首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The beta-adrenergic agonist isoproterenol inhibited the glycogenolytic response of platelet-activating factor (AGEPC, 1-O-hexadecyl-2-acetyl-sn-glycero-3-phosphocholine) in perfused livers derived from fed rats. AGEPC-stimulated hepatic vasoconstriction, measured by increases in portal vein pressure, also was inhibited by prior isoproterenol infusion. Isoproterenol-mediated inhibition of these hepatic responses to AGEPC was not apparent when isoproterenol (10 microM) was coinfused with the beta-receptor antagonist propranolol (75 microM) or when isoproterenol was replaced with the alpha-adrenergic agonist phenylephrine (10 microM). alpha-Agonist-induced glycogenolysis and vasoconstriction in the perfused liver was unaffected by isoproterenol infusion. Glucagon (2.3 nM) had no effect on the glycogenolytic or vasoconstrictive responses of the liver to AGEPC despite the fact that glucagon increased hepatic cAMP levels to a far greater extent than isoproterenol. Additionally, inhibition of the hepatic responses to AGEPC by isoproterenol occurred in perfused livers from mature rats (i.e. greater than 300 g) in which liver parenchymal cells lack functional beta-adrenergic receptors. The data presented in this study illustrate a specific inhibition of AGEPC-induced hepatic glycogenolysis and vasoconstriction by beta-adrenergic stimulation of the perfused liver. This inhibition appears to be mediated by interaction of isoproterenol with nonparenchymal cells within the liver. These findings are consistent with the concept that AGEPC stimulates hepatic glycogenolysis by an indirect mechanism involving hepatic vasoconstriction.  相似文献   

2.
Vasoactive intestinal peptide (VIP) and the -adrenergic agonist isoproterenol stimulated cyclic AMP formation through independent receptors in isolated epithelial ceils of rat ventral prostate. The specific -adrenergic antagonist propranolol inhibited the stimulatory effect of isoproterenol but not that of VIP. Besides small differences in the efficiency of both agents, results indicated that isoproterenol was 500 times less potent than VIP. Acetylcholine did not modify the basal cyclic AMP levels but inhibited the accumulation of the cyclic nucleotide in the presence of either VIP or isoproterenol. The inhibitory action of muscarinic receptors was calcium-dependent. The coexistence of receptors for cholinergic, adrenergic and peptidergic agents which can regulate cyclic AMP suggests that the functions of prostatic epithelium may be interdependently controlled by multiple neural effectors.  相似文献   

3.
Evidence suggesting that vicinal dithiols regulate immune-aggregate-induced vasoconstriction and glycogenolysis in the perfused rat liver was obtained. Phenylarsine oxide (PhAsO) and other tervalent organic arsenicals inhibited in a dose-dependent manner hepatic glycogenolysis, vasoconstriction, Ca2+ mobilization and the stimulated O2 consumption caused by immune-aggregate infusion. Polar tervalent and quinquivalent arsenicals were less effective than hydrophobic arsenicals. Prior infusion of Fc- but not Fab-fragments of IgG prevented partially immune-aggregate-stimulated hepatic metabolism, suggesting that immune aggregates elicit hepatic metabolic responses through Fc gamma receptors. The inhibitory action of PhAsO on immune-aggregate-stimulated hepatic glycogenolysis was unique; inhibition of glycogenolysis was not observed when phenylephrine, isoprenaline or glucagon was used as a stimulant. Although PhAsO might be expected to sequester cellular thiols, no significant change in the oxidation-reduction state of the major cellular thiol, glutathione, was found during PhAsO infusion. In addition, PhAsO exerted its effects without producing changes in hepatic adenine nucleotides and cyclic AMP. Evidence suggesting the involvement of vicinal dithiols was obtained through thiol-competition experiments using mono- and di-thiols. PhAsO inhibition of IgG-aggregate-stimulated hepatic vasoconstriction and glycogenolysis was reversed significantly by infusion of 2,3-dimercaptopropan-1-ol at 3-fold molar excess, whereas 2-mercaptoethanol at 40-fold molar excess was ineffective. The results of the present study provide evidence documenting the participation of vicinal dithiols during the coupling of hepatic immune-aggregate clearance by Kupffer cells with vasoconstriction of the hepatic vasculature (e.g. endothelial cells) and glycogenolysis (e.g. parenchymal cells).  相似文献   

