首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nucleotide sequence was obtained for a region of 7,099 bp spanning the nifU, nifS, nifV, nifW, nifZ, and nifM genes from Azotobacter chroococcum. Chromosomal mutations constructed at several sites within the locus confirmed a requirement for this region for expression of the molybdenum nitrogenase in this organism. The genes are tightly clustered and ordered as in Klebsiella pneumoniae except for two additional open reading frames (ORFs) between nifV and nifW. The arrangement of genes in A. chroococcum closely matches that described for Azotobacter vinelandii. The polypeptide encoded by ORF4 immediately downstream from nifV is 41% identical over 186 amino acids to the product of the cysE gene from Escherichia coli, which encodes serine acetyltransferase (SAT), a key enzyme in cysteine biosynthesis. Plasmids which potentially express ORF4 complemented E. coli JM39, a cysteine auxotroph which lacks SAT. SAT activity was detected in crude extracts of one such complemented strain. A strain of A. chroococcum carrying a chromosomal disruption of ORF4 grew normally with ammonium as the N source but more slowly than the parental strain when N2 was the sole N source. These data suggest that ORF4 encodes a nif-specific SAT required for optimizing expression of nitrogenase activity. ORF4 was assigned the name nifP. nifP may be required to boost rates of synthesis or intracellular concentrations of cysteine or methionine. Sequence identity between nifV and leuA gene products suggests that nifV may catalyze a condensation reaction analogous to that carried out by isopropylmalate synthase (LEUA) but in which acetyl coenzyme and alpha-ketoglutarate are substrates for the formation of homocitrate, the proposed product of NIFV activity.  相似文献   

2.
Determination of a 28,793-base-pair DNA sequence of a region from the Azotobacter vinelandii genome that includes and flanks the nitrogenase structural gene region was completed. This information was used to revise the previously proposed organization of the major nif cluster. The major nif cluster from A. vinelandii encodes 15 nif-specific genes whose products bear significant structural identity to the corresponding nif-specific gene products from Klebsiella pneumoniae. These genes include nifH, nifD, nifK, nifT, nifY, nifE, nifN, nifX, nifU, nifS, nifV, nifW, nifZ, nifM, and nifF. Although there are significant spatial differences, the identified A. vinelandii nif-specific genes have the same sequential arrangement as the corresponding nif-specific genes from K. pneumoniae. Twelve other potential genes whose expression could be subject to nif-specific regulation were also found interspersed among the identified nif-specific genes. These potential genes do not encode products that are structurally related to the identified nif-specific gene products. Eleven potential nif-specific promoters were identified within the major nif cluster, and nine of these are preceded by an appropriate upstream activator sequence. A + T-rich regions were identified between 8 of the 11 proposed nif promoter sequences and their upstream activator sequences. Site-directed deletion-and-insertion mutagenesis was used to establish a genetic map of the major nif cluster.  相似文献   

3.
Hu Y  Fay AW  Lee CC  Yoshizawa J  Ribbe MW 《Biochemistry》2008,47(13):3973-3981
Assembly of nitrogenase MoFe protein is arguably one of the most complex processes in the field of bioinorganic chemistry, requiring, at least, the participation of nifS, nifU, nifB, nifE, nifN, nifV, nifQ, nifZ, nifH, nifD, and nifK gene products. Previous genetic studies have identified factors involved in MoFe protein assembly; however, the exact functions of these factors and the precise sequence of events during the process have remained unclear until the recent characterization of a number of assembly-related intermediates that provided significant insights into this biosynthetic "black box". This review summarizes the recent advances in elucidation of the mechanism of FeMoco biosynthesis in four aspects: (1) the ex situ assembly of FeMoco on NifEN, (2) the incorporation of FeMoco into MoFe protein, (3) the in situ assembly of P-cluster on MoFe protein, and (4) the stepwise assembly of MoFe protein.  相似文献   

4.
5.
The Azotobacter vinelandii genes encoding the nitrogenase structural components are clustered and ordered: nifH (Fe protein)-nifD (MoFe protein alpha subunit)-nifK (MoFe protein beta subunit). In this study various A. vinelandii mutant strains which contain defined deletions within the nitrogenase structural genes were isolated and studied. Mutants deleted for the nifD or nifK genes were still able to accumulate significant amounts of the unaltered MoFe protein subunit as well as active Fe protein. Extracts of such nifD or nifK deletion strains had no MoFe protein activity. However, active MoFe protein could be reconstituted by mixing extracts of the mutant strains. These results establish an approach for the purification of the individual MoFe protein subunits. Mutants lacking either or both of the MoFe protein subunits were still able to synthesize the iron-molybdenum cofactor (FeMo-cofactor), indicating that in A. vinelandii the FeMo-cofactor is preassembled and inserted into the MoFe protein. In contrast, a mutant strain lacking both the Fe protein and the MoFe protein failed to accumulate any detectable FeMo-cofactor. The further utility of specifically altered A. vinelandii strains for the study of the assembly, structure, and reactivity of nitrogenase is discussed.  相似文献   

6.
Nitrogenase is composed of two separately purified proteins called the Fe protein and the MoFe protein. In Azotobacter vinelandii the genes encoding these structural components are clustered and ordered: nifH (Fe protein)-nifD (MoFe protein alpha subunit)-nifK (MoFe protein beta subunit). The MoFe protein contains an ironmolybdenum cofactor (FeMo cofactor) whose biosynthesis involves the participation of at least five gene products, nifQ, nifB, nifN, nifE, and nifV. In this study an A. vinelandii mutant strain, which contains a defined deletion within the nifH (Fe protein) gene, was isolated and studied. This mutant is still able to accumulate significant amounts of MoFe protein subunits. However, extracts of this nifH deletion strain have only very low levels of MoFe protein acetylene reduction activity. Fully active MoFe protein can be reconstituted by simply adding isolated FeMo cofactor to the extracts. Fe protein is not necessary to stabilize or insert this preformed FeMo cofactor into the FeMo cofactor-deficient MoFe protein synthesized by the nifH deletion strain. Extracts of the nifH deletion strain can carry out molybdate and ATP-dependent in vitro FeMo cofactor biosynthesis provided Fe protein is added, demonstrating that they contain the products encoded by the FeMo cofactor biosynthetic genes. These data demonstrate that the Fe protein is physically required for the biosynthesis of FeMo cofactor in A. vinelandii.  相似文献   

7.
△nifZ MoFe protein purified from a nifZ deleted strain of Azotobacter vinelandii (DJ194) was shown to be pure by SDS-Polyacrylamide gel electrophoresis. The protein contained 1.5 Mo atoms and 15.9 Fe atoms per molecule, the ratio of Fe to Mo was lower than that of the MoFe protein purified from the wild type strain of A. vinelandii; and Call2, H+ -reduction activity and their ratio (C2H4/H2 (Ar)) were 16.6%, 21.7% and 77.2% of those of the wild type MoFe protein, respectively. Under a somewhat different condition from that for the crystallization of the wild type MoFe protein dark brown rhombohedron crystals of △nifZ MoFe protein were obtained. It indicated that the deletion of the △nif Z resulted in the decrease of number or change in the structure of P-cluster in the mutant MoFe protein, which caused the significant structured and function of change of the protein.  相似文献   

