首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
We used paleolimnological methods to investigate spatial and temporal patterns of bulk sediment and nutrient (C, N, P) accumulation in Lakes Hell n Blazes (A = 154 ha, zmax = 240 cm), Sawgrass (A = 195 ha, zmax = 157 cm) and Washington (A = 1766 ha, zmax = 322 cm), in the Upper St. Johns River Basin, Florida. The study was designed to evaluate long-term changes in sedimentation and nutrient storage in the basin, and was one component of a larger project addressing flood control, wetland restoration, and water quality improvement. These three study lakes are wide, shallow waterbodies in the upper reaches of the St. Johns River channel. Sediment mapping indicates soft, organic deposits are distributed uniformly throughout Lakes Hell n Blazes and Sawgrass. In contrast, much of Lake Washington is characterized by sandy bottom, and organic sediment is largely restricted to the north end of the lake. Lakes Hell n Blazes and Sawgrass are effective sediment traps because dense submersed macrophytes and their associated epiphytes reduce flow velocity, intercept suspended particles, and utilize dissolved nutrients. Abundant Hydrilla, combined with short fetch, prevents resuspension and downstream transport of sediments. Larger Lake Washington is probably wind-mixed and resuspended organic sediments are redeposited to downstream sites. 210Pb-dated sediment cores show that organic sediment accumulation began in all three lakes before 1900, but that bulk sediment and nutrient accumulation rates have generally increased since then. The increases are probably attributable, in part, to anthropogenic activities including 1) hydrologic modifications that reduced flow rates in the channel, 2) discharge of nutrient-rich waters from urban, agricultural and ranching areas, and, 3) introduction and periodic herbicide treatment of the exotic macrophytes Eichhornia and Hydrilla.  相似文献   

2.
W. F. DeBusk 《Hydrobiologia》1988,159(2):159-167
A field study was conducted (May 1981 to June 1982) to develop a data-base on seasonal changes of water and sediment chemistry of Lake Monroe (4 000 ha surface and ca. 2 m deep) located in central Florida, USA. This shallow eutrophic lake is a part of the St. Johns River. Quantitative samples of lake water and sediments were collected on a monthly basis from 16 stations and analyzed for various physico-chemical parameters. Relatively high levels of dissolved solids (mean electrical conductivity (EC) = 1832 µS cm1) prevailed in the lake water, and seasonal changes in EC were probably associated with hydrologic flushing from external sources, such as incoming water from upstream as well as precipitation. Average monthly levels of total N and P during the study period were 1.82 and 0.21 mg l–1, respectively. Nutrient concentrations in the water did not show any strong seasonal trends. Organic matter content of lake sediments ranged from 1 to 182 g C kg–1 of dry sediment, reflecting considerable spatial variability. All nutrient elements in the sediments showed highly significant (P < 0.01) correlations with sediment organic C, though little or no significant relationship appeared at any sampling period between water and sediment chemistry of the lake. Temporal trends in water and sediment chemical parameters may have been concealed by periodic hydrologic flushing of the St. Johns River into Lake Monroe.Florida Agricultural Experiment Stations Journal Series No. 7836.  相似文献   

3.
Shallow lakes are susceptible to catastrophic regime shifts characterised by the presence or absence or macrophytes. However, the long-term controls on macrophyte succession in shallow lakes are incompletely understood. To investigate this, we analysed multiple sediment proxies in Lake Rotcze (Eastern Poland), a small, shallow and densely macrophyte-covered lake to (1) reconstruct the ‘reference conditions’ (sensu WFD) and development of the lake in recent centuries, (2) compare historical evidence with the sedimentary record, and (3) identify the natural and anthropogenic drivers of macrophyte succession. Before the twentieth century, conditions in the lake may be referred to as ‘reference conditions’. Subsequently forest clearance in the catchment resulted in lower water transparency, but concurrent catchment drainage lowered water levels and increased macrophyte development. Since 1950 elevated nutrient supply and climatically driven increases in water levels led to the deterioration of water transparency and partial macrophyte withdrawal. At the end of the twentieth century lake-level drawdown led to low phytoplankton biomass and clear water creating a novel ecosystem where macrophytes invade the whole lake. These patterns suggest that both natural and anthropogenically induced water level fluctuations have been critical drivers of macrophyte development.  相似文献   