4.
Endothelin, a potent peptide agonist in the liver   总被引:8,自引:0,他引:8  
Endothelin, a peptide mediator produced by vascular endothelial cells, caused sustained vasoconstriction of the portal vasculature in the perfused rat liver. The vasoactive effect of endothelin was accompanied by increased glycogenolysis and alterations in hepatic oxygen consumption. The endothelin-induced increase in the portal pressure was concentration-dependent with an EC50 of 1 nM. Endothelin-induced hepatic glycogenolysis was dose-dependent but exhibited a different EC50 than for the vasoconstrictive effects of endothelin. Hepatic vasoconstriction and glycogenolysis following endothelin infusion were inhibited when Ca2+ was removed from the perfusion medium. The endothelin-induced responses in the liver were not altered by prior infusion of phenylephrine (alpha-adrenergic agonist), isoproterenol (beta-adrenergic agonist), angiotensin II, glucagon, platelet-activating factor, or the platelet-activating factor antagonist, BN52021. However, repeated infusion of endothelin resulted in desensitization of the glycogenolytic response but was without a significant effect on hepatic vasoconstriction. Endothelin also stimulated metabolism of inositol phospholipids in isolated hepatocytes and Kupffer cells in primary culture. The present experiments demonstrate, for the first time, that endothelin is a very potent agonist in the liver eliciting both a sustained vasoconstriction of the hepatic vasculature and a significant increase in hepatic glucose output.  相似文献   

5.
Oxidation of [14C]glucose in isolated epididymal adipocytes from Golden hamsters was stimulated by isoproterenol and norepinephrine, which all interact with β-adrenergic receptors and by adrenorticotrophic hormone. In contrast α-receptor agonists, such as phenylephrine, methoxamine or clonidine did not increase basal glucose oxidation. The β-adrenergic blocking drug propranolol inhibited both lipolysis and glucose oxidation when these had been stimulated by isoproterenol, ephinephrine and phenoxybenzamine did not the α-adrenergic blocking drugs phentolamine and phenoxybenzamine did not influence lipolysis or glucose oxidation when isoproterenol provided the stimulus and increased both liposlysis and glucose metabolism in the presence of either epinephrine or norepinephrine. All α-adrenergic agonists tested (phenylephrine, methoxamine and clonidine) lowered liposlysis and glucose oxidation in isolated adipocytes exposed to isoproterenol. However, when adrenorcortropin provided the stimulus for glucose oxidation and lipolysis, only clonidine produced a significant reduction in lipolysis and glucose oxidation. None of the α-agonists influenced glucose metabolism which had been increased by insulin. These data confirm the presence of both α and β adrenergic receptors on hamster epididymal adipocytes and suggests that they exert antagonistic influences on lipolysis and glucose oxidation. These data are also consistent with the view that adrenergic stimulation of glucose oxidation and lipolysis in adipocytes are both mediated through β receptors.  相似文献   

