首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
Quantitative trait loci (QTL) analysis for pre-harvest sprouting tolerance (PHST) in bread wheat was conducted following single-locus and two-locus analyses, using data on a set of 110 recombinant inbred lines (RILs) of the International Triticeae Mapping Initiative population grown in four different environments. Single-locus analysis following composite interval mapping (CIM) resolved a total of five QTLs with one to four QTLs in each of the four individual environments. Four of these five QTLs were also detected following two-locus analysis, which resolved a total of 14 QTLs including 8 main effect QTLs (M-QTLs), 8 epistatic QTLs (E-QTLs) and 5 QTLs involved in QTL × environment (QE) or QTL × QTL × environment (QQE) interactions, some of these QTLs being common. The analysis revealed that a major fraction (76.68%) of the total phenotypic variation explained for PHST is due to M-QTLs (47.95%) and E-QTLs (28.73%), and that only a very small fraction of variation (3.24%) is due to QE and QQE interactions. Thus, more than three-quarters of the genetic variation for PHST is fixable and would contribute directly to gains under selection. Two QTLs that were detected in more than one environment and at LOD scores above the threshold values were located on 3BL and 3DL presumably in the vicinity of the dormancy gene TaVp1. Another QTL was found to be located on 3B, perhaps in close proximity to the R gene for red grain colour. However, these associations of QTLs for PHST with genes for dormancy and grain colour are only suggestive. The results obtained in the present study suggest that PHST is a complex trait controlled by large number of QTLs, some of them interacting among themselves or with the environment. These QTLs can be brought together through marker-aided selection, leading to enhanced PHST.  相似文献   

2.
In bread wheat, single-locus and two-locus QTL analyses were conducted for seven yield and yield contributing traits using two different mapping populations (P I and P II). Single-locus QTL analyses involved composite interval mapping (CIM) for individual traits and multiple-trait composite interval mapping (MCIM) for correlated yield traits to detect the pleiotropic QTLs. Two-locus analyses were conducted to detect main effect QTLs (M-QTLs), epistatic QTLs (E-QTLs) and QTL × environment interactions (QE and QQE). Only a solitary QTL for spikelets per spike was common between the above two populations. HomoeoQTLs were also detected, suggesting the presence of triplicate QTLs in bread wheat. Relatively fewer QTLs were detected in P I than in P II. This may be partly due to low density of marker loci on P I framework map (173) than in P II (521) and partly due to more divergent parents used for developing P II. Six QTLs were important which were pleiotropic/coincident involving more than one trait and were also consistent over environments. These QTLs could be utilized efficiently for marker assisted selection (MAS).  相似文献   

3.
In hexaploid wheat, single-locus and two-locus quantitative trait loci (QTL) analyses for grain protein content (GPC) were conducted using two different mapping populations (PI and PII). Main effect QTLs (M-QTLs), epistatic QTLs (E-QTLs) and QTL x environment interactions (QE, QQE) were detected using two-locus analyses in both the populations. Only a few QTLs were common in both the analyses, and the QTLs and the interactions detected in the two populations differed, suggesting the superiority of two-locus analysis and the need for using several mapping populations for QTL analysis. A sizable proportion of genetic variation for GPC was due to interactions (28.59% and 54.03%), rather than to M-QTL effects (7.24% and 7.22%), which are the only genetic effects often detected in the majority of QTL studies. Even E-QTLs made a marginal contribution to genetic variation (2.68% and 6.04%), thus suggesting that the major part of genetic variation is due to changes in gene networks rather than the presence or absence of specific genes. This is in sharp contrast to the genetic dissection of pre-harvest sprouting tolerance conducted by us earlier, where interaction effects were not substantial, suggesting that the nature of genetic variation also depends on the nature of the trait.  相似文献   

4.
水稻外观品质的数量性状基因位点分析   总被引:27,自引:1,他引:26  
利用由98个家系组成的Nipponbare(粳)/Kasalath(秒)∥Nipponbare回交重组自交系(backcross inbred lines,BILs)群体(BC1F9)及其分子连锁图谱,采用复合区间作图的方法,在2个不同年份对粒长、粒宽、粒形、垩白率、垩白大小、垩白度和透明度等7个稻米外观品质性状的数量性状基因位点(Quantiative trait loci,QTL)进行了定位分析。共定位到33个四QTLs,单个性状QTL数目在4-7个之间,以垩白率最多,为7个;粒长和垩白大小次之,为5个;其他性状均为4个,表明该组合外观品质是由多基因控制的数量性状。单个QTL对性状变异解释率粒长为6.2%-15.2%,粒宽为8.3%-32.5%,长宽比为6.8%-19.8%,垩白率为6.4%-28.5%,垩白大小为6.1%-16.9%,垩白度为9.3%-17.2%,透明度为5.6%-25.2%.QTL在染色体上成集中分布的特点,第3染色体C1488-C563、第5染色体R830-R3166和R1436-R2289、第6染色体R2147-R2171均有3个以上的QTLs分布。比较2年的检测结果表明,外观品质性状的QTL定位都受环境影响,但不同性状受影响的程度差异很大。粒长和粒形的QTL定位受环境影响很小,垩白率、垩白大小和垩白度的QTL定位受环境影响很大。  相似文献   