4.
Comparison of sulfur concentrations within lake sediment profiles   总被引:2,自引:0,他引:2  
Sediment cores from lakes in four regions (Adirondacks, Northern New England, Northern Great Lakes States, and Northern Florida) were analyzed for total S concentration. In all regions S concentrations in pre-1900 (1820–1900) sediment were similar and pre-1900 net sediment accumulation rates of S were not significantly different. Sulfur enrichment was greatest in Adirondack lake sediment (Big Moose L., Upper Wallface P., Queer L., and Deep L.), which had total post-1900 S accumulation of 1.1 to 7.4 times pre-1900 S accumulation; post-1900 net sediment accumulation rates of S were significantly greater than the other regions. Sediment from Maine (Little Long P. and Haystack P.) and Vermont (Mud P.) generally had lower S concentration than Adirondack sediments. Sulfur enrichment factors in these lakes ranged from 1.2 to 2.1. There was a positive correlation between contemporary limnetic sulfate concentration and post-1900 net sediment accumulation rates for Adirondack and Northern New England study lakes. Sediment from the Northern Great Lakes States region (McNearney, Andrus, Hustler L. and Dunnigan L.) had similar S concentration and distribution with depth to Northern New England sediment. In two Northern Florida lakes (Mirrow and Fore) sediment showed little variation in S concentration with depth, but L. Mary and L. Barco had higher S in deeper layers (30–55 cm). These different patterns of S distribution among lakes were attributed to differences in limnetic sulfate concentration, organic and inorganic sedimentation, and S diagenesis.  相似文献   

5.
Degraded Softwater Lakes: Possibilities for Restoration   总被引:5,自引:0,他引:5  
In the Netherlands, the characteristic flora of shallow softwater lakes has declined rapidly as a consequence of eutrophication, alkalization and acidification. The sediment of most lakes has become nutrient rich and anaerobic. We expected that, if a vital seed bank was still present, restoration of the original water quality and sediment conditions would lead to the return of softwater macrophytes. The restoration of 15 degraded, shallow, softwater lakes in the Netherlands was monitored from 1983 to 1998. In eutrophied as well as in acidified lakes, removal of accumulated organic matter from the sediment and shores was followed by rapid recolonization of softwater macrophytes present in the seedbank. After isolation from alkaline water and subsequent mud removal, this recovery was also observed in alkalized lakes. Further development of softwater vegetation correlated strongly with the water quality. When renewed eutrophication was successfully prevented, softwater macrophytes could expand. However, in acidified lakes, Juncus bulbosus and Sphagnum species became dominant after restoration. Liming of an acidified lake was followed by re‐acidification within 3 years. Recolonization by softwater macrophytes was inhibited by high turbidity of the water column and spreading of large helophytes on the shore. As an alternative, controlled inlet of alkaline, nutrient‐poor groundwater was studied in a few lakes. The pH of those lakes increased, the carbon and nitrogen availability decreased and softwater macrophytes returned. Successful restoration has contributed considerably to maintaining biodiversity in softwater lakes in the Netherlands.  相似文献   

