首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kato T  Kutsuna H  Oshitani N  Kitagawa S 《FEBS letters》2006,580(19):4582-4586
Human neutrophils underwent spontaneous apoptosis, which was accompanied by degradation of Mcl-1, but not other anti-apoptotic molecules (cIAP1, cIAP2, A1, survivin and Bcl-2). Spontaneous neutrophil apoptosis and Mcl-1 degradation were prevented by cyclic AMP (cAMP) agonists (dibutyryl cAMP and prostaglandin E(1)), and the effects of cAMP agonists on neutrophils were highly resistant to cycloheximide, a protein synthesis inhibitor, although slight increase in Mcl-1 mRNA expression was induced by cAMP agonists. Proteasome inhibitors (epoxomicin and lactacystin) also prevented spontaneous neutrophil apoptosis and Mcl-1 degradation to the same extent as cAMP agonists, and no additive effect was obtained by combination of cAMP agonists and proteasome inhibitors. These findings suggest that cAMP agonists, like proteasome inhibitors, delay neutrophil apoptosis primarily via stabilization of Mcl-1.  相似文献   

2.
3.
Mcl-1 is an antiapoptotic member of the Bcl-2 family of proteins that plays a central role in cell survival of neutrophils and other cells. The protein is unusual among family members in that it has a very short half-life of 2-3 h. In this report, we show that sodium salicylate (at 10 mM) greatly enhances the rate at which neutrophils undergo apoptosis and, in parallel, greatly accelerates the turnover rate of Mcl-1, decreasing its half-life to only 90 min. Whereas constitutive and GM-CSF-modified Mcl-1 turnover is regulated by the proteasome, the accelerated sodium salicylate-induced Mcl-1 turnover is mediated largely via caspases. Sodium salicylate resulted in rapid activation of caspase-3, -8, -9, and -10, and salicylate-accelerated Mcl-1 turnover was partly blocked by caspase inhibitors. Sodium salicylate also induced dramatic changes in the activities of members of the MAPK family implicated in Mcl-1 turnover and apoptosis. For example, sodium salicylate blocked GM-CSF-stimulated Erk and Akt activation, but resulted in rapid and sustained activation of p38-MAPK, an event mimicked by okadaic acid that also accelerates Mcl-1 turnover and neutrophil apoptosis. These data thus shed important new insights into the dynamic and highly regulated control of neutrophil apoptosis that is effected by modification in the rate of Mcl-1 turnover.  相似文献   

4.
Short-lived neutrophils play a predominant role in innate immunity, the effects of exercise training on neutrophil survival is unclear. In this study, we investigated the underlying mechanisms of training effects on human neutrophil apoptosis. Healthy male subjects were trained on a cycling ergometer for 8 weeks and followed by 4 weeks of detraining. Blood neutrophils were collected before exercise, after training, and after detraining. Comparing with pre-exercise specimens, neutrophils collected after training showed reduced apoptosis rate, which partially returned after detraining. Various intracellular proteins, including iNOS, Mcl-1, A1, Grp78, and IL-8, were upregulated by training, and they remained high after detraining. Upregulated iNOS was closely correlated with these anti-apoptotic molecules in neutrophils. Furthermore, the possible mechanism by which iNOS suppressed apoptosis was explored. Neutrophil apoptosis was accelerated by blocking and retarded by stimulating the endogenous iNOS activity. As an anti-apoptosis mediator of NO signaling, the Mcl-1 level dropped by depletion of the major NO downstream molecule cGMP and such loss of Mcl-1 was avoidable when supplying exogenous NO. Upon activation of NO-cGMP signaling, neutrophils held increased Mcl-1 expression and delayed apoptosis. Collectively, our results suggested that exercise training may retard neutrophil apoptosis by upregulating the iNOS-NO-cGMP-Mcl-1 pathway.  相似文献   

5.
Human neutrophils underwent spontaneous apoptosis, which was accompanied with proteasome-mediated degradation of Mcl-1 and X-linked inhibitor of apoptosis (XIAP). Calpain inhibitors (PD150606 and N-acetyl-Leu-Leu-Nle-CHO) prevented spontaneous neutrophil apoptosis and degradation of Mcl-1 and XIAP, and the effects of calpain inhibitors on neutrophils were resistant to cycloheximide. Calpain inhibitors induced protein kinase A (PKA) activation, which was unaccompanied with an increase in intracellular cyclic AMP. Calpain inhibition-mediated delayed neutrophil apoptosis, stabilization of Mcl-1 and XIAP, and phosphorylation of PKA substrates were suppressed by H-89 (specific PKA inhibitor). These findings suggest that calpain inhibition delays neutrophil apoptosis via cyclic AMP-independent activation of PKA and PKA-mediated stabilization of Mcl-1 and XIAP.  相似文献   