6.
Hepatocytes from juvenile male rats (80-110 g) showed a 12-fold elevation of cAMP in response to epinephrine, which was mediated by beta 2-adrenergic receptors. In these cells, either alpha 1- or beta 2-adrenergic stimulation alone activated phosphorylase and glucose release although the alpha 1-phosphorylase response was 10-fold more sensitive to epinephrine and resulted in more rapid (by 10-20 s) activation of the enzyme. This suggests that the beta 2-adrenergic response is functionally unimportant for glycogenolysis, even in juvenile rats. beta 2-Adrenergic stimulation did, however, produce an increase in the rate of gluconeogenesis from [U-14C] lactate in these cells. Aging in the male rat was associated with attenuation of the beta 2-adrenergic cAMP response coupled with the emergence of an alpha 1-receptor-mediated accumulation of cAMP. The order of potency displayed by the alpha 1-adrenergic/cAMP system to adrenergic agonists and antagonists was identical with that of the alpha 1-adrenergic/Ca2+ system. These data suggest that, in maturity, hepatic alpha 1-receptors become linked to 2 separate transduction mechanisms, namely Ca2+ mobilization and cAMP generation. Calcium depletion of hepatocytes from adult, but not juvenile, male rats increased the alpha 1-component of the cAMP response to epinephrine, but under these conditions, alpha 1-activation of phosphorylase occurred more slowly than in calcium-replete cells. Blockade of alpha 2-adrenergic receptors did not significantly modify catecholamine effects on hepatocyte cAMP or phosphorylase a levels in male rats at any age studied, suggesting a lack of functional significance for these receptors in the regulation of glycogenolysis.  相似文献   

7.
Brain-derived neurotrophic factor (BDNF) synthesis in astrocytes induced by noradrenaline (NA) is a receptor-mediated process utilizing two parallel adrenergic pathways: beta1/beta2-adrenergic/cAMP and the novel alpha1-adrenergic/PKC pathway. BDNF is produced by astrocytes, in addition to neurons, and the noradrenergic system plays a role in controlling BDNF synthesis. Since astrocytes express various subtypes of alpha- and beta-adrenergic receptors that have the potential to be activated by synaptically released NA, we focused our present study on the mediatory role of adrenergic receptors in the noradrenergic up-regulation of BDNF synthesis in cultured neonatal rat cortical astrocytes. NA (1 microM) elevates BDNF levels by four-fold after 6 h of incubation. Its stimulation was partly inhibited by either the beta1-adrenergic antagonist atenolol, the beta2-adrenergic antagonist ICI 118,551, or by the alpha1-adrenergic antagonist prazosin, while the alpha2-adrenergic antagonist yohimbine showed no effect. BDNF levels in astrocytes were increased by the specific beta1-adrenergic agonist dobutamine and the beta2-adrenergic agonist salbutamol, as well as by adenylate cyclase activation (by forskolin) and PKA activation (by dBcAMP). However, none of the tested agonists or mediators of the intracellular beta-adrenergic pathways were able to reach the level of NA's stimulatory effect. BDNF cellular levels were also elevated by the alpha1-adrenergic agonist methoxamine, but not by the alpha2-adrenergic agonist clonidine. The increase in intracellular Ca2+ by ionophore A23187 showed no effect, whereas PKC activation by phorbol 12-myristate 13-acetate (TPA) potently stimulated BDNF levels in the cells. The methoxamine-stimulated BDNF synthesis was inhibited by desensitizing pretreatment with TPA, indicating that the alpha1-stimulation was mediated via PKC activation. In conclusion, the synthesis of astrocytic BDNF stimulated by noradrenergic neuronal activity is an adaptable process using multiple types (alpha1 and beta1/beta2) of adrenergic receptor activation.  相似文献   

