首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Zhong LM  Zong Y  Sun L  Guo JZ  Zhang W  He Y  Song R  Wang WM  Xiao CJ  Lu D 《PloS one》2012,7(2):e32195

Background

Resveratrol have been known to possess many pharmacological properties including antioxidant, cardioprotective and anticancer effects. Although current studies indicate that resveratrol produces neuroprotection against neurological disorders, the precise mechanisms for its beneficial effects are still not fully understood. We investigate the effect of anti-inflammatory and mechamisms of resveratrol by using lipopolysaccharide (LPS)-stimulated murine microglial BV-2 cells.

Methodology/Principal Findings

BV-2 cells were treated with resveratrol (25, 50, and 100 µM) and/or LPS (1 µg/ml). Nitric oxide (NO) and prostaglandin E2 (PGE2) were measured by Griess reagent and ELISA. The mRNA and protein levels of proinflammatory proteins and cytokines were analysed by RT-PCR and double immunofluorescence labeling, respectively. Phosphorylation levels of PTEN (phosphatase and tensin homolog deleted on chromosome 10), Akt, mammalian target of rapamycin (mTOR), mitogen-activated protein kinases (MAPKs) cascades, inhibitor κB-α (IκB-α) and cyclic AMP-responsive element-binding protein (CREB) were measured by western blot. Resveratrol significantly attenuated the LPS-induced expression of NO, PGE2, inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and nuclear factor-κB (NF-κB) in BV-2 cells. Resveratrol increased PTEN, Akt and mTOR phosphorylation in a dose-dependent manner or a time-dependent manner. Rapamycin (10 nM), a specific mTOR inhibitor, blocked the effects of resveratrol on LPS-induced microglial activation. In addition, mTOR inhibition partially abolished the inhibitory effect of resveratrol on the phosphorylation of IκB-α, CREB, extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal protein kinase (JNK), and p38 mitogen-activated protein kinase (p38 MAPK).

Conclusion and Implications

This study indicates that resveratrol inhibited LPS-induced proinflammatory enzymes and proinflammatory cytokines via down-regulation phosphorylation of NF-κB, CREB and MAPKs family in a mTOR-dependent manner. These findings reveal, in part, the molecular basis underlying the anti-inflammatory properties of resveratrol.  相似文献   

3.
Resveratrol, a polyphenol found in various plants, including grapes, plums and peanuts has shown various medIRInal properties, including antioxidant, protection of cardiovascular disease and cancer risk. However, the effects of resveratrol on spinal cord reperfusion injury have not been investigated. Hence, the present study was designed to evaluate the effect of resveratrol on nitric oxide synthase (iNOS)/p38MAPK signaling pathway and to elucidate its regulating effect on the protection of spinal cord injury. Spinal cord ischemia–reperfusion injury (IRI) was performed by the infrarenal abdominal aorta with mini aneurysm clip model. The expressions of iNOS and p38MAPK and the levels of biochemical parameters, including nitrite/nitrate, malondialdehyde (MDA), advanced oxidation products (AOPP), reduced glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) were measured in control and experimental groups. IRI-induced rats treated with 10 mg/kg resveratrol protected spinal cord from ischemia injury as supported by improved biological parameters measured in spinal cord tissue homogenates. The resveratrol treatment significantly decreased the levels of plasma nitrite/nitrate, iNOS mRNA and protein expressions and phosphorylation of p38MAPK in IRI-induced rats. Further, IRI-produced free radicals were reduced by resveratrol treatment by increasing enzymatic and non-enzymatic antioxidant levels such as GSH, SOD and CAT. Taken together, administration of resveratrol protects the damage caused by spinal cord ischemia with potential mechanism of suppressing the activation of iNOS/p38MAPK pathway and subsequent reduction of oxidative stress due to IRI.  相似文献   

