首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 245 毫秒
1.
Only a small fraction of spectra acquired in LC-MS/MS runs matches peptides from target proteins upon database searches. The remaining, operationally termed background, spectra originate from a variety of poorly controlled sources and affect the throughput and confidence of database searches. Here, we report an algorithm and its software implementation that rapidly removes background spectra, regardless of their precise origin. The method estimates the dissimilarity distance between screened MS/MS spectra and unannotated spectra from a partially redundant background library compiled from several control and blank runs. Filtering MS/MS queries enhanced the protein identification capacity when searches lacked spectrum to sequence matching specificity. In sequence-similarity searches it reduced by, on average, 30-fold the number of orphan hits, which were not explicitly related to background protein contaminants and required manual validation. Removing high quality background MS/MS spectra, while preserving in the data set the genuine spectra from target proteins, decreased the false positive rate of stringent database searches and improved the identification of low-abundance proteins.  相似文献   

2.
LC-MS/MS analysis on a linear ion trap LTQ mass spectrometer, combined with data processing, stringent, and sequence-similarity database searching tools, was employed in a layered manner to identify proteins in organisms with unsequenced genomes. Highly specific stringent searches (MASCOT) were applied as a first layer screen to identify either known (i.e. present in a database) proteins, or unknown proteins sharing identical peptides with related database sequences. Once the confidently matched spectra were removed, the remainder was filtered against a nonannotated library of background spectra that cleaned up the dataset from spectra of common protein and chemical contaminants. The rectified spectral dataset was further subjected to rapid batch de novo interpretation by PepNovo software, followed by the MS BLAST sequence-similarity search that used multiple redundant and partially accurate candidate peptide sequences. Importantly, a single dataset was acquired at the uncompromised sensitivity with no need of manual selection of MS/MS spectra for subsequent de novo interpretation. This approach enabled a completely automated identification of novel proteins that were, otherwise, missed by conventional database searches.  相似文献   

3.
A novel software tool named PTM-Explorer has been applied to LC-MS/MS datasets acquired within the Human Proteome Organisation (HUPO) Brain Proteome Project (BPP). PTM-Explorer enables automatic identification of peptide MS/MS spectra that were not explained in typical sequence database searches. The main focus was detection of PTMs, but PTM-Explorer detects also unspecific peptide cleavage, mass measurement errors, experimental modifications, amino acid substitutions, transpeptidation products and unknown mass shifts. To avoid a combinatorial problem the search is restricted to a set of selected protein sequences, which stem from previous protein identifications using a common sequence database search. Prior to application to the HUPO BPP data, PTM-Explorer was evaluated on excellently manually characterized and evaluated LC-MS/MS data sets from Alpha-A-Crystallin gel spots obtained from mouse eye lens. Besides various PTMs including phosphorylation, a wealth of experimental modifications and unspecific cleavage products were successfully detected, completing the primary structure information of the measured proteins. Our results indicate that a large amount of MS/MS spectra that currently remain unidentified in standard database searches contain valuable information that can only be elucidated using suitable software tools.  相似文献   

4.
The discovery of unanticipated protein modifications is one of the most challenging problems in proteomics. Whereas widely used algorithms such as Sequest and Mascot enable mapping of modifications when the mass and amino acid specificity are known, unexpected modifications cannot be identified with these tools. We have developed an algorithm and software called P-Mod, which enables discovery and sequence mapping of modifications to target proteins known to be represented in the analysis or identified by Sequest. P-Mod matches MS/MS spectra to peptide sequences in a search list. For spectra of modified peptides, P-Mod calculates mass differences between search peptide sequences and MS/MS precursors and localizes the mass shift to a sequence position in the peptide. Because modifications are detected as mass shifts, P-Mod does not require the user to guess at masses or sequence locations of modifications. P-Mod uses extreme value statistics to assign p value estimates to sequence-to-spectrum matches. The reported p values are scaled to account for the number of comparisons, so that error rates do not increase with the expanded search lists that result from incorporating potential peptide modifications. Combination of P-Mod searches from multiple LC-MS/MS analyses and multiple samples revealed previously unreported BSA modifications, including a novel decarboxymethylation or D-->G substitution at position 579 of the protein. P-Mod can serve a unique role in the identification of protein modifications both from exogenous and endogenous sources and may be useful for identifying modified protein forms as biomarkers for toxicity and disease processes.  相似文献   

5.
Thomas H  Shevchenko A 《Proteomics》2008,8(20):4173-4177
Along with unequivocal hits produced by matching multiple MS/MS spectra to database sequences, LC-MS/MS analysis often yields a large number of hits of borderline statistical confidence. To simplify their validation, we propose to use rapid de novo interpretation of all acquired MS/MS spectra and, with the help of a simple software tool, display the candidate sequences together with each database search hit. We demonstrate that comparing hit database sequences and independent de novo interpretations of the same MS/MS spectra assists in rapid examination of ambiguous matches.  相似文献   