8.
The nifZ gene product (NifZ) of Azotobacter vinelandii has been implicated in MoFe protein maturation. However, its exact function in this process remains largely unknown. Here, we report a detailed biochemical/biophysical characterization of His-tagged MoFe proteins purified from A. vinelandii nifZ and nifZ/nifB deletion strains DJ1182 and YM6A (Delta nifZ and Delta nifZ Delta nifB MoFe proteins, respectively). Our data from EPR, metal, activity, and stability analyses indicate that one alpha beta subunit pair of the Delta nifZ MoFe protein contains a P cluster ([8Fe-7S]) and an iron-molybdenum cofactor (FeMoco) ([Mo-7Fe-9S-X-homocitrate]), whereas the other contains a presumed P cluster precursor, possibly comprising a pair of [4Fe-4S]-like clusters, and a vacant FeMoco site. Likewise, the Delta nifZ Delta nifB MoFe protein has the same composition as the Delta nifZ MoFe protein except for the absence of FeMoco, an effect caused by the deletion of the nifB gene. These results suggest that the MoFe protein is likely assembled stepwise, i.e. one alpha beta subunit pair of the tetrameric MoFe protein is assembled prior to the other, and that NifZ might act as a chaperone in the assembly of the second alpha beta subunit pair by facilitating a conformational rearrangement that is required for the formation of the P cluster through the condensation of two [4Fe-4S]-like clusters. The possibility of NifZ exercising its effect through the Fe protein was ruled out because the Fe proteins from nifZ and nifZ/nifB deletion strains are not defective in their normal functions. However, the detailed mechanism of how NifZ carries out its exact function in MoFe protein maturation awaits further investigation.  相似文献   

9.
Under a suitable condition of crystallization, dark brown short rhombohedron crystals could be obtained from nitrogenase MnFe protein purified from a mutant UW3 of Azotobacter vinelandii Lipmann grown in Mn-containing but Mo- and NH3-free medium. The possibility of crystallization, and number,size and quality of crystals were obviously dependent on concentrations of NaCl,MgCl2, PEG 8000,Tris and Hepes buffer and on methods for crystallization. PEG concentration affected on the shape of the crystals.The optimal concentrations of the chemicals for crystallization of MnFe protein were slightly different from those for crystallization of ΔnifZ MoFe protein from a nifZ deleted strain of Azotobacter vinelandii . SDS-PAGE showed that the protein from the dissolved crystals was almost the same as MnFe protein before crystallization, indicating that the crystal was formed from MnFe protein.  相似文献   

10.
In comparison with OP MoFe protein from wild type strain Azotobacter vinelandii Lipmann, the C2H2-reduction activity and atom ratio of Fe to Mo of △nifZ MoFe protein from a nifZ deletion strain of A. vinelandii were remarkably decreased. FeMoco, which were extracted from these two proteins under the same condition, were almost similar to each other in activity and metal composition, and the circular dichroism (CD) spectra of these proteins were significantly different from each other. In the visible region except 540 750 nm, the △ε at 380 - 540 nm of △nifZ MoFe protein decreased and had a peculiar sharp negative peak around 430 nm; and in the ultraviolet region, the peaks at 208 nm and 222 nm were higher than those of OP MoFe protein. △nifZ MoFe protein could be crystallized in a suitable concentration of PEG 8000 and MgCl2, the size of crystals and amount of precipitation seemed to be related to the above-mentioned negative peaks. The results showed that △nifZ of Azotobacter vinelanclii might be related to the synthesis of P-cluster, rather than to that of FeMoco, which resulted in its conformation, stability and process of crystallization.  相似文献   