4.
5.
Interleukin-1 (IL-1) activates p38 MAP kinase via the small G protein Ras, and this activity can be down-regulated by another small G protein Rap. Here we have further investigated the role of Ras and Rap in p38 MAPK activation by IL-1. Transient transfection of cells with constitutively active forms of the known IL-1 signaling components MyD88, IRAK, and TRAF-6, or the upstream kinases MKK6 and MKK3, activated p38 MAPK. Dominant negative forms of these were found to inhibit activation of p38 MAPK by IL-1. Dominant negative RasN17 blocked the effect of the active forms of all but MKK3 and MKK6, indicating that Ras lies downstream of TRAF-6 but upstream of MKK3 and MKK6 on the pathway. Furthermore, the activation of p38 MAPK caused by overexpressing active RasVHa could not be inhibited using dominant negative mutants of MyD88, IRAK, or IRAK-2, or TRAF6, but could be inhibited by dominant negative MKK3 or MKK6. In the same manner, the inhibitory effect of Rap on the activation of p38 by IL-1 occurred at a point downstream of MyD88, IRAK, and TRAF6, since the activation of p38 MAPK by these components was inhibited by overexpressing active Rap1AV12, while neither MKK3 nor MKK6 were affected. Active RasVHa associated with IRAK, IRAK2, and TRAF6, but not MyD88. In addition we found a role for TAK-1 in the activation of p38 MAPK by IL-1, with TAK-1 also associating with active Ras. Our study suggests that upon activation Ras becomes associated with IRAK, Traf-6, and TAK-1, possibly aiding the assembly of this multiprotein signaling complex required for p38 MAPK activation by IL-1.  相似文献   

6.
Recently, many studies have attempted to illustrate the mechanism of autophagy in protection against oxidative stress to the heart induced by H(2)O(2). However, whether resveratrol-induced autophagy involves the p38 mitogen-activated protein kinase (MAPK) pathway is still unknown. This study aimed to investigate whether treating H9c2 cells with resveratrol increases autophagy and attenuates the cell death and apoptosis induced by oxidative stress via the p38 MAPK pathway. Resveratrol with or without SB202190, an inhibitor of the p38 MAPK pathway, was added 30 min before H(2)O(2). After H(2)O(2) treatment, the cells were incubated under 5% CO(2) at 37 °C for 24 h to assess cell survival and death or incubated for 20 min for Western blot and transmission electron microscopy. Flow cytometry was used to detect apoptosis after 6 h of H(2)O(2) treatment. Resveratrol at 20 μmol/L protected H9c2 cells treated with 100 μmol/L H(2)O(2) from oxidative damage. It increased cell survival and markedly decrease lactate dehydrogenase release. In addition, resveratrol increased autophagy and decreased H(2)O(2)-induced apoptosis. Furthermore, the protective effects of resveratrol were inhibited by 10 μmol/L SB202190. Thus, resveratrol protected H(2)O(2)-treated H9c2 cells by upregulating autophagy via the p38 MAPK pathway.  相似文献   

7.
Resveratrol was suggested to inhibit Toll-like receptor (TLR)4-mediated activation of nuclear factor-κB (NF-κB) and Toll/interleukin-1 receptor domain-containing adaptor inducing interferon-β (TRIF)–(TANK)-binding kinase 1, but the myeloid differentiation primary response gene 88–tumor necrosis factor receptor-associated factor 6 (TRAF6) pathway is not involved in this effect. However, involvement of TRAF6 in this process is still elusive since cross talk between TRIF and TRAF6 has been reported in lipopolysaccharide (LPS)-induced signaling. Using RAW 264.7 macrophages, we determined the effect of resveratrol on LPS-induced TRAF6 expression, ubiquitination as well as activation of mitogen-activated protein (MAP) kinases and Akt in order to elucidate its involvement in TLR4 signaling. LPS-induced transient elevation in TRAF6 mRNA and protein expressions is suppressed by resveratrol. LPS induces the ubiquitination of TRAF6, which has been reported to be essential for Akt activation and for transforming growth factor-β activated kinase-1–NAP kinase kinase 6 (MKK6)-mediated p38 and c-Jun N-terminal kinase (JNK) activation. We found that resveratrol diminishes the effect of LPS on TRAF6 ubiquitination and activation of JNK and p38 MAP kinases, while it has no effect on the activation of extracellular-signal-regulated kinase (ERK)1/2. The effect of resveratrol on MAP kinase inhibition is significant since TRAF6 activation was reported to induce activation of JNK and p38 MAP kinase while not affecting ERK1/2. Moreover, Akt was identified previously as a direct target of TRAF6, and we found that, similarly to MAPKs, phosphorylation pattern of Akt followed the activation of TRAF6, and it was inhibited by resveratrol at all time points. Here, we provide the first evidence that resveratrol, by suppressing LPS-induced TRAF6 expression and ubiquitination, attenuates the LPS-induced TLR4–TRAF6, MAP kinase and Akt pathways that can be significant in its anti-inflammatory effects.  相似文献   