6.
MOTIVATION: In proteomics, reverse database searching is used to control the false match frequency for tandem mass spectrum/peptide sequence matches, but reversal creates sequences devoid of patterns that usually challenge database-search software. RESULTS: We designed an unsupervised pattern recognition algorithm for detecting patterns with various lengths from large sequence datasets. The patterns found in a protein sequence database were used to create decoy databases using a Monte Carlo sampling algorithm. Searching these decoy databases led to the prediction of false positive rates for spectrum/peptide sequence matches. We show examples where this method, independent of instrumentation, database-search software and samples, provides better estimation of false positive identification rates than a prevailing reverse database searching method. The pattern detection algorithm can also be used to analyze sequences for other purposes in biology or cryptology. AVAILABILITY: On request from the authors. SUPPLEMENTARY INFORMATION: http://bioinformatics.psb.ugent.be/.  相似文献   

7.
We present a method for peptide and protein identification based on LC-MS profiling. The method identified peptides at high-throughput without expending the sequencing time necessary for CID spectra based identification. The measurable peptide properties of mass and liquid chromatographic elution conditions are used to characterize and differentiate peptide features, and these peptide features are matched to a reference database from previously acquired and archived LC-MS/MS experiments to generate sequence assignments. The matches are scored according to the probability of an overlap between the peptide feature and the database peptides resulting in a ranked list of possible peptide sequences for each peptide submitted. This method resulted in 6 times more peptide sequence identifications from a single LC-MS analysis of yeast than from shotgun peptide sequencing using LC-MS/MS.  相似文献   

8.
Saliva is a readily available body fluid with great diagnostic potential. The foundation for saliva-based diagnostics, however, is the development of a complete catalog of secreted and "leaked" proteins detectable in saliva. By employing a capillary isoelectric focusing-based multidimensional separation platform coupled with electrospray ionization tandem mass spectrometry (MS), a total of 5338 distinct peptides were sequenced, leading to the identification of 1381 distinct proteins. A search of bacterial protein sequences also identified many peptides unique to several organisms and unique to the NCBI nonredundant database. To the best of our knowledge, this proteome study represents the largest catalog of proteins measured from a single saliva sample to date. Data analysis was performed on individual MS/MS spectra using the highly specific peptide identification algorithm, OMSSA. Searches were conducted against a decoyed SwissProt human database to control the false-positive rate at 1%. Furthermore, the well-curated SwissProt sequences represent perhaps the least redundant human protein sequence database (12,484 records versus the 50,009 records found in the International Protein Index human database), therefore minimizing multiple protein inferences from single peptides. This combined bioanalytical and bioinformatic approach has established a solid foundation for building up the human salivary proteome for the realization of the diagnostic potential of saliva.  相似文献   

9.
Mass spectrometry-driven BLAST (MS BLAST) is a database search protocol for identifying unknown proteins by sequence similarity to homologous proteins available in a database. MS BLAST utilizes redundant, degenerate, and partially inaccurate peptide sequence data obtained by de novo interpretation of tandem mass spectra and has become a powerful tool in functional proteomic research. Using computational modeling, we evaluated the potential of MS BLAST for proteome-wide identification of unknown proteins. We determined how the success rate of protein identification depends on the full-length sequence identity between the queried protein and its closest homologue in a database. We also estimated phylogenetic distances between organisms under study and related reference organisms with completely sequenced genomes that allow substantial coverage of unknown proteomes.  相似文献   

10.
The analysis of proteomes of biological organisms represents a major challenge of the post-genome era. Classical proteomics combines two-dimensional electrophoresis (2-DE) and mass spectrometry (MS) for the identification of proteins. Novel technologies such as isotope coded affinity tag (ICAT)-liquid chromatography/mass spectrometry (LC/MS) open new insights into protein alterations. The vast amount and diverse types of proteomic data require adequate web-accessible computational and database technologies for storage, integration, dissemination, analysis and visualization. A proteome database system (http://www.mpiib-berlin.mpg.de/2D-PAGE) for microbial research has been constructed which integrates 2-DE/MS, ICAT-LC/MS and functional classification data of proteins with genomic, metabolic and other biological knowledge sources. The two-dimensional polyacrylamide gel electrophoresis database delivers experimental data on microbial proteins including mass spectra for the validation of protein identification. The ICAT-LC/MS database comprises experimental data for protein alterations of mycobacterial strains BCG vs. H37Rv. By formulating complex queries within a functional protein classification database "FUNC_CLASS" for Mycobacterium tuberculosis and Helicobacter pylori the researcher can gather precise information on genes, proteins, protein classes and metabolic pathways. The use of the R language in the database architecture allows high-level data analysis and visualization to be performed "on-the-fly". The database system is centrally administrated, and investigators without specific bioinformatic competence in database construction can submit their data. The database system also serves as a template for a prototype of a European Proteome Database of Pathogenic Bacteria. Currently, the database system includes proteome information for six strains of microorganisms.  相似文献   