6.
Lake Taihu is characterized by its shallowness (mean depth = 1.9 m) and large surface area (2,338 km2). Runoff sources are mostly from the mountainous west and southwest, and outflows are located throughout East Taihu. This causes shorter retention times in the south. In contrast, urban pollutants discharge into northern Taihu and result in poor water quality. Non-point pollution from rural areas and sewage wastewater is the primary pollution source. Water current velocity ranges from 10–30 cm s−1, and surface currents normally follow wind direction. Bottom currents appear to be a compensation flow. Most wave heights are less than 40 cm, and underwater irradiance correlates to seston in the water column. Lacustrine sediment is distributed in littoral zones, mostly along the western shoreline, with almost no accumulation in the lake center. Intensive aquaculture in East Taihu caused eutrophication and hampered water supply in surrounding areas. In addition, development of marshiness in the eastern littoral zones and East Taihu has occurred. The function of flood discharging of East Taihu has been limited by flourishing macrophytes. The problems facing in Lake Taihu will be alleviated by improving the management of nutrient sources into the lake. Guest editors: B. Qin, Z. Liu & K. Havens Eutrophication of shallow lakes with special reference to Lake Taihu, China  相似文献   

7.
The Environmental Control of Near-Surface Thermoclines in Boreal Lakes   总被引:1,自引:0,他引:1  
We report on the effect of lake size, water transparency, and wind on the frequency of transient near-surface thermoclines in 39 boreal lakes from the Experimental Lakes Area (ELA) and Northwest Ontario Lake Size Series (NOLSS). This study was based on more than 3000 archived temperature profiles amassed over a 25-year period for lakes ranging from 2 ha to 8 million ha in surface area. The incidence of transient thermoclines decreased with increasing lake size from 90% of all summer days in small lakes (less than 4 ha) to 40% or less in the larger NOLSS lakes (up to 34,700 ha). No transient near-surface thermoclines were detected in Lake Superior. Forest fires and climatic variability were also found to affect the frequency of near-surface thermoclines. Long-term trends indicate an increase in average annual wind velocity in the area, possibly as the result of extensive forest fires and clearcutting. The subsequent decrease in the frequency of shallow secondary thermoclines in aquatic ecosystems has possible consequences for the lake biota, as the result of changes in radiation, turbulence, and the nutrient regime. Received 8 November 2000; accepted 30 April 2001.  相似文献   

8.
Water level decline affects the biophysical environment of shallow lakes. Unprecedented drought in Australia’s Murray–Darling Basin resulted in extreme water level drawdown in the large, shallow Lake Alexandrina at the end of the River Murray. Surface sediment was collected from 22 sites in the lake before and after water levels declined to assess the integrated limnological changes over the period of drawdown. Results indicate an increase in the proportion of organic particles in profundal sediments, as well as an increase of fine particles (<19.9 μm) in peripheral sediments. These changes to sediment composition corresponded to higher concentrations of suspended particles at low water levels. Increased autochthony and a shift in primary production from macrophytes to phytoplankton in Lake Alexandrina support these findings. Inorganic carbon and other nutrients were lost from sandy sediments most likely through carbonate dissolution driven by a localized decrease in pore water pH from increased mineralisation of organic matter.  相似文献   

9.
Some shallow lakes switch repeatedly back and forth between a vegetation dominated clear-water state and a contrasting turbid state. Usually such alternations occur quite irregularly, but in some cases the switches between states are remarkably regular. Here we use data from a well-studied Dutch lake and a set of simple models to explore possible explanations for such cyclic behavior. We first demonstrate from a graphical model that cycles may in theory occur if submerged macrophytes promote water clarity in the short run, but simultaneously cause an increased nutrient retention, implying an accumulation of nutrients in the long run. Thus, although submerged plants create a positive feedback on their own growth by clearing the water, they may in the long run undermine their position by creating a slow “internal eutrophication”. We explore the potential role of two different mechanisms that may play a role in this internal eutrophication process using simulation models: (1) reduction of the P concentration in the water column by macrophytes, leading to less outflow of P, and hence to a higher phosphorus accumulation in the lake sediments and (2) a build-up of organic matter over time resulting in an increased sediment oxygen demand causing anaerobic conditions that boost P release from the sediment. Although the models showed that both mechanisms can produce cyclic behavior, the period of the cycles caused by the build-up of organic material seemed more realistic compared to data of the Dutch Lake Botshol in which regular cycles with a period of approximately 7 years have been observed over the past 17 years.  相似文献   