6.
The constitutive commitment of neutrophils to apoptosis is a key process for the control and resolution of inflammation and it can be delayed by various inflammatory mediators including leukotriene B4 (LTB4). The mechanisms by which LTB4 contributes to neutrophil survival are still unclear and the present work aims at identifying intracellular pathways underlying this effect. Inhibition of human neutrophil apoptosis by LTB4 was abrogated by the phosphatidylinositol 3-kinase (PI3-K) inhibitor wortmannin and by the specific MEK inhibitor PD98059. In contrast, inhibitors of p38 MAPK, Jak2/3 and Src did not hinder the anti-apoptotic effect of LTB4. We also investigated the effects of members of the Bcl-2 family as they play a crucial role in the regulation of programmed cell death. When neutrophils were incubated with LTB4 for 1 to 6 h, the mRNA levels of the anti-apoptotic protein Mcl-1 were upregulated approximately 2-fold, while those of the pro-apoptotic protein Bax were downregulated 3- to 4-fold, as determined by real-time PCR. Accordingly, Western blot analysis revealed that the expression of Mcl-1 was upregulated in presence of LTB4, while flow cytometric analysis revealed that Bax protein was downregulated. Furthermore, the modulatory effects of LTB4 on Mcl-1 and Bax proteins were abolished in the presence of either wortmannin or PD98059. Taken together, these results demonstrate the participation of PI3-K and MEK/ERK kinases, as well as regulatory apoptotic proteins such as Mcl-1 and Bax, in the anti-apoptotic effects of LTB4 in human neutrophils.  相似文献   

7.
Human tissue inflammation is terminated, at least in part, by the death of inflammatory neutrophils by apoptosis. The regulation of this process is therefore key to understanding and manipulating inflammation resolution. Previous data have suggested that the short-lived pro-survival Bcl-2 family protein, Mcl-1, is instrumental in determining neutrophil lifespan. However, Mcl-1 can be cleaved following caspase activity, and the possibility therefore remains that the observed fall in Mcl-1 levels is due to caspase activity downstream of caspase activation, rather than being a key event initiating apoptosis in human neutrophils.We demonstrate that apoptosis in highly purified neutrophils can be almost completely abrogated by caspase inhibition with the highly effective di-peptide caspase inhibitor, Q-VD.OPh, confirming the caspase dependence of neutrophil apoptosis. Effective caspase inhibition does not prevent the observed fall in Mcl-1 levels early in ultrapure neutrophil culture, suggesting that this fall in Mcl-1 levels is not a consequence of neutrophil apoptosis. However, at later timepoints, declines in Mcl-1 can be reversed with effective caspase inhibition, suggesting that Mcl-1 is both an upstream regulator and a downstream target of caspase activity in human neutrophils.  相似文献   

8.
Divergent effect of mometasone on human eosinophil and neutrophil apoptosis   总被引:5,自引:0,他引:5  
Mometasone is a potent synthetic glucocorticoid, which is under development as an inhaled preparation for the treatment of asthma. Previous studies have suggested that glucocorticoids have direct effects on human eosinophil and neutrophil apoptosis. The present study was designed to characterize the effects of mometasone on constitutive apoptosis and cytokine-afforded survival in isolated human eosinophils and neutrophils. The isolated eosinophils or neutrophils were cultured in vitro, and apoptosis was assessed by flow cytometric analysis of relative DNA content, by annexin-V binding and morphological analysis. Mometasone enhanced constitutive human eosinophil apoptosis in a concentration-dependent manner. The maximal enhancement of eosinophil apoptosis was 2.1-fold with an EC(50) value of 5.63 +/- 2.33 nM. This enhancing effect was reversed by the glucocorticoid receptor antagonist, mifepristone. In the presence of added cytokines, mometasone reversed tumor necrosis factor -alpha-induced eosinophil survival but not that afforded by interleukin -5. In contrast, mometasone inhibited human neutrophil apoptosis in a concentration-dependent manner. The maximal inhibition of neutrophil apoptosis was 50% with an EC(50) value of 0.17 +/- 0.03 nM. The inhibitory effect was partly reversed by mifepristone. In the presence of added cytokines, mometasone further enhanced neutrophil survival induced by the granulocyte-macrophage colony-stimulating factor and leukotriene B(4). The present data suggests that mometasone has opposite effects on apoptosis of human eosinophils and neutrophils at clinically relevant drug concentrations via an effect on glucocorticoid receptor.  相似文献   