11.
【目的】基质辅助激光解吸电离飞行时间质谱(MALDI-TOF MS)法基于微生物的特征蛋白指纹图谱鉴定菌种,本研究利用基因组学和MALDI-TOFMS技术鉴定放线菌纲细菌的核糖体蛋白质标志物。【方法】从MALDI-TOF MS图谱数据库选取放线菌纲代表菌种,在基因组数据库检索目标菌种,获取目标菌株或其参比菌株的核糖体蛋白质序列,计算获得分子质量理论值,用于注释目标菌株MALDI-TOFMS指纹图谱中的核糖体蛋白质信号。【结果】从8目,24科,53属,114种,142株放线菌的MALDI-TOFMS图谱中总共注释出31种核糖体蛋白质。各菌株的指纹图谱中核糖体蛋白质信号数量差异显著。各种核糖体蛋白质信号的注释次数差异显著。总共15种核糖体蛋白质在超过半数图谱中得到注释,注释次数最高的是核糖体大亚基蛋白质L36。【结论】本研究找到了放线菌纲细菌MALDI-TOF MS图谱中常见的15种核糖体蛋白质信号,可为通过识别核糖体蛋白质的质谱特征峰鉴定放线菌的方法建立提供依据。  相似文献   

12.
For the identification of novel proteins using MS/MS, de novo sequencing software computes one or several possible amino acid sequences (called sequence tags) for each MS/MS spectrum. Those tags are then used to match, accounting amino acid mutations, the sequences in a protein database. If the de novo sequencing gives correct tags, the homologs of the proteins can be identified by this approach and software such as MS-BLAST is available for the matching. However, de novo sequencing very often gives only partially correct tags. The most common error is that a segment of amino acids is replaced by another segment with approximately the same masses. We developed a new efficient algorithm to match sequence tags with errors to database sequences for the purpose of protein and peptide identification. A software package, SPIDER, was developed and made available on Internet for free public use. This paper describes the algorithms and features of the SPIDER software.  相似文献   

13.
While tandem mass spectrometry (MS/MS) is routinely used to identify proteins from complex mixtures, certain types of proteins present unique challenges for MS/MS analyses. The major wheat gluten proteins, gliadins and glutenins, are particularly difficult to distinguish by MS/MS. Each of these groups contains many individual proteins with similar sequences that include repetitive motifs rich in proline and glutamine. These proteins have few cleavable tryptic sites, often resulting in only one or two tryptic peptides that may not provide sufficient information for identification. Additionally, there are less than 14,000 complete protein sequences from wheat in the current NCBInr release. In this paper, MS/MS methods were optimized for the identification of the wheat gluten proteins. Chymotrypsin and thermolysin as well as trypsin were used to digest the proteins and the collision energy was adjusted to improve fragmentation of chymotryptic and thermolytic peptides. Specialized databases were constructed that included protein sequences derived from contigs from several assemblies of wheat expressed sequence tags (ESTs), including contigs assembled from ESTs of the cultivar under study. Two different search algorithms were used to interrogate the database and the results were analyzed and displayed using a commercially available software package (Scaffold). We examined the effect of protein database content and size on the false discovery rate. We found that as database size increased above 30,000 sequences there was a decrease in the number of proteins identified. Also, the type of decoy database influenced the number of proteins identified. Using three enzymes, two search algorithms and a specialized database allowed us to greatly increase the number of detected peptides and distinguish proteins within each gluten protein group.  相似文献   

14.
Protein identifications with the borderline statistical confidence are typically produced by matching a few marginal quality MS/MS spectra to database peptide sequences and represent a significant bottleneck in the reliable and reproducible characterization of proteomes. Here, we present a method for rapid validation of borderline hits that circumvents the need in, often biased, manual inspection of raw MS/MS spectra. The approach takes advantage of the independent interpretation of corresponding MS/MS spectra by PepNovo de novo sequencing software followed by mass spectrometry-driven BLAST (MS BLAST) sequence-similarity database searches that utilize all partially inaccurate, degenerate and redundant candidate peptide sequences. In a case study involving the identification of more than 180 Caenorhabditis elegans proteins by nanoLC-MS/MS analysis on a linear ion trap LTQ mass spectrometer, the approach enabled rapid assignment (confirmation or rejection) of more than 70% of Mascot hits of borderline statistical confidence.  相似文献   