10.
修复白洋淀镉污染水体的沉水植物筛选试验   总被引:1,自引:0,他引:1  
为了筛选出适宜修复白洋淀镉(Cd)污染水体的沉水植物,该研究通过室内模拟试验,分析了四种沉水植物黑藻、狐尾藻、金鱼藻和菹草对Cd的耐受性及对底泥Cd的富集和迁移能力。结果表明:(1)通过毒性测试研究,Cd对黑藻、狐尾藻、金鱼藻及菹草的4 d-EC50(半数抑制浓度)分别为0.51、0.81、0.03、0.12 mg·L-1,狐尾藻对Cd的耐性最强,黑藻次之,金鱼藻对Cd的耐性最低; 四种沉水植物对Cd的最大富集量分别为27.89、15.28、22.54、32.74 g·kg-1,菹草对Cd的富集能力最强,黑藻次之,狐尾藻对Cd的富集能力最低。(2)通过Cd污染底泥修复研究,黑藻、狐尾藻和菹草体内Cd富集量整体表现为根>叶片和茎(P<0.05); 地上部、根对Cd的富集能力分别表现为黑藻>菹草>狐尾藻,菹草>黑藻>狐尾藻; 三种沉水植物对Cd的迁移能力则表现为黑藻>狐尾藻>菹草。总之,黑藻对底泥中Cd富集和迁移能力均较强,且耐性较高,是最适合修复白洋淀Cd污染水体的沉水植物。  相似文献   

11.
We applied a multi-proxy palaeolimnological approach to provide insights into the natural variability and human-mediated trends of two interconnected temperate large shallow lakes, Peipsi and Võrtsjärv, during the twentieth century. The history of the lakes was assessed on the basis of age-related changes in the sediment main constituents (water, organic matter and carbonate), sub-fossil pigments, diatom assemblages and organic matter dissolved in pore water. The temporal changes in the palaeodata indicate an increase of the in-lake biological production in both lakes from about the 1960s, suggesting enhanced nutrient inputs. In subsequent decades, the gradual increase of autochthonous organic matter becomes more obvious, indicating progressive eutrophication of the lakes. Palaeolimnological indicators from the sediment record of Lake Peipsi indicate a slight recession of the lake’s eutrophication in the 1990s but not for Lake Võrtsjärv. The results of the study also suggest that after the lakes became eutrophied, the climatically induced water-level fluctuations ceased to be the main driver determining the abundance of phytoplankton. Responses of the lakes to human-induced impacts are better recorded in the sediments of Lake Peipsi than in those of Lake Võrtsjärv, which is shallower of the two and where the wave-induced resuspension of deposits markedly smooths or erases the signals of environmental changes. The results of the investigation expand the knowledge on how large shallow lakes respond to human-mediated and natural perturbations, including those in the lake catchment areas and the capability of the lakes to store the chronology and sequence of these changes.  相似文献   

12.
为了应对气候挑战,达成碳达峰远景目标,需要正确评估自然资源碳中和价值。湖泊作为具有独特生态、人文价值的地理单元,因碳循环强度高、碳排放总量大,是传统意义上的碳源。通过梳理近期相关研究成果,对比不同类型湖泊碳汇/源状况,湖泊生态系统以一系列碳汇特征表现出潜在的碳中和价值。强烈的光合作用可以使水体CO2欠饱和,但由呼吸-光合作用、碳酸盐岩溶蚀作用带来的水体碱度、CO2分压pCO2提高也有利于湖泊碳汇增益。CO2在水体中大量溶解,积极参与到湖泊碳循环,将pCO2高于40 Pa作为判断湖泊为碳源的依据可能忽视了水体碱度上升带来的碳汇。在湖泊沉积物中有机碳的累积受到生态系统光合-呼吸作用的影响,当异养微生物群落能及时分解沉入湖底的衰亡组织、有机质时,沉积物中有机碳不会大量累积,当呼吸对光合的相对滞后,有机碳才会大量累积。湖泊生态系统的生产力决定了固碳能力,是湖泊发挥碳汇效益的重要“碳库”。由水生植物固定下的CO2总量不如浮游植物,但在过程中发挥了“压舱石”般的稳定作...  相似文献   