8.
In the chicken pineal gland, norepinephrine, released at sympathetic nerve endings, plays a role in synchronizing the circadian rhythm of melatonin synthesis. This effect appears to be exerted via an adrenergic inhibition of arylalkylamine N-acetyltransferase, the melatonin rhythm-generating enzyme. The present study indicates that the nighttime peak of N-acetyltransferase activity developed by organ-cultured chick pineal glands is inhibited by adrenergic agonists with a potency order characterizing alpha 2-adrenergic receptors: UK 14,304 greater than clonidine greater than alpha-methylnorepinephrine = epinephrine greater than cirazoline greater than phenylephrine greater than isoproterenol. The mechanism of this alpha 2-adrenergic response was further analyzed in organ cultures, by studying the ability of clonidine to block the cyclic AMP-dependent and the depolarization-dependent stimulations of N-acetyltransferase activity. Clonidine prevented the rise in N-acetyltransferase activity evoked by the adenylate cyclase activators forskolin and cholera toxin or by the phosphodiesterase inhibitor Ro 20,1724. The stimulatory effect of dibutyryl cyclic AMP was also blocked by clonidine. Activation of pineal alpha 2-adrenergic receptors effectively prevented the stimulation of N-acetyltransferase by depolarizing concentrations of KCl. The possibility that the alpha 2-adrenergic effect might be exerted at a step distal to cyclic AMP production is discussed.  相似文献   

9.
10.
Abstract— The β-adrenergic agonist, isoproterenol and the α- and β-adrenergic agonist. NA. raise the intracellular concentration of cyclic AMP in cultures of dissociated perinatal mouse brain. This rise is prevented by a β- but not by an α-adrenergic antagonist. The maximal level of cyclic AMP reached in the presence of isoproterenol is markedly higher than that found after exposure to NA. However, if NA is used along with an α-adrenergic antagonist, cyclic AMP levels as high as those after isoproterenol are measured. Agonists with α-adrenergic activity including NA decrease the response to isoproterenol. The decrease is blocked by α-adrenergic antagonists. From this and additional evidence it is concluded: (1) The increase in the level of cyclic AMP caused by β-adrenergic agonists is due to β-receptor-mediated stimulation of adenylate cyclase; (2) the inhibition of this effect by α-adrenergic agonists is mediated by adrenergic α-receptors; (3) the α- and β-adrenergic receptors are likely to be located on the same cells, probably the most abundant putative glial precursor cells. The simultaneous stimulation of α- and β-adrenergic receptors on the same cell may be of significance in the regulation of the response to NA.  相似文献   

11.
T Okumura  T Sago  K Saito 《Prostaglandins》1988,36(4):463-475
Prostaglandin E2 (PGE2) and 16,16-dimethyl PGE2 were found to inhibit a hepatic glycogenolysis stimulated by epinephrine in the presence of propranolol (alpha 1-adrenergic response), isoproterenol (beta-adrenergic response) and glucagon in primary cultures of rat hepatocytes. The inhibitory effects to these stimulations were maximally increased (60-100%) in the cultures on day 2 or 3. Pretreatment of the cultured hepatocytes with pertussis toxin (islet-activating protein) resulted in a complete blockage of the prostaglandin-induced inhibition of glycogenolysis in a dose-dependent manner. Pertussis toxin had no significant effect on the glycogenolysis stimulated by these compounds in the absence of prostaglandin. The data suggest that the hepatic glycogenolysis stimulated by alpha 1- and beta-adrenergic responses and glucagon are modulated by the E series of prostaglandins via pertussis toxin-sensitive guanine nucleotide regulatory protein.  相似文献   

12.
Presomite stage rat embryos were cultured for 45-49 hr with medium containing various adrenergic agonists and antagonists. L-Norepinephrine but not D-norepinephrine (several orders of magnitude less potent than the L-isomer at alpha-1 adrenergic receptors) resulted in a dose-dependent increase of situs inversus similar to that found for phenylephrine, an alpha-1 adrenergic agonist. Prazosin, an alpha-1 adrenergic antagonist, inhibited phenylephrine-induced situs inversus in a dose-dependent manner. Neither dexmedetomidine, an alpha-2 adrenergic agonist, nor isoproterenol, a beta adrenergic agonist, caused situs inversus. These results provide pharmacological evidence that stimulation of alpha-1 but not of alpha-2 and beta adrenergic receptors modulates the control of left/right sidedness in rat embryos.  相似文献   