15.
Searching spectral libraries in MS/MS is an important new approach to improving the quality of peptide and protein identification. The idea relies on the observation that ion intensities in an MS/MS spectrum of a given peptide are generally reproducible across experiments, and thus, matching between spectra from an experiment and the spectra of previously identified peptides stored in a spectral library can lead to better peptide identification compared to the traditional database search. However, the use of libraries is greatly limited by their coverage of peptide sequences: even for well‐studied organisms a large fraction of peptides have not been previously identified. To address this issue, we propose to expand spectral libraries by predicting the MS/MS spectra of peptides based on the spectra of peptides with similar sequences. We first demonstrate that the intensity patterns of dominant fragment ions between similar peptides tend to be similar. In accordance with this observation, we develop a neighbor‐based approach that first selects peptides that are likely to have spectra similar to the target peptide and then combines their spectra using a weighted K‐nearest neighbor method to accurately predict fragment ion intensities corresponding to the target peptide. This approach has the potential to predict spectra for every peptide in the proteome. When rigorous quality criteria are applied, we estimate that the method increases the coverage of spectral libraries available from the National Institute of Standards and Technology by 20–60%, although the values vary with peptide length and charge state. We find that the overall best search performance is achieved when spectral libraries are supplemented by the high quality predicted spectra.  相似文献   

16.
Plant biosecurity requires rapid identification of pathogenic organisms. While there are many pathogen-specific diagnostic assays, the ability to test for large numbers of pathogens simultaneously is lacking. Next generation sequencing (NGS) allows one to detect all organisms within a given sample, but has computational limitations during assembly and similarity searching of sequence data which extend the time needed to make a diagnostic decision. To minimize the amount of bioinformatic processing time needed, unique pathogen-specific sequences (termed e-probes) were designed to be used in searches of unassembled, non-quality checked, sequence data. E-probes have been designed and tested for several selected phytopathogens, including an RNA virus, a DNA virus, bacteria, fungi, and an oomycete, illustrating the ability to detect several diverse plant pathogens. E-probes of 80 or more nucleotides in length provided satisfactory levels of precision (75%). The number of e-probes designed for each pathogen varied with the genome size of the pathogen. To give confidence to diagnostic calls, a statistical method of determining the presence of a given pathogen was developed, in which target e-probe signals (detection signal) are compared to signals generated by a decoy set of e-probes (background signal). The E-probe Diagnostic Nucleic acid Analysis (EDNA) process provides the framework for a new sequence-based detection system that eliminates the need for assembly of NGS data.  相似文献   

17.
18.
Protein identification has been greatly facilitated by database searches against protein sequences derived from product ion spectra of peptides. This approach is primarily based on the use of fragment ion mass information contained in a MS/MS spectrum. Unambiguous protein identification from a spectrum with low sequence coverage or poor spectral quality can be a major challenge. We present a two-dimensional (2D) mass spectrometric method in which the numbers of nitrogen atoms in the molecular ion and the fragment ions are used to provide additional discriminating power for much improved protein identification and de novo peptide sequencing. The nitrogen number is determined by analyzing the mass difference of corresponding peak pairs in overlaid spectra of (15)N-labeled and unlabeled peptides. These peptides are produced by enzymatic or chemical cleavage of proteins from cells grown in (15)N-enriched and normal media, respectively. It is demonstrated that, using 2D information, i.e., m/z and its associated nitrogen number, this method can, not only confirm protein identification results generated by MS/MS database searching, but also identify peptides that are not possible to identify by database searching alone. Examples are presented of analyzing Escherichia coli K12 extracts that yielded relatively poor MS/MS spectra, presumably from the digests of low abundance proteins, which can still give positive protein identification using this method. Additionally, this 2D MS method can facilitate spectral interpretation for de novo peptide sequencing and identification of posttranslational or other chemical modifications. We envision that this method should be particularly useful for proteome expression profiling of organelles or cells that can be grown in (15)N-enriched media.  相似文献   

19.
Poultry products are presumed to be a major contributor to human foodborne illness due to their high frequency of contamination with pathogens Salmonella spp. and Campylobacter spp. This has stimulated the development of more sensitive and rapid methods for identifying pathogens present in poultry. These new methods include immunomagnetic separation of pathogen, PCR amplification of pathogen-specific sequences, pathogen-specific DNA and RNA probes, and identification of pathogen-specific ions by mass spectrometry.  相似文献   

20.
The MultiTag method (Sunyaev et al., Anal. Chem. 2003 15, 1307-1315) employs multiple error-tolerant searches with peptide sequence tags (Mann and Wilm, Anal. Chem. 1994, 66, 4390-4399) for the identification of proteins from organisms with unsequenced genomes. Here we demonstrate that the error-tolerant capabilities of MultiTag increased the number of peptide alignments and improved the confidence of identifications in an EST database. The MultiTag outperformed conventional database searching software that only utilizes stringent matching of tandem mass spectra to nucleotide sequences of ESTs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号