13.
The Maarsseveen Lakes system, located near the City of Utrecht, The Netherlands, consists of two major bodies of water, a larger lake (Maarsseveen I) and a smaller lake (Maarsseveen II), interconnected by a maze of channels known as a ‘petgaten’ area. The hydrodynamics of the lake region coupled with this ‘petgaten’ area are responsible for the maintenance of the relatively oligomesotrophic character of Lake Maarsseveen I, as compared with the more eutrophic lake maarsseveen II. Both lakes are plagued by problems of summer anoxia, although this phenomenon is far more pronounced in the more eutrophic small lake. Atmospheric deposition is responsible for contributions of significant quantities of trace metals to both lakes, and the River Vecht acts as an additional source for Lake Maarsseveen II.  相似文献   

14.
Ships that enter the Great Lakes laden with cargo carry only residual ballast water and sediment in ballast tanks. These ships are designated ‘no ballast on board’ (NOBOB) and constitute > 90% of inbound traffic. We conducted in situ experiments using emergence traps to assess the viability and the introduction potential of invertebrate diapausing stages present in ships’ ballast sediment. All trials commenced while vessels operated on the lower lakes (Erie, Ontario) and were completed 6–11 days later at ports on the upper lakes (Michigan, Lake Superior). Eight trials were conducted on four ships using five different ballast sediments. Hatching was observed on every ship, although not from all sediments on all ships. Overall hatch rates were very low (0.5 individuals per 500 g sediment), typically involving activation of < 0.05% of total eggs present. Five species of rotifers and copepod nauplii were hatched from ballast sediments, although only one or two species typically hatched from any one sediment. Results of this study indicate that hatching of diapausing eggs contained in ballast sediment of NOBOB ships poses a relatively low risk of invasion to the Great Lakes. However, as reproduction may occur in tanks, and non‐indigenous species may be involved in numerous introduction events, the risk posed by this vector is small but potentially important. While dormancy is a characteristic enabling enhanced survival during transportation in ballast tanks, it becomes a hindrance for introduction.  相似文献   

15.
1. A sediment core from the shallow, hypertrophic Lake Søbygaard (mean depth ∼1 m; [TP] 310 μg P L−1) was analysed for subfossil remains to reconstruct chironomid community changes in relation to the succession and disappearance of aquatic macrophytes. 2. Species composition in the 1.10 m core indicates a succession from a 'naturally' eutrophic state to a hypertrophic state during recent centuries. Radiometric dating (210Pb) of the uppermost 20 cm of the sediment core (∼1932–93) indicates that sediment accumulation rate had doubled in recent decades. 3. Changes in chironomid assemblages were in close agreement with changes in both diatoms and macrophyte remains in the same core. Distinct changes in chironomid communities reflect the eutrophication process and macrophyte succession through Chara , Ceratophyllum and Potamogeton dominance to the present state, with complete loss of submerged vegetation and dominance by phytoplankton. 4. The co-occurrence and relationship between aquatic macrophyte diversity and recent subfossil chironomid assemblages were assessed from an additional 25 Danish lakes. There was good agreement between the macrophyte and chironomid-based lake groupings. Overall, a significant difference ( P <0.001) was found in chironomid assemblages among lakes in different macrophyte classes. In a pair-wise comparison, the poorly buffered mesotrophic lakes and the alkaline eutrophic lakes had significantly different chironomid assemblages. 5. Chironomid taxa commonly reported to be associated with macrophytes ( Cricotopus , Endochironomus and Glyptotendipes ) were shown also to be indicators of highly productive lakes lacking abundant submerged vegetation.  相似文献   