8.
Resveratrol has been found to improve ethanol-induced diabetes. Although pancreatic β-cell senescence-induced β-cell mass loss plays a critical role in the progression of diabetes, the exact mechanism by which resveratrol improves ethanol-triggered β-cell senescence and its role in ethanol-induced diabetes remains unknown. Male Sprague-Dawley rats were fed either control or ethanol liquid diets containing 2.4 g/kg·bw ethanol with or without 100 mg/kg·bw resveratrol for 22 weeks. Resveratrol decreased the ethanol-induced augmentation in senescence-associated β-galactosidase (SA-β-gal)-positive area and attenuated reduction in β-cell mass, which were based on elevated levels of SIRT1 and proliferation marker Ki67 and reduced levels of senescence-associated markers (p-p38MAPK and p16INK4a). Similarly, resveratrol rescued the reduction in NAD+/NADH ratio and SIRT1 and inhibited the upregulation of p-p38MAPK and p16INK4a in ethanol-treated INS-1 cells. Furthermore, supplementation with NAD+ inducer nicotinamide mononucleotide, SIRT1 activator SRT1720 or p38MAPK inhibitor SB203580 effectively reversed ethanol-induced β-cell senescence, while supplementation with SIRT1 inhibitor Ex527 or NAD+ inhibitor FK866 abrogated resveratrol-mediated antisenescence effects in INS-1 cells. Together, our results indicate that resveratrol improves ethanol-triggered β-cell senescence and consequently recovers β-cell mass loss by inhibiting p38MAPK/p16 pathway through an NAD+/SIRT1 dependent pathway.  相似文献   

9.
We reported previously that bone marrow granulocytes respond to small amounts of enterobacterial lipopolysaccharide (LPS) via a CD14-independent and TLR4-mediated mechanism by de novo expression of an inducible receptor (CD14) and by down-modulation of a constitutive receptor (L-selectin). In this report we address another effect of LPS: the down-regulation of receptors for tumor necrosis factor-alpha. In mouse bone marrow cells (BMC), this down-regulation is detectable soon (20 min) after exposure of the cells to low levels (0.5 ng/ml) of LPS. This temperature-dependent effect is rather selective for LPS and requires the presence of a conventional lipid A structure in the LPS molecule and a functional TLR4 molecule in the cells. The down-modulation, due to a shedding of the receptors, is blocked by p38 MAPK inhibitors, by a furin inhibitor, and by three metalloproteinase inhibitors (BB-3103, TIMP-2, and TIMP-3). In contrast, inhibitors of MEK, protein kinase C, cAMP-dependent protein kinase, and kinases of the Src family do not block the shedding. Analysis of BMC from mice lacking tumor necrosis factor receptor-1 (CD120a-/-) or tumor necrosis factor receptor-2 (CD120b-/-) indicates that the LPS-induced shedding is specific for CD120b. Thus, exposure of BMC to LPS triggers a rapid shedding of CD120b via a protein kinase C- and Src-independent pathway mediated by p38 MAPK, furin, and metalloproteinase. The additive effects of furin and metalloproteinase inhibitors suggest that these enzymes are involved in parallel shedding pathways.  相似文献   

10.
11.
Resveratrol mimics calorie restriction to extend lifespan of Caenorhabditis elegans, yeast and Drosophila, possibly through activation of Sir2 (silent information regulator 2), a NAD+-dependent histone deacetylase. In the present study, resveratrol is shown to inhibit the insulin signalling pathway in several cell lines and rat primary hepatocytes in addition to its broad-spectrum inhibition of several signalling pathways. Resveratrol effectively inhibits insulin-induced Akt and MAPK (mitogen-activated protein kinase) activation mainly through disruption of the interactions between insulin receptor substrates and its downstream binding proteins including p85 regulatory subunit of phosphoinositide 3-kinase and Grb2 (growth factor receptor-bound protein 2). The inhibitory effect of resveratrol on insulin signalling is also demonstrated at mRNA level, where resveratrol reverses insulin effects on phosphoenolpyruvate carboxykinase, glucose-6-phosphatase, fatty acid synthase and glucokinase. In addition, RNA interference experiment shows that the inhibitory effect of resveratrol on insulin signalling pathway is not weakened in cells with reduced expression of SirT1, the mammalian counterpart of Sir2. These observations raise the possibility that resveratrol may additionally modulate lifespan through inhibition of insulin signalling pathway, independently of its activation of SirT1 histone deacetylase. Furthermore, the present study may help to explain a wide range of biological effects of resveratrol, and provides further insight into the molecular basis of calorie restriction.  相似文献   

12.
Head kidney leukocytes isolated from Atlantic salmon fed either a diet based on fish oil (FO) or soy bean oil (VO) were used in order to evaluate if different lipid sources could contribute to cellular activation of the salmon innate immune system. A specific inhibitor of p38 MAPK, SB202190, was used to investigate the effect of lipopolysaccharide (LPS) signalling in the head kidney leukocytes. The results show that LPS up regulate IL-1β, TNF-α, Cox2 expression in leukocytes isolated from fish fed either diet. The p38 MAPK inhibitor, SB202190, reduced the LPS induced expression of these genes in both dietary groups. In LPS stimulated leukocytes isolated from VO fed fish, SB202190 showed a clear dose dependent inhibitory effect on IL-1β, TNF-α and Cox2 expression. This effect was also observed for Cox2 in leukocytes isolated from FO fed fish. Furthermore, there was a stronger mean induction of Cox2 in LPS stimulated leucocytes isolated from the VO-group compared to LPS stimulated leukocytes isolated from the FO-group. In both dietary groups, LPS stimulation of salmon head kidney leukocytes increased the induction of CD83, a dendrite cell marker, while the inhibitor reduced CD83 expression in the VO fed fish only. The inhibitor also clearly reduced hsp27 expression in VO fed fish. Indicating a p38 MAPK feedback loop, LPS significantly inhibited the expression of p38MAPK itself in both diets, while SB202190 increased p38MAPK expression especially in the VO diet group. hsp70 expression was not affected by any treatment or feed composition. There were also differences in p38MAPK protein phosphorylation comparing treatment groups but no obvious difference comparing the two dietary groups. The results indicate that dietary fatty acids have the ability to modify signalling through p38 MAPK which may have consequences for the fish's ability to handle infections and stress. Signalling through p38MAPK is ligand dependent and affects gene and protein expression differently.  相似文献   

13.
This study aimed to uncover the protective potentiality of resveratrol and dimethyl fumarate (DMF) in the liver of a chronic unpredictable mild stress (CUMS)‐induced depression animal model. Resveratrol and DMF significantly alleviated CUMS‐induced behavioral abnormalities in stressed rats through improving sucrose preference in sucrose preference test and decreasing immobility time in a forced swimming test. They also mitigated serum corticosterone levels and elevated serum serotonin levels, which were formerly disturbed in CUMS rats. The hepatoprotective effect is evidenced by improvement in hepatic histopathological examinations, as well as normalized serum alanine aminotransferase and aspartate aminotransferase activities. Molecular signaling of resveratrol and DMF was estimated by diminishing hepatic expression of phosphorylated p38 mitogen‐activated protein kinase (MAPK), extracellular signal‐regulated kinase1/2 (ERK1/2), and c‐Jun N‐terminal kinase (JNK). Consequently, they improved the hepatic antioxidant and anti‐inflammatory activities as elaborated by the normalization of total antioxidant capacity, glutathione, malondialdehyde, nuclear factor‐κB, tumor necrosis factor‐α, and myeloperoxidase levels. In addition, they inhibited hepatocyte apoptosis as evidenced by the increased expression of B‐cell lymphoma 2, the decreased expression of Bax, as well as the suppressed activity of caspase‐3. In conclusion, resveratrol and DMF purveyed a significant anti‐depressant effect, which may be mediated, at least in part, via inhibiting the MAPK/ERK/JNK pathway in the CUMS rat model.  相似文献   

14.
Pulmonary microvascular endothelial cells (PMECs) injury including apoptosis plays an important role in the pathogenesis of acute lung injury during sepsis. Our recent study has demonstrated that calpain activation contributes to apoptosis in PMECs under septic conditions. This study investigated how calpain activation mediated apoptosis and whether heat stress regulated calpain activation in lipopolysaccharides (LPS)-stimulated PMECs. In cultured mouse primary PMECs, incubation with LPS (1 μg/ml, 24 h) increased active caspase-3 fragments and DNA fragmentation, indicative of apoptosis. These effects of LPS were abrogated by pre-treatment with heat stress (43 °C for 2 h). LPS also induced calpain activation and increased phosphorylation of p38 MAPK. Inhibition of calpain and p38 MAPK prevented apoptosis induced by LPS. Furthermore, inhibition of calpain blocked p38 MAPK phosphorylation in LPS-stimulated PMECs. Notably, heat stress decreased the protein levels of calpain-1/2 and calpain activities, and blocked p38 MAPK phosphorylation in response to LPS. Additionally, forced up-regulation of calpain-1 or calpain-2 sufficiently induced p38 MAPK phosphorylation and apoptosis in PMECs, both of which were inhibited by heat stress. In conclusion, heat stress prevents LPS-induced apoptosis in PMECs. This effect of heat stress is associated with down-regulation of calpain expression and activation, and subsequent blockage of p38 MAPK activation in response to LPS. Thus, blocking calpain/p38 MAPK pathway may be a novel mechanism underlying heat stress-mediated inhibition of apoptosis in LPS-stimulated endothelial cells.  相似文献   

15.
Resveratrol is a natural polyphenolic compound with anti-inflammatory, antioxidant and neuroprotective properties, and it serves as a chemopreventive and chemotherapeutic agent. However, only very limited data have been obtained regarding the effects of resveratrol on preadipocytes, and the mechanisms of these effects remain largely unknown. In this study, murine 3T3-L1 preadipocytes were incubated with resveratrol, and cell apoptosis was investigated. Resveratrol caused S-phase arrest to inhibit cell proliferation and significantly increased the lactate dehydrogenase leaking ratio. Hoechst 33258 staining and transmission electron microscopy revealed the ultrastructural changes in nuclear chromatins of apoptotic cells. Furthermore, resveratrol activated the mitochondrial signaling with decreases in the mitochondrial membrane potential, cytochrome c release and the activation of caspase 9 and caspase 3. Resveratrol treatment also increased the protein level of Sirt1. By using small interfering RNAs of Sirt1, adenosine-monophosphate-activated protein kinase (AMPK) α, survivin and the AMPK agonist (5-aminoimidazole-4-carboxamide 1-β-D-ribofuranoside) and specific inhibitors for protein kinase B (AKT) or caspases, it was demonstrated that activation of Sirt1 inhibited AKT activation and further decreased the expression of survivin. It could also increase AMPK activation. Both signaling pathways activated mitochondrion-mediated pathway. Our findings clarified the apoptotic effects of resveratrol in 3T3-L1 preadipocytes and revealed the involved pathway including AMPK, AKT and survivin, suggesting its potential therapeutic application in the treatment or prevention of obesity and related metabolic symptoms.  相似文献   

16.
17.
Recently, several flavonoids have been shown to have cardioprotective, cancer preventive, or anti-inflammatory properties. However, the specific mechanisms underlying their protective effects remain unclear. We aimed to investigate the different effects of three representative flavonoids—hesperidin, naringin, and resveratrol—on intracellular adhesion molecule-1 (ICAM-1) induction in human umbilical vein endothelial cells (HUVECs) by using high-glucose (HG) concentrations and the possible underlying molecular mechanisms. In HG-induced HUVEC cultures, the effects of three different flavonoids on ICAM-1 production and p38 phosphorylation were examined in the presence or absence of inhibitors targeting the mitogen-activated protein kinase (MAPK) signal transduction pathway. HG stimulation of HUVECs increased the levels of the adhesion molecules ICAM-1 and endothelial selectin (E-selectin). Pretreatment with all the three flavonoids drastically inhibited ICAM-1 expression in a time-dependent manner, but did not alter VCAM-1 and E-selectin expressions. Moreover, we investigated the effects of flavonoids on the MAPK signal transduction pathway, because MAPK families are associated with vascular inflammation under stress. These flavonoids did not block HG-induced phosphorylation of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK), but completely inhibited the HG-induced phosphorylation of p38 MAPK. SB202190, an inhibitor of p38 MAPK, also inhibited the HG-induced enrichment of ICAM-1. This study demonstrated that hesperidin, naringin, and resveratrol reduced the HG-induced ICAM-1 expression via the p38 MAPK signaling pathway, contributing to the inhibition of monocyte adhesion to endothelial cells.  相似文献   

18.
The aim of this study was to investigate the inhibitory effect of penehyclidine hydrochloride (PHC) on lipopolysaccharide (LPS)-induced nitric oxide (NO) and inducible nitric oxide synthase (iNOS) production in human endothelial cell. Cultured endothelial cells were pretreated with PHC, followed by LPS treatment. NO activity were determined. iNOS expression and p38 mitogen-activated protein kinase (p38 MAPK) protein expression were measured by Western blot analysis. LPS treatment significantly induced p38 MAPK activation, iNOS expression, and NO production, which could be attenuated by 2 μg/ml PHC pretreatment. Furthermore, our study showed LPS-induced NO production and iNOS expression were suppressed by p38 MAPK inhibitor SB203580 pretreatment. We concluded that PHC attenuates NO production and iNOS expression by suppressing the activation of p38 MAPK pathway, thereby implicating a mechanism by which PHC may exert its protective effects against LPS-induced endothelial cell injury.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号