11.
A binary plasmid system was used to produce nitrogenase components in Escherichia coli and subsequently to define a minimum set of nitrogen fixation (nif) genes required for the production of the iron-molybdenum cofactor (FeMoco) reactivatable apomolybdenum-iron (apoMoFe) protein of nitrogenase. The active MoFe protein is an alpha 2 beta 2 tetramer containing two FeMoco clusters and 4 Fe4S4 P centers (for review see, Orme-Johnson, W.H. (1985) Annu. Rev. Biophys. Biophys. Chem. 14, 419-459). The plasmid pVL15, carrying a tac-promoted nifA activator gene, was coharbored in E. coli with the plasmid pGH1 which contained nifHDKTYENXUSVWZMF' derived from the chromosome of the nitrogen fixing bacterium Klebsiella pneumoniae. The apoMoFe protein produced in E. coli by pGH1 + VL15 was identical to the apoprotein in derepressed cells of the nifB- mutant of K. pneumoniae (UN106) in its electrophoretic properties on nondenaturing polyacrylamide gels as well as in its ability to be activated by FeMoco. The constituent peptides migrated identically to those from purified MoFe protein during electrophoresis on denaturing gels. The concentrations of apoMoFe protein produced in nif-transformed strains of E. coli were greater than 50% of the levels of MoFe protein observed in derepressed wild-type K. pneumoniae. Systematic deletion of individual nif genes carried by pGH1 has established the requirements for the maximal production of the FeMoco-reactivatable apoMoFe protein to be the following gene products, NifHDKTYUSWZM+A. It appears that several of the genes (nifT, Y, U, W, and Z) are only required for maximal production of the apoMoFe protein, while others (nifH, D, K, and S) are absolutely required for synthesis of this protein in E. coli. One curious result is that the nifH gene product, the peptide of the Fe protein, but not active Fe protein itself, is required for formation of the apoMoFe protein. This suggests the possibility of a ternary complex of the NifH, D, and K peptides as the substrate for the processing to form the apoMoFe protein. We also find that nifM, the gene which processes the nifH protein into Fe protein (Howard, K.S., McLean, P.A., Hansen, F. B., Lemley, P.V., Kobla, K.S. & Orme-Johnson, W.H. (1986) J. Biol. Chem. 261, 772-778) can, under certain circumstances, partially replace other processing genes (i.e. nifTYU and/or WZ) although it is not essential for apoMoFe protein formation. It also appears that nifS and nifU, reported to play a role in Fe protein production in Azotobacter vinelandii, play no such role in K. pneumoniae, although these genes are involved in apoMoFe formation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
在合适的结晶条件下,从含Cr无氨培养基中生长的固氮菌(Azotobacter vinelandii Lipmann)突变种UW3中纯化出的CrFe蛋白可从溶液中析出深棕色斜四棱柱晶体,晶体最大的两条对角线长度分别可达0.25 mm和0.12 mm.PEG 8000、MgCl2、NaCl、Tris 和Hepes 缓冲液的浓度及结晶方法等对该蛋白的出晶率、晶核数目、晶体大小和质量都有明显影响.CrFe蛋白结晶所需的上述化合物的最适浓度与在Mn中生长的固氮菌突变种UW3的MnFe蛋白和缺失nifZ固氮菌突变种的ΔnifZ MoFe蛋白结晶所需的最适浓度有所不同.结果表明,该蛋白晶体可能为CrFe蛋白的晶体.  相似文献   

13.
14.
15.
The molybdenum nitrogenase enzyme system, comprised of the MoFe protein and the Fe protein, catalyzes the reduction of atmospheric N(2) to NH(3). Interactions between these two proteins and between Fe protein and nucleotides (MgADP and MgATP) are crucial to catalysis. It is well established that salts are inhibitors of nitrogenase catalysis that target these interactions. However, the implications of salt effects are often overlooked. We have reexamined salt effects in light of a comprehensive framework for nitrogenase interactions to offer an in-depth analysis of the sources of salt inhibition and underlying apparent cooperativity. More importantly, we have identified patterns of salt activation of nitrogenase that correspond to at least two mechanisms. One of these mechanisms is that charge screening of MoFe protein-Fe protein interactions in the nitrogenase complex accelerates the rate of nitrogenase complex dissociation, which is the rate-limiting step of catalysis. This kind of salt activation operates under conditions of high catalytic activity and low salt concentrations that may resemble those found in vivo. While simple kinetic arguments are strong evidence for this kind of salt activation, further confirmation was sought by demonstrating that tight complexes that have previously displayed little or no activity due to the inability of Fe protein to dissociate from the complex are activated by the presence of salt. This occurs for the combination Azotobacter vinelandii MoFe protein with: (a) the L127Delta Fe protein; and (b) Clostridium pasteurianum Fe protein. The curvature of activation vs. salt implies a synergistic salt-protein interaction.  相似文献   

16.
The nitrogenase catalytic cycle involves binding of the iron (Fe) protein to the molybdenum-iron (MoFe) protein, transfer of a single electron from the Fe protein to the MoFe protein concomitant with the hydrolysis of at least two MgATP molecules, followed by dissociation of the two proteins. Earlier studies found that combining the Fe protein isolated from the bacterium Clostridium pasteurianum with the MoFe protein isolated from the bacterium Azotobacter vinelandii resulted in an inactive, nondissociating Fe protein-MoFe protein complex. In the present work, it is demonstrated that primary electron transfer occurs within this nitrogenase tight complex in the absence of MgATP (apparent first-order rate constant k = 0.007 s-1) and that MgATP accelerates this electron transfer reaction by more than 10,000-fold to rates comparable to those observed within homologous nitrogenase complexes (k = 100 s-1). Electron transfer reactions were confirmed by EPR spectroscopy. Finally, the midpoint potentials (Em) for the Fe protein [4Fe-4S]2+/+ cluster and the MoFe protein P2+/N cluster were determined for both the uncomplexed and complexed proteins and with or without MgADP. Calculations from electron transfer theory indicate that the measured changes in Em are not likely to be sufficient to account for the observed nucleotide-dependent rate accelerations for electron transfer.  相似文献   

17.
nifB-MoFe protein (nifB-Av1), AnifE MoFe protein (△nifE Av1) and AnifZ MoFe protein (△nifZ Av1) were obtained by chromatography on DE52, Sephacryl S-300 and Q-Sepharose columns from nifB point-mutated, nifE deleted and nifZ deleted mutant stains (UW45, DJ35 and DJ194) of Azotobacter vinelandii Llpmann, respectively. When complemented with nltrogenase Fe protein (Av2), AnifZ Av1 had partial activity and both nifB-Avl and △nifE Av1 had hardly any activity, but could be obviously activated by FeMoco extracted from wild-type MoFe protein (OP Av1) or △nifZ Av1. After being Incubated with excess O-phenanthrollne (O-phen) for 150 mln at 30 ℃ and subjected to chromatography on a Sephadex G-25 column In an Ar atmosphere, nifB- Av1C, △nifE Av1C and △nifZ Av1C were obtained, respectively. Based on a calculation of Fe atoms In the Ophen-Fe compound with ε 512nm = 11 100, lost Fe atoms of nifB-Av1, △nifE Av1 and △nifZ Av1 were estimated to be 1.35, 2.89 and 8.44 per molecule of protein, respectively. As a result of the Fe loss, △nifZ Av1 loses Its original activity. In the presence of both MgATP and Av2, these Fe-loslng proteins, but not the original proteins untreated with O-phen, could be significantly activated by reconstltuent solution (RS) composed of dlthlothreltol, ferric homocltrate, Na2S and Na2MoO4, or K2CrO4, or KMnO4. But In the absence of MgATP or Av2, the activation did not occur, with the exception that △nifZ AvlC was partially activated, and the activity was only 17%. These findings Indicate that: (I) △nifZ Avl with half P-cluster content Is somewhat different from FeMoco-deflclent nifB-Avl and ,△nifE Av1 with respect to protein conformation either before or after treatment with O-phen; (11) full activation of these proteins with RS requires pretreatment with O-phen and the simultaneous presence of MgATP and Av2.  相似文献   

18.
Various S=3/2 EPR signals elicited from wild-type and variant Azotobacter vinelandii nitrogenase MoFe proteins appear to reflect different conformations assumed by the FeMo-cofactor with different protonation states. To determine whether these presumed changes in protonation and conformation reflect catalytic capacity, the responses (particularly to changes in electron flux) of the alphaH195Q, alphaH195N, and alphaQ191K variant MoFe proteins (where His at position 195 in the alpha subunit is replaced by Gln/Asn or Gln at position alpha-191 by Lys), which have strikingly different substrate-reduction properties, were studied by stopped-flow or rapid-freeze techniques. Rapid-freeze EPR at low electron flux (at 3-fold molar excess of wild-type Fe protein) elicited two transient FeMo-cofactor-based EPR signals within 1 s of initiating turnover under N(2) with the alphaH195Q and alphaH195N variants, but not with the alphaQ191K variant. No EPR signals attributable to P cluster oxidation were observed for any of the variants under these conditions. Furthermore, during turnover at low electron flux with the wild-type, alphaH195Q or alphaH195N MoFe protein, the longer-time 430-nm absorbance increase, which likely reflects P cluster oxidation, was also not observed (by stopped-flow spectrophotometry); it did, however, occur for all three MoFe proteins under higher electron flux. No 430-nm absorbance increase occurred with the alphaQ191K variant, not even at higher electron flux. This putative lack of involvement of the P cluster in electron transfer at low electron flux was confirmed by rapid-freeze (57)Fe M?ssbauer spectroscopy, which clearly showed FeMo-factor reduction without P cluster oxidation. Because the wild-type, alphaH195Q and alphaH195N MoFe proteins can bind N(2), but alphaQ195K cannot, these results suggest that P cluster oxidation occurs only under high electron flux as required for N(2) reduction.  相似文献   