16.
We studied phytoplankton population dynamics during the month preceding formation of ice cover in three small subalpine lakes in Rocky Mountain National Park, Colorado, U.S.A. The outflow from Emerald Lake, which is surrounded by talus, flows into Dream Lake, which is surrounded by sub-alpine forest. Nymph Lake is a lower seepage lake with abundant macrophytes in summer. The major ion concentrations in the three lakes were similar during the study, although Emerald and Dream Lakes had higher concentrations of nitrate and silica than Nymph Lake. A principal component analysis (PCA) showed that the phytoplankton in Emerald and Dream Lakes were distinct from the phytoplankton in Nymph Lake. The species composition changed in each lake during the late fall. The patterns of change in Emerald and Dream Lakes were similar on the PCA diagram despite the greater abundance of diatoms in Dream Lake and the decreasing flow from Emerald Lake into Dream Lake during the fall. In Nymph Lake, a progressive shift in species distribution occurred with a decrease in the most abundant chlorophyte, Chlamydomonas sp., and increases in several species, including two chrysophytes and the diatom Eunotia sp. The marked change in species composition in all three lakes suggests that phytoplankton populations are influenced by changes in water temperatures and incident solar radiation that occur during the late fall. We also compared these data with phytoplankton data for two fall periods from two other hydrologically connected Rocky Mountain lakes. PCA analysis showed that the difference between years was greater than the change during the fall and that the fall species composition in these two lakes was distinct from that in Emerald and Dream Lakes or in Nymph Lake. Studying phytoplankton dynamics in alpine and sub-alpine lakes may offer clues as to how these ecosystems may respond to projected climate changes in the Rocky Mountain region, such as warmer temperatures and later formation of ice-cover.  相似文献   

17.
1. Different behavioural responses of planktonic animals to their main predators, fish, have been reported from shallow lakes. In north temperate lakes, large‐bodied zooplankton may seek refuge from predation among macrophytes, whereas in subtropical lakes, avoidance of macrophytes has been observed. The prevalent behaviour probably depends on the characteristics of the fish community, which in Mediterranean lakes is typically dispersed in both the open water zone and in the littoral, as in temperate lakes, and is dominated by small size classes, as in subtropical lakes. 2. We performed ‘habitat choice’ experiments to test the response of Daphnia magna to predation cues at both the horizontal and vertical level by mimicking a ‘shallow littoral’ zone with plants and a ‘deeper pelagic’ zone with sediments. 3. Initial separate response experiments showed that natural plants, artificial plants and predation cues all repelled D. magna in the absence of other stimuli, while sediments alone did not trigger any significant response by D. magna. 4. The habitat choice experiments showed that, in the presence of predation cues and absence of plants, Daphnia moved towards areas with sediment. In the presence of both plants and sediments, Daphnia moved away from the plants towards the sediments under both shallow and deep water treatment conditions. 5. Based on these results, we suggest that Daphnia in Mediterranean shallow lakes avoid submerged macrophytes and instead prefer to hide near the sediment when exposed to predation risk, as also observed in subtropical shallow lakes. This pattern is not likely to change with water level alterations, a common feature of lakes in the region, even if the effectiveness of the refuge may be reduced.  相似文献   