9.
10.
Respiratory syncytial virus (RSV) is a common cause of lower respiratory tract disease in children. It is associated with increased neutrophil numbers in the airway. In this study, we assessed whether this ssRNA virus can directly influence granulocyte longevity. By culturing RSV with granulocytes, it was observed that virus delays both constitutive neutrophil and eosinophil apoptosis. Using pharmacological inhibitors, the RSV-induced delay in neutrophil apoptosis was found to be dependent on both PI3K and NF-kappaB, but not p38 MAPK or MEK1/MEK2 activation. Using blocking Abs and a reporter cell line, we were able to exclude TLR4 as the receptor responsible for mediating RSV-induced delay in neutrophil apoptosis. The antiapoptotic effect was abrogated by preincubation with the lysosomotropic agent chloroquine, indicating the requirement for endolysosomal internalization. Furthermore, addition of ssRNA, a ligand for the intracellular TLR7/TLR8, also inhibited neutrophil apoptosis, suggesting that intracellular TLRs could be involved in induction of the antiapoptotic effect. Using the BioPlex cytokine detection assay (Bio-Rad), we found that IL-6 was present in supernatants from RSV-exposed neutrophils. IL-6 was found to inhibit neutrophil apoptosis, suggesting that there is an autocrine or paracrine antiapoptotic role for IL-6. Finally, RSV treatment of neutrophils resulted in increased expression of the antiapoptotic Bcl-2 protein Mcl-1. Taken together, our findings suggest involvement of multiple intracellular mechanisms responsible for RSV-induced survival of granulocytes and point toward a role for intracellular TLRs in mediating these effects.  相似文献   

11.
12.
Delayed neutrophil apoptosis and overshooting neutrophil activity contribute to organ dysfunction and subsequent organ failure in sepsis. Here, we investigated apoptotic signaling pathways that are involved in the inhibition of spontaneous apoptosis in neutrophils isolated from major trauma patients with uneventful outcome as well as in those with sepsis development. DNA fragmentation in peripheral blood neutrophils showed an inverse correlation with the organ dysfunction at d 10 after trauma in all patients, supporting the important role of neutrophil apoptosis regulation for patient's outcome. The expression of the antiapoptotic Bcl-2 protein members A1 and Mcl-1 were found to be diminished in the septic patients at d 5 and d 10 after trauma. This decrease was also linked to an impaired intrinsic apoptosis resistance, which has been previously shown to occur in neutrophils during systemic inflammation. In patients with sepsis development, delayed neutrophil apoptosis was found to be associated with a disturbed extrinsic pathway, as demonstrated by reduced caspase-8 activity and Bid truncation. Notably, the expression of Dad1 protein, which is involved in protein N-glycosylation, was significantly increased in septic patients at d 10 after trauma. Taken together, our data demonstrate that neutrophil apoptosis is regulated by both the intrinsic and extrinsic pathway, depending on patient's outcome. These findings might provide a molecular basis for new strategies targeting cell death pathways in apoptosis-resistant neutrophils during systemic inflammation.  相似文献   

13.
Neutrophils enter the peripheral blood from the bone marrow and die after a short time. Molecular analysis of spontaneous neutrophil apoptosis is difficult as these cells die rapidly and cannot be easily manipulated. We use conditional Hoxb8 expression to generate mouse neutrophils and test the regulation of apoptosis by extensive manipulation of B-cell lymphoma protein 2 (Bcl-2)-family proteins. Spontaneous apoptosis was preceded by downregulation of anti-apoptotic Bcl-2 proteins. Loss of the pro-apoptotic Bcl-2 homology domain (BH3)-only protein Bcl-2-interacting mediator of cell death (Bim) gave some protection, but only neutrophils deficient in both BH3-only proteins, Bim and Noxa, were strongly protected against apoptosis. Function of Noxa was at least in part neutralization of induced myeloid leukemia cell differentiation protein (Mcl-1) in neutrophils and progenitors. Loss of Bim and Noxa preserved neutrophil function in culture, and apoptosis-resistant cells remained in circulation in mice. Apoptosis regulated by Bim- and Noxa-driven loss of Mcl-1 is thus the final step in neutrophil differentiation, required for the termination of neutrophil function and neutrophil-dependent inflammation.  相似文献   

14.
Autophagy and apoptosis cooperate to modulate cell survival. Neutrophils are short-lived cells and apoptosis is considered to be the major mechanism of their death. In the present study, we addressed whether autophagy regulates neutrophil apoptosis and investigated the effects of autophagy inhibition on apoptosis of human neutrophils. We first showed that the established autophagy inhibitors 3-methyladenine (MA) and chloroquine (CQ) markedly accelerated spontaneous neutrophil apoptosis as was evidenced by phosphatidylserine exposure, DNA fragmentation and caspase-3 activation. Apoptosis induced by the autophagy inhibitors was completely abrogated by a pan-caspase inhibitor Q-VD-OPh. Unexpectedly, both MA and CQ significantly delayed neutrophil apoptosis induced by TNF-α, although the inhibitors did attenuate late pro-survival effect of the cytokine. The effect was specific for TNF-α because it was not observed in the presence of other inflammation-associated cytokines (IL-1β or IL-8). The autophagy inhibitors did not modulate surface expression of TNF-α receptors in the absence or presence of TNF-α. Both MA and CQ induced a marked down-regulation of a key anti-apoptotic protein Mcl-1 but did not affect significantly the levels of another anti-apoptotic protein Bcl-X(L). Finally, to confirm the effects of the pharmacological inhibition of autophagy by a genetic approach, we evaluated the consequences of siRNA-mediated autophagy suppression in neutrophil-like differentiated HL60 cells. Knockdown of ATG5 in the cells resulted in accelerated spontaneous apoptosis but attenuated TNF-α-induced apoptosis. Together, these data suggest that autophagy regulates neutrophil apoptosis in an inflammatory context-dependent manner and mediates the early pro-apoptotic effect of TNF-α in neutrophils.  相似文献   