13.
Dopamine is the main catecholamine found in the chick retina whereas norepinephrine is only found in trace amounts. We compared the effectiveness of dopamine and norepinephrine in promoting cyclic AMP accumulation in retinas at embryonic day 13 (E13) and from post-hatched chicken (P15). Dopamine (EC(50)=10microM) and norepinephrine (EC(50)=30microM), but not the beta(1)-adrenergic agonist isoproterenol, stimulated over seven-fold the production of cyclic AMP in E13 retina. The cyclic AMP accumulation induced by both catecholamines in embryonic tissue was entirely blocked by 2microM SCH23390, a D(1) receptor antagonist, but not by alprenolol (beta-adrenoceptor antagonist). In P15 retinas, 100microM isoproterenol stimulated five-fold the accumulation of cAMP. This effect was blocked by propanolol (10microM), but not by 2microM SCH23390. Embryonic and adult retina display beta(1) adrenergic receptor mRNA as detected by RT-PCR, but the beta(1) adrenergic receptor protein was detected only in post-hatched tissue. We conclude that norepinephrine cross-reacts with D(1) dopaminergic receptor with affinity similar to that of dopamine in the embryonic retina. In the mature retina, however, D(1) receptors become restricted to activation by dopamine. Moreover, as opposed to the embryonic tissue, norepinephrine seems to stimulate cAMP accumulation via beta(1)-like adrenergic receptors in the mature tissue.  相似文献   

14.
The Madin-Darby canine kidney (MDCK) cell line, derived from distal tubule/collecting duct, expresses differentiated properties of renal tubule epithelium in culture. We studied the expression of adrenergic receptors in MDCK to examine the role of catecholamines in the regulation of renal function. Radioligand-binding studies demonstrated, on the basis of receptor affinities of subtype-selective adrenergic agonists and antagonists, that MDCK cells have both alpha 1- and beta 2- adrenergic receptors. To determine whether these receptor types were expressed by the same cell, we developed a number of clonal MDCK cell lines. The clonal lines had stable but unique morphologies reflecting heterogeneity in the parent cell line. Some clones expressed only beta 2-adrenergic receptors and were nonmotile, whereas others expressed both alpha 1- and beta 2-receptors and demonstrated motility on the culture substrate at low cell densities. In one clone, alpha- and beta- receptor expression was stable for more than 50 passages. Catecholamine agonists increased phosphatidylinositol turnover by activating alpha- adrenergic receptors and cellular cyclic adenosine monophosphate accumulation by activating beta-adrenergic receptors. Guanine nucleotide decreased the affinity of isoproterenol for the beta 2- receptor but did not alter the affinity of epinephrine for the alpha 1- receptor. These results show that alpha 1- and beta 2-receptors can be expressed by a single renal tubular cell and that the two receptors behave as distinct entities in terms of cellular response and receptor regulation. Heterogeneity of adrenergic receptor expression in MDCK clones may reflect properties of different types of renal tubule cells.  相似文献   

15.
Oxidation of [14C] glucose in isolated epididymal adipocytes from Golden hamsters was stimulated by isoproterenol, epinephrine and norepinephrine, which all interact with beta-adrenergic receptors and by adrenocorticotrophic hormone. In contrast alpha-receptor agonists, such as phenylephrine, methoxamine or clonidine did not increase basal glucose oxidation. The beta-adrenergic blocking drug propranolol inhibited both lipolysis and glucose oxidation when these had been stimulated by isoproterenol, epinephrine or norepinephrine. Conversely, the alpha-adrenergic blocking drugs phentolamine and phenoxybenzamine did not influence lipolysis or glucose oxidation when isoproterenol provided the stimulus and increased both lipolysis and glucose metabolism in the present of either epinephrine or norepinephrine. All alpha-adrenergic agonists tested (phenylephrine, methoxamine and clonidine) lowered lipolysis and glucose oxidation isolated adipocytes exposed to isoproterenol. However, when adrenocorticotropin provided the stimulus for glucose oxidation and lipolysis, only clonidine produced a significant reduction in lipolysis and glucose oxidation. None of the alpha-agonists influenced glucose metabolism which had been increased by insulin. These data confirm the presence of both alpha and beta adrenergic receptors on hamster epididymal adipocytes and suggest that they exert antagonistic influences on lipolysis and glucose oxidation. These data are also consistent with the view that adrenergic stimulation of glucose oxidation and lipolysis in adipocytes are both mediated through beta receptors.  相似文献   

16.
The relationship of hepatic ornithine decarboxylase (ODC) activity to cyclic AMP levels and nutritional status was studied in the pre-weanling rat. Previous studies demonstrated that 2 hr without food causes a loss of hepatic ODC induction after glucagon or catecholamine injection. Isoproterenol or glucagon administration produced increased hepatic cyclic AMP and tyrosine aminotransferase activity which were not prevented by nutritional deprivation. Blockade of hepatic beta 2 receptors by the selective antagonist ICI 118,551 prevented increased cAMP levels and ODC activity after isoproterenol administration. Blockade of beta 1 receptors by atenolol did not prevent increased cAMP levels or ODC induction by isoproterenol although it did block activation of cardiac ODC. The phosphodiesterase inhibitor RO20-1724 increased hepatic cAMP levels as well as ODC and TAT activities, although the increase in ODC activity was attenuated by nutritional deprivation. RO20-1724 also potentiated the induction of hepatic ODC after glucagon or isoproterenol administration. Administration of 8-bromo cAMP elevated hepatic ODC activity regardless of nutritional status but also elevated serum levels of growth hormone and corticosterone. Hepatic ODC induction by glucagon or beta 2 agonists can be dissociated from changes in cAMP levels during nutritional deprivation.  相似文献   

17.
The role of cyclic AMP in stimulus-secretion coupling with investigated in rat parotid tissue slices in vitro. Isoproterenol and norepinephrine stimulated a rapid intracellular accumulation of cyclic AMP, which reached a maximum level of 20-30 times the control value by 5 to 10 min after addition of the drug. Isoproterenol was approximately ten times more potent in stimulating both alpha-amylase release and cyclic AMP accumulation than were norepinephrine and epinephrine, which had nearly equal effects on these two parameters. Salbutamol and phenylephrine were less effectivema parallel order of potency and sensitivity was observed for the stimulation of adenylate cyclase activity in a washed particulate fractionmthe results suggest that these drugs are acting on a parotid acinar cell through a beta1-adrenergic mechanismmat the lowest concentrations tested, each of the adrenergic agonists stimulated significant alpha-anylase release with no detectable stimulation of cyclic AMP accumulationmeven in the presence of theophylline, phenylephrine at several concentrations increased alpha-amylase release without a detectable increase in cyclic AMP levels. However, phenylephrine did stimulate adenylate cyclase. These data suggest that, under certain conditions, large increases in the intra-cellular concentration of cyclic AMP may not be necessary for stimulation of alpha-amylase release by adrenergic agonists. Also consistent with this idea was the observation that stimulation of cyclic AMP accumulation by isoproterenol was much more sensitive to inhibition by propranolol than was the stimulation of alpha-amylase release by isoproterenol. Stimulation of alpha-amylase release by phenylephrine was only partially blocked by either alpha- or beta-adrenergic blocking agents, whereas stimulation of adenylate cyclase by phenylephrine was blocked by propranolol and not by phentolaminemphenoxybenzamine and phentolamine potentiated the effects of norepinephrine and isoproterenol on both cyclic AMP accumulation and alpha-amylase release by N-6,O-2'-dibutyryl adenosine 3',5'-monophosphate; These observations may indicate a non-specific action of phenoxybenzamine, and demonstrate the need for caution in interpreting evidence obtained using alpha-adrenergic blocking agents as tools for investigation of alpha- and beta-adrenergic antagonism.  相似文献   

18.
Isolated adrenocortical carcinoma cells of rat contain alpha 2- and beta-adrenergic receptors. When these cells are incubated with alpha 2-adrenergic agonists, there is a concentration-dependent increase of cyclic GMP that is blocked by the alpha 2-adrenergic antagonist yohimbine but not by the beta-antagonist propranolol. Concomitantly, both p-aminoclonidine (20 microM) and clonidine (100 microM), the alpha 2-adrenergic agonists, stimulate membrane guanylate cyclase activity. In calcium free medium there is no alpha 2-agonist-dependent increase in cyclic GMP. Isoproterenol, a beta-agonist, and forskolin cause an increase in cyclic AMP but not cyclic GMP. The cyclic AMP increase induced by isoproterenol is blocked by propranolol but not by yohimbine. Isoproterenol- and forskolin-dependent increases in cyclic AMP are inhibited by p-aminoclonidine and the inhibition is relieved by yohimbine. These results indicate a dual regulation of guanylate cyclase and adenylate cyclase by the alpha 2-receptor signal: guanylate cyclase is coupled to the receptor in a positive fashion, whereas adenylate cyclase is coupled in a negative fashion. Calcium is obligatory in the cyclic GMP-mediated response.  相似文献   

19.
The adrenergic inhibition of lipogenesis and stimulation of lipolysis in the avian has been examined using chicken hepatocytes and adipose tissue explants in vitro. Lipogenesis was inhibited by adrenergic agonists: epinephrine (alpha + beta) greater than isoproterenol (beta 1/beta 2) greater than norepinephrine (alpha 1/alpha 2, beta 1) greater than metaproterenol (beta 2), phenylephrine (alpha 1). Dobutamine (beta 1 agonist) and dopamine (dopaminergic agonist) did not significantly affect [14C]acetate incorporation into lipid, while clonidine and para-aminoclonidine (alpha 2 agonists) were slightly stimulatory. Lipolysis in young and adult chicken adipose tissue was stimulated by epinephrine, isoproterenol, phenylephrine, dobutamine and metaproterenol, but was inhibited by clonidine and para-aminoclonidine. Both the antilipogenic and lipolytic effects of epinephrine were partially blocked by phentolamine (alpha 1 = alpha 2 antagonist) or propranolol (beta 1 = beta 2 antagonist), but completely inhibited by phentolamine and propranolol administered together.  相似文献   

20.
In the heart beta1-adrenergic (beta1R) and adenosine A1 (A1R) and A2A (A2AR) receptors modulate contractile and metabolic function. The interaction between these receptors was investigated at the level of G-protein cycling by determining the effect of receptor agonists on the binding of GTP to G-proteins and displacement of G alpha-subunit-bound GDP by GTP. Crude membranes from rat heart or brain were stimulated by agonists for beta1R (isoproterenol; ISO), A1R (chlorocyclopentyladenosine, CCPA) and A2AR (CGS-21680; CGS). GTP binding to membranes was increased by ISO (17%), CCPA (6%) and CGS (12%). Binding values observed with incubation using ISO and CCPA together were significantly less than values obtained by the incubation of individual agents alone. With ISO, GTP binding to G alpha(s) subunits as determined by immunoprecipitation was increased 79% in heart and 87% in brain. These increases were attenuated by CCPA, an effect that was inhibited by CGS. GDP release by membranes was increased 6.9% and 4.6% by ISO and CCPA, respectively. After co-incubation of these agonists, release was increased less than determined by the addition of the individual agent responses. CGS inhibited the reduced release caused by of CCPA. Adenylyl cyclase activity stimulated by ISO was attenuated 33% by CCPA, an effect inhibited by CGS. Together, these results indicate that A1R exert an antiadrenergic action at the level of beta1R stimulated G(s)-protein cycling and that A2AR reduce this action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号