18.
Jeppesen  E.  Jensen  J. P.  Kristensen  P.  Søndergaard  M.  Mortensen  E.  Sortkjær  O.  Olrik  K. 《Hydrobiologia》1990,(1):219-227
In order to evaluate short-term and long-term effects of fish manipulation in shallow, eutrophic lakes, empirical studies on relationships between lake water concentration of total phosphorus (P) and the occurrence of phytoplankton, submerged macrophytes and fish in Danish lakes are combined with results from three whole-lake fish manipulation experiments. After removal of less than 80 per cent of the planktivorous fish stock a short-term trophic cascade was obtained in the nutrient regimes, where large cyanobacteria were not strongly dominant and persistent. In shallow Danish lakes cyanobacteria were the most often dominating phytoplankton class in the P-range between 200 and 1 000μg P l−1. Long-term effects are suggested to be closely related to the ability of the lake to establish a permanent and wide distribution of submerged macrophytes and to create self-perpetuating increases in the ratio of piscivorous to planktivorous fish. The maximum depth at which submerged macrophytes occurred, decreased exponentially with increasing P concentration. Submerged macrophytes were absent in lakes>10 ha and with P levels above 250–300μg P l−1, but still abundant in some lakes<3 ha at 650μg P l−1. Lakes with high cover of submerged macrophytes showed higher transparencies than lakes with low cover aboveca. 50μg P l−1. These results support the alternative stable state hypothesis (clear or turbid water stages). Planktivorous fish>10 cm numerically contributed more than 80 per cent of the total planktivorous and piscivorous fish (>10 cm) in the pelagical of lakes with concentrations above 100μg P l−1. Below this threshold level the proportion of planktivores decreased markedly toca. 50 per cent at 22μg P l−1. The extent of the shift in depth colonization of submerged macrophytes and fish stock composition in the three whole-lake fish manipulations follows closely the predictions from the relationships derived from the empirical study. We conclude that a long-term effect of a reduction in the density of planktivorous fish can be expected only when the external phosphorus loading is reduced to below 0.5–2.0 g m−2 y−1. This loading is equivalent to an in-lake summer concentration below 80–150μg P l−1. Furthermore, fish manipulation as a restoration tool seems most efficient in shallow lakes.  相似文献   

19.
Although macrophytes are known to increase benthic diversity in lakes, the importance of this resource as food for the insects living at the bottom of these ecosystems are still poorly understood. This study assessed the diets of benthic Chironomidae and Campsurus (Ephemeroptera) in two environments: a lake with macrophytes (M+) and another without macrophytes (M?). We expected a differential use of food resources in M+, where plant tissue is particularly important for the aquatic insects’ diet. The diet of 734 individuals from 16 taxa were analyzed. Contrary to expectations, benthic insects consumed low amounts of plant tissue. This finding led us to investigate whether the presence of macrophytes in lakes would indirectly contribute to the benthic insects’ feeding, as more food resources were explored in M+ and a spatial variation of resources intake was observed in this lake, in contrast to the homogeneous feeding in M?. We highlight that macrophytes were responsible for the organic matter build‐up in the sediment, especially at the lake region dominated by these plants, and contributed to increase the deposition of high‐quality amorphous organic matter, which favored taxa in M+ that fed exclusively on this item. The lower diversity of food items exploited in M?, and the Tanypus alga‐based diet in this lake, indicates the low quality of organic resources in its sediment. Although macrophytes were indirectly beneficial for benthic insects’ feeding, we found that this is not an attractive resource for prompt ingestion by most benthic taxa.  相似文献   

20.
【目的】探究青海湖岸带土壤与沉积物的地化特征与细菌群落对水位扩张的响应。【方法】从岸上至岸下沿垂直青海湖岸带方向,采集距离湖面不同高度土壤(土壤:S1、S2)、岸边不同水深表层沉积物(过渡区:E0、E6、E17)及湖心表层沉积物(沉积物:D1、D2)样品,土壤与沉积物水深(土壤水深表示为负数)从小到大的变化表征岸边土壤被淹水转变为沉积物的过程。采用地球化学分析和16SrRNA基因高通量测序技术,探究岸带土壤与沉积物样品中的地化特征与微生物群落构成。【结果】青海湖水位上升导致的生境转变对岸带土壤与沉积物的理化性质、营养水平、有机碳类型等地化特征产生显著影响。具体表现为,随着水位升高,岸带土壤与沉积物的pH、矿物结合态有机碳含量显著升高,而碳氮比值、可溶性有机碳(dissolved organic carbon,DOC)、颗粒态有机碳含量显著下降。随着水位上升,青海湖岸带被淹没土壤的细菌群落多样性下降,且群落结构发生明显变化。这种变化与环境因子变化密切相关,具体表现为,细菌群落物种丰富度指数和香农多样性指数随着水位上升呈下降趋势;活性金属结合态有机碳含量与细菌群落多样性的变化密切相关;理化...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号