19.
The pre-steady-state ATPase activity of nitrogenase has been reinvestigated. The exceptionally high burst in the hydrolysis of MgATP by the nitrogenase from Azotobacter vinelandii communicated by Cordewener et al. (1987) [Cordewener J., ten Asbroek A., Wassink H., Eady R. R., Haaker H. & Veeger C. (1987) Eur. J. Biochem. 162, 265-270] was found to be caused by an apparatus artefact. A second possible artefact in the determination of the stoichiometry of the pre-steady-state ATPase activity of nitrogenase was observed. Acid-quenched mixtures of dithionite-reduced MoFe or Fe protein of Azotobacter vinelandii nitrogenase and MgATP contained phosphate above the background level. It is proposed that due to this reaction, quenched reaction mixtures of nitrogenase and MgATP may contain phosphate in addition to the phosphate released by the ATPase activity of the nitrogenase complex. It was feasible to monitor MgATP-dependent pre-steady-state proton production by the absorbance change at 572 nm of the pH indicator o-cresolsulfonaphthalein in a weakly buffered solution. At 5.6 degrees C, a pre-steady-state phase of H+ production was observed, with a first-order rate constant of 2.2 s-1, whereas electron transfer occurred with a first-order rate constant of 4.9 s-1. At 20.0 degrees C, MgATP-dependent H+ production and electron transfer in the pre-steady-state phase were characterized by observed rate constants of 9.4 s-1 and 104 s-1, respectively. The stopped-flow technique failed to detect a burst in the release of protons by the dye-oxidized nitrogenase complex. It is concluded that the hydrolysis rate of MgATP, as judged by proton release, is lower than the rate of electron transfer from the Fe protein to the MoFe protein.  相似文献   

20.
The nitrogenase of the free-living, microaerobic, N2-fixing bacterium Azospirillum amazonense (strain Y1) was purified by chromatography on DEAE-52 cellulose, by heat treatment, and by preparative polyacrylamide gel electrophoresis. The specific nitrogenase activities were 2,400 nmol of C2H4 formed per min per mg of protein for dinitrogenase (MoFe protein) and 1,800 nmol of C2H4 formed per min per mg of protein for dinitrogenase reductase (Fe protein). The MoFe protein was composed of a minimum of 1,852 amino acid residues, had an isoelectric point of 5.2, and contained 2 atoms of Mo, 24 atoms of Fe, and 28 atoms of acid-labile sulfide per molecule. The Fe protein had 624 amino acid residues and an isoelectric point of 4.6 and contained four atoms of Fe and six atoms of acid-labile sulfide per molecule. The purified MoFe protein showed two subunits with molecular weights of 55,000 and 50,000. The purified Fe protein revealed two polypeptides on sodium dodecyl sulfate-polyacrylamide gel electrophoresis with apparent molecular weights of 35,000 and 31,000. The two Fe protein polypeptides were demonstrated with immunological techniques in the purified, highly active enzyme as well as in extracts. Also, Azotobacter vinelandii Fe protein showed two closely migrating polypeptides that migrated differently from the Fe protein polypeptides of Azospirillum brasilense or Rhodospirillum rubrum. The nitrogenase activity of Azospirillum amazonense Y1 was independent of Mn2+, and the addition of activating enzyme had no effect. No activating enzyme could be found in Azospirillum amazonense. Obviously, the nitrogenase system of Azospirillum amazonense Y1 is different from that of Azospirillum brasilense Sp7 and resembles the Azotobacter system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号