5.
The additive main effects and multiplicative interaction (AMMI) model has emerged as a powerful analytical tool for genotype x environment studies. The objective of the present study was to assess its value in quantitative trait locus (QTL) mapping. This was done through the analysis of a large two-way table of genotype-by-environment data of barley (Hordeum vulgare L.) grain yields, where the genotypes constituted a genetic population suitable for mapping studies. Grain yield data of 150 doubled haploid lines derived from the Steptoe x Morex cross, and the two parental lines, were taken by the North American Barley Genome Mapping Project (NABGMP) at 16 environments throughout the barley production areas of the USA and Canada. Four regions of the genome were responsible for most of the differential genotypic expression across environments. They accounted for approximately 50% of the genotypic main effect and 30% of the genotype x environment interaction (GE) sums of squares. The magnitude and sign of AMMI scores for genotypes and sites facilitate inferences about specific interactions. The parallel use of classification (cluster analysis of environments) and ordination (principal component analysis of GE matrix) techniques allowed most of the variation present in the genotype x environment matrix to be summarized in just a few dimensions, specifically four QTLs showing differential adaptation to four clusters of environments. Thus, AMMI genotypic scores, when the genotypes constituted a population suitable for QTL mapping, could provide an adequate way of resolving the magnitude and nature of QTL x environment interactions.Ignacio Romagosa was on sabbatical leave from the University of Lleida and the Institut de Recerca i Tecnologia Agroalimentàries, Lleida, Spain, when this study was conducted  相似文献   

6.
Mapping the genetic architecture of complex traits in experimental populations   总被引:18,自引:0,他引:18  
SUMMARY: Understanding how interactions among set of genes affect diverse phenotypes is having a greater impact on biomedical research, agriculture and evolutionary biology. Mapping and characterizing the isolated effects of single quantitative trait locus (QTL) is a first step, but we also need to assemble networks of QTLs and define non-additive interactions (epistasis) together with a host of potential environmental modulators. In this article, we present a full-QTL model with which to explore the genetic architecture of complex trait in multiple environments. Our model includes the effects of multiple QTLs, epistasis, QTL-by-environment interactions and epistasis-by-environment interactions. A new mapping strategy, including marker interval selection, detection of marker interval interactions and genome scans, is used to evaluate putative locations of multiple QTLs and their interactions. All the mapping procedures are performed in the framework of mixed linear model that are flexible to model environmental factors regardless of fix or random effects being assumed. An F-statistic based on Henderson method III is used for hypothesis tests. This method is less computationally greedy than corresponding likelihood ratio test. In each of the mapping procedures, permutation testing is exploited to control for genome-wide false positive rate, and model selection is used to reduce ghost peaks in F-statistic profile. Parameters of the full-QTL model are estimated using a Bayesian method via Gibbs sampling. Monte Carlo simulations help define the reliability and efficiency of the method. Two real-world phenotypes (BXD mouse olfactory bulb weight data and rice yield data) are used as exemplars to demonstrate our methods. AVAILABILITY: A software package is freely available at http://ibi.zju.edu.cn/software/qtlnetwork  相似文献   

7.
In spring-type oat (Avena sativa L.), quantitative trait loci (QTLs) detected in adapted populations may have the greatest potential for improving germplasm via marker-assisted selection. An F6 recombinant inbred (RI) population was developed from a cross between two Canadian spring oat varieties: Terra, a hulless line, and Marion, an elite covered-seeded line. A molecular linkage map was generated using 430 AFLP, RFLP, RAPD, SCAR, and phenotypic markers scored on 101 RI lines. This map was refined by selecting a robust set of 124 framework markers that mapped to 35 linkage groups and contained 35 unlinked loci. One hundred one lines grown in up to 13 field environments in Canada and the United States between 1992 and 1997 were evaluated for 16 agronomic, kernel, and chemical composition traits. QTLs were localized using three detection methods with an experiment-wide error rate of approximately 0.05 for each trait. In total, 34 main-effect QTLs affecting the following traits were identified: heading date, plant height, lodging, visual score, grain yield, kernel weight, milling yield, test weight, thin and plump kernels, groat -glucan concentration, oil concentration, and protein. Several of these correspond to QTLs in homologous or homoeologous regions reported in other oat QTL studies. Twenty-four QTL-by-environment interactions and three epistatic interactions were also detected. The locus controlling the covered/hulless character (N1) affected most of the traits measured in this study. Additive QTL models with N1 as a covariate were superior to models based on separate covered and hulless sub-populations. This approach is recommended for other populations segregating for major genes. Marker-trait associations identified in this study have considerable potential for use in marker-assisted selection strategies to improve traits within spring oat breeding programs.Communicated by P. Langridge  相似文献   

8.
Amylose content (AC), gel consistency (GC) and gelatinazation temperature (GT) are three important traits that influence the cooking and eating quality of rice. The objective of this study was to characterize the genetic components, including main-effect quantitative trait loci (QTLs), epistatic QTLs and QTL-by-environment interactions (QEs), that are involved in the control of these three traits. A population of doubled haploid (DH) lines derived from a cross between two indica varieties Zhenshan 97 and H94 was used, and data were collected from a field experiment conducted in two different environments. A genetic linkage map consisting of 218 simple sequence repeat (SSR) loci was constructed, and QTL analysis performed using qtlmapper 1.6 resolved the genetic components into main-effect QTLs, epistatic QTLs and QEs. The analysis detected a total of 12 main-effect QTLs for the three traits, with a QTL corresponding to the Wx locus showing a major effect on AC and GC, and a QTL corresponding to the Alk locus having a major effect on GT. Ten digenic interactions involving 19 loci were detected for the three traits, and six main-effect QTLs and two pairs of epistatic QTLs were involved in QEs. While the main-effect QTLs, especially the ones corresponding to known major loci, apparently played predominant roles in the genetic basis of the traits, under certain conditions epistatic effects and QEs also played important roles in controlling the traits. The implications of the findings for rice quality improvement are discussed.  相似文献   

9.
Jiang W  Jin YM  Lee J  Lee KI  Piao R  Han L  Shin JC  Jin RD  Cao T  Pan HY  Du X  Koh HJ 《Molecules and cells》2011,32(6):579-587
Low temperature is one of the major environmental stresses in rice cultivation in high-altitude and high-latitude regions. In this study, we cultivated a set of recombinant inbred lines (RIL) derived from Dasanbyeo (indica) / TR22183 (japonica) crosses in Yanji (high-latitude area), Kunming (high-altitude area), Chuncheon (cold water irrigation) and Suwon (normal) to evaluate the main effects of quantitative trait loci (QTL) and epistatic QTL (E-QTL) with regard to their interactions with environments for cold-related traits. Six QTLs for spikelet fertility (SF) were identified in three cold treatment locations. Among them, four QTLs on chromosomes 2, 7, 8, and 10 were validated by several near isogenic lines (NILs) under cold treatment in Chuncheon. A total of 57 QTLs and 76 E-QTLs for nine cold-related traits were identified as distributing on all 12 chromosomes; among them, 19 QTLs and E-QTLs showed significant interactions of QTLs and environments (QEIs). The total phenotypic variation explained by each trait ranged from 13.2 to 29.1% in QTLs, 10.6 to 29.0% in EQTLs, 2.2 to 8.8% in QEIs and 1.0% to 7.7% in E-QTL × environment interactions (E-QEIs). These results demonstrate that epistatic effects and QEIs are important properties of QTL parameters for cold tolerance at the reproductive stage. In order to develop cold tolerant varieties adaptable to wide-ranges of cold stress, a strategy facilitating marker-assisted selection (MAS) is being adopted to accumulate QTLs identified from different environments.  相似文献   

10.

Key message

Fifteen stable QTLs were identified using a high-density soybean genetic map across multiple environments. One major QTL, qIF5-1, contributing to total isoflavone content explained phenotypic variance 49.38, 43.27, 46.59, 45.15 and 52.50%, respectively.

Abstract

Soybeans (Glycine max L.) are a major source of dietary isoflavones. To identify novel quantitative trait loci (QTL) underlying isoflavone content, and to improve the accuracy of marker-assisted breeding in soybean, a valuable mapping population comprised of 196 F7:8–10 recombinant inbred lines (RILs, Huachun 2 × Wayao) was utilized to evaluate individual and total isoflavone content in plants grown in four different environments in Guangdong. A high-density genetic linkage map containing 3469 recombination bin markers based on 0.2 × restriction site-associated DNA tag sequencing (RAD-seq) technology was used to finely map QTLs for both individual and total isoflavone contents. Correlation analyses showed that total isoflavone content, and that of five individual isoflavone, was significantly correlated across the four environments. Based on the high-density genetic linkage map, a total of 15 stable quantitative trait loci (QTLs) associated with isoflavone content across multiple environments were mapped onto chromosomes 02, 05, 07, 09, 10, 11, 13, 16, 17, and 19. Further, one of them, qIF5-1, localized to chromosomes 05 (38,434,171–39,045,620 bp) contributed to almost all isoflavone components across all environments, and explained 6.37–59.95% of the phenotypic variance, especially explained 49.38, 43.27, 46.59, 45.15 and 52.50% for total isoflavone. The results obtained in the present study will pave the way for a better understanding of the genetics of isoflavone accumulation and reveals the scope available for improvement of isoflavone content through marker-assisted selection.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号