15.
Neutrophils are abundant, short-lived leukocytes that play a key role in the immune defense against microbial infections. These cells die by apoptosis following activation and uptake of microbes and will also enter apoptosis spontaneously at the end of their lifespan if they do not encounter a pathogen. Adiponectin exerts anti-inflammatory effects on neutrophil antimicrobial functions, but whether this abundant adipokine influences neutrophil apoptosis is unknown. Here we report that adiponectin in the physiological range (1–10 μg/ml) reduced apoptosis in resting neutrophils, decreasing caspase-3 cleavage and maintaining Mcl-1 expression by stabilizing this anti-apoptotic protein. We show that adiponectin induced phosphorylation of AMP-activated kinase (AMPK), protein kinase B (PKB), extracellular signal-regulated kinase (ERK 1/2) and p38 mitogen activated protein kinase (MAPK). Pharmacological inhibition of AMPK, PKB and ERK 1/2 ablated the pro-survival effects of adiponectin and treatment of neutrophils with an AMPK specific activator (AICAR) and AMPK inhibitor (compound C) respectively decreased and increased apoptosis. Finally, activation of AMPK by AICAR or adiponectin also decreased ceramide accumulation in the neutrophil cell membrane, a process involved in the early stages of spontaneous apoptosis, giving another possible mechanism downstream of AMPK activation for the inhibition of neutrophil apoptosis.  相似文献   

16.
Viscum album agglutinin-I (VAA-I) is a plant lectin that possesses interesting potential therapeutic properties and immunomodulatory activities. We have recently found that VAA-I is a potent inducer of human neutrophil apoptosis, but the mechanism(s) involved require further elucidation. In this study, we found that VAA-I alters mitochondrial transmembrane potential and increases intracellular levels of reactive oxygen species (ROS). Despite these observations, treatment with the mitochondrial stabilizer, bongkrekic acid, or with catalase, known to degrade H(2)O(2), fails to reverse VAA-I-induced apoptosis. Moreover, VAA-I was found to induce apoptosis in PLB-985 cells deficient in gp91(phox), indicating that the lectin acts via an ROS-independent mechanism. Pretreatment of neutrophils with brefeldin A, an inhibitor of vesicular transport, was found to reverse VAA-I-induced apoptosis. Protein expression of Mcl-1 was decreased by VAA-I. The role of caspases in the degradation of cytoskeletal proteins during both spontaneous and VAA-I-induced neutrophil apoptosis was also investigated. Paxillin and vimentin were markedly degraded by VAA-I when compared with neutrophils that undergo spontaneous apoptosis, but not vinculin or alpha- and beta-tubulin. Caspases were involved in cytoskeletal protein degradation because preincubation with the pan-caspase inhibitor N-benzyloxycarbonyl-V-A-D-O-methylfluoromethyl ketone was found to reverse protein cleavage. We conclude that VAA-I needs to be internalized to mediate apoptosis and that its activity is not dependent on a cell surface receptor-mediated pathway. Also, we conclude that VAA-I induces apoptosis by ROS-independent and Mcl-1-dependent mechanisms and that caspases are involved in cytoskeletal protein degradation in both spontaneous and VAA-I-induced neutrophil apoptosis.  相似文献   

17.
Human neutrophils normally have a very short half-life and die by apoptosis. Cytokines such as granulocyte-macrophage colony-stimulating factor (GM-CSF) can delay this apoptosis via increases in the cellular levels of Mcl-1, an anti-apoptotic protein of the Bcl-2 family with a rapid turnover rate. Here we have shown that inhibition of the proteasome (a) decreases the rate of Mcl-1 turnover within neutrophils and (b) significantly delays apoptosis. This led us to determine whether GM-CSF could enhance neutrophil survival by altering the rate of Mcl-1 turnover. Addition of GM-CSF to neutrophils enhanced Mcl-1 stability and delayed apoptosis by signaling pathways requiring PI3K/Akt and p44/42 Erk/Mek, because inhibitors of these pathways completely abrogated the GM-CSF-mediated effