significantly correlated with nodal positive patients and poorer overall survival (OS) in the subgroup without neoadjuvant treatment (p = 0.004), coamplifications of Her2 (p = 0.027), and TP53 mutations (p = 0.016). PIK3CA amplifications significantly correlated with a high amount of tumor infiltrating T cells (p = 0.003) and showed a tendency to better OS (p = 0.068). A correlation with checkpoint makers (PD-L1, LAG3, VISTA, TIM3, IDO) could not be revealed. Our findings are the first to link the KRAS amplified genotype with lymphonodal positivity and poor prognosis and the PIK3CA-amplified genotype with a T cell–rich microenvironment in EAC. Future studies must show whether these two genotype subgroups can be therapeutically influenced. A dual inhibition of MEK and SHP2T could be effective in the subgroup of KRAS amplified EACs and an immune checkpoint blockade may prove to be particularly promising in the subgroup of PIK3CA-amplified EACs.  相似文献   

16.

Background

Colorectal adenoma develops into cancer with the accumulation of genetic and epigenetic changes. We studied the underlying molecular and clinicopathological features to better understand the heterogeneity of colorectal neoplasms (CRNs).

Methods

We evaluated both genetic (mutations of KRAS, BRAF, TP53, and PIK3CA, and microsatellite instability [MSI]) and epigenetic (methylation status of nine genes or sequences, including the CpG island methylator phenotype [CIMP] markers) alterations in 158 CRNs including 56 polypoid neoplasms (PNs), 25 granular type laterally spreading tumors (LST-Gs), 48 non-granular type LSTs (LST-NGs), 19 depressed neoplasms (DNs) and 10 small flat-elevated neoplasms (S-FNs) on the basis of macroscopic appearance.

Results

S-FNs showed few molecular changes except SFRP1 methylation. Significant differences in the frequency of KRAS mutations were observed among subtypes (68% for LST-Gs, 36% for PNs, 16% for DNs and 6% for LST-NGs) (P<0.001). By contrast, the frequency of TP53 mutation was higher in DNs than PNs or LST-Gs (32% vs. 5% or 0%, respectively) (P<0.007). We also observed significant differences in the frequency of CIMP between LST-Gs and LST-NGs or PNs (32% vs. 6% or 5%, respectively) (P<0.005). Moreover, the methylation level of LINE-1 was significantly lower in DNs or LST-Gs than in PNs (58.3% or 60.5% vs. 63.2%, P<0.05). PIK3CA mutations were detected only in LSTs. Finally, multivariate analyses showed that macroscopic morphologies were significantly associated with an increased risk of molecular changes (PN or LST-G for KRAS mutation, odds ratio [OR] 9.11; LST-NG or DN for TP53 mutation, OR 5.30; LST-G for PIK3CA mutation, OR 26.53; LST-G or DN for LINE-1 hypomethylation, OR 3.41).

Conclusion

We demonstrated that CRNs could be classified into five macroscopic subtypes according to clinicopathological and molecular differences, suggesting that different mechanisms are involved in the pathogenesis of colorectal tumorigenesis.  相似文献   

17.

Background

The Phosphatidylinositol 3′-kinase is a key regulator in various cancer-associated signal transduction pathways. Genetic alterations of its catalytic subunit alpha, PIK3CA, have been identified in ovarian cancer. Our in vivo data suggests that PIK3CA activation is one of the early genetic events in ovarian cancer. However, its role in malignant transformation of ovarian surface epithelium (OSE) is largely unclear.

Methodology/Principal Findings

Using the Müllerian inhibiting substance type II receptor (MISIIR) promoter, we generated transgenic mice that expressed activated PIK3CA in the Müllerian epithelium. Overexpression of PIK3CA in OSE induced remarkable hyperplasia, but was not able to malignantly transform OSE in vivo. The consistent result was also observed in primary cultured OSEs. Although enforced expression of PIK3CA could not induce OSE anchorage-independent growth, it significantly increased anchorage-independent growth of OSE transformed by mutant K-ras.

Conclusions/Significance

While PIK3CA activation may not be able to initiate OSE transformation, we conclude that activation of PIK3CA may be an important molecular event contributing to the maintenance of OSE transformation initiated by oncogenes such as K-ras.  相似文献   

18.
In order to gain a better understanding of the underlying biology of squamous cell carcinoma (SCC), we tested the hypothesis that SCC originating from different organs may possess common molecular alterations. SCC samples (N = 361) were examined using clinical-grade targeted next-generation sequencing (NGS). The most frequent SCC tumor types were head and neck, lung, cutaneous, gastrointestinal and gynecologic cancers. The most common gene alterations were TP53 (64.5% of patients), PIK3CA (28.5%), CDKN2A (24.4%), SOX2 (17.7%), and CCND1 (15.8%). By comparing NGS results of our SCC cohort to a non-SCC cohort (N = 277), we found that CDKN2A, SOX2, NOTCH1, TP53, PIK3CA, CCND1, and FBXW7 were significantly more frequently altered, unlike KRAS, which was less frequently altered in SCC specimens (all P < 0.05; multivariable analysis). Therefore, we identified “squamousness” gene signatures (TP53, PIK3CA, CCND1, CDKN2A, SOX2, NOTCH 1, and FBXW7 aberrations, and absence of KRAS alterations) that were significantly more frequent in SCC versus non-SCC histologies. A multivariable co-alteration analysis established 2 SCC subgroups: (i) patients in whom TP53 and cyclin pathway (CDKN2A and CCND1) alterations strongly correlated but in whom PIK3CA aberrations were less frequent; and (ii) patients with PIK3CA alterations in whom TP53 mutations were less frequent (all P ≤ 0 .001, multivariable analysis). In conclusion, we identified a set of 8 genes altered with significantly different frequencies when SCC and non-SCC were compared, suggesting the existence of patterns for “squamousness.” Targeting the PI3K-AKT-mTOR and/or cyclin pathway components in SCC may be warranted.  相似文献   

19.

Background

Anti-EGFR antibody–based treatment is an important therapeutic strategy for advanced colorectal cancer (CRC); despite this, several mutations—including KRAS, BRAF, and PIK3CA mutations, and HER2 amplification—are associated with the mechanisms underlying the development of resistance to anti-EGFR therapy. The aim of our study was to investigate the frequencies and clinical implications of these genetic alterations in advanced CRC.

Methods

KRAS, BRAF, and PIK3CA mutations were determined by Cobas real-time polymerase chain reaction (PCR) in 191 advanced CRC patients with distant metastasis. Microsatellite instability (MSI) status was determined by a fragmentation assay and HER2 amplification was assessed by silver in situ hybridization. In addition, KRAS mutations were investigated by the Sanger sequencing method in 97 of 191 CRC cases.

Results

Mutations in KRAS, BRAF, and PIK3CA were found in 104 (54.5%), 6 (3.1%), and 25 (13.1%) cases of advanced CRC, respectively. MSI-high status and HER2 amplification were observed in 3 (1.6%) and 16 (8.4%) cases, respectively. PIK3CA mutations were more frequently found in KRAS mutant type (18.3%) than KRAS wild type (6.9%) (P = 0.020). In contrast, HER2 amplifications and BRAF mutations were associated with KRAS wild type with borderline significance (P = 0.052 and 0.094, respectively). In combined analyses with KRAS, BRAF and HER2 status, BRAF mutations or HER2 amplifications were associated with the worst prognosis in the wild type KRAS group (P = 0.004). When comparing the efficacy of detection methods, the results of real time PCR analysis revealed 56 of 97 (57.7%) CRC cases with KRAS mutations, whereas Sanger sequencing revealed 49 cases (50.5%).

Conclusions

KRAS mutations were found in 54.5% of advanced CRC patients. Our results support that subgrouping using PIK3CA and BRAF mutation or HER2 amplification status, in addition to KRAS mutation status, is helpful for managing advanced CRC patients.  相似文献   

20.

Background

KRAS mutations occur in 35–45% of metastatic colorectal cancers (mCRC) and preclude responsiveness to EGFR-targeted therapy with cetuximab or panitumumab. However, less than 20% patients displaying wild-type KRAS tumors achieve objective response. Alterations in other effectors downstream of the EGFR, such as BRAF, and deregulation of the PIK3CA/PTEN pathway have independently been found to give rise to resistance. We present a comprehensive analysis of KRAS, BRAF, PIK3CA mutations, and PTEN expression in mCRC patients treated with cetuximab or panitumumab, with the aim of clarifying the relative contribution of these molecular alterations to resistance.

Methodology/Principal Findings

We retrospectively analyzed objective tumor response, progression-free (PFS) and overall survival (OS) together with the mutational status of KRAS, BRAF, PIK3CA and expression of PTEN in 132 tumors from cetuximab or panitumumab treated mCRC patients. Among the 106 non-responsive patients, 74 (70%) had tumors with at least one molecular alteration in the four markers. The probability of response was 51% (22/43) among patients with no alterations, 4% (2/47) among patients with 1 alteration, and 0% (0/24) for patients with ≥2 alterations (p<0.0001). Accordingly, PFS and OS were increasingly worse for patients with tumors harboring none, 1, or ≥2 molecular alteration(s) (p<0.001).

Conclusions/Significance

When expression of PTEN and mutations of KRAS, BRAF and PIK3CA are concomitantly ascertained, up to 70% of mCRC patients unlikely to respond to anti-EGFR therapies can be identified. We propose to define as ‘quadruple negative’, the CRCs lacking alterations in KRAS, BRAF, PTEN and PIK3CA. Comprehensive molecular dissection of the EGFR signaling pathways should be considered to select mCRC patients for cetuximab- or panitumumab-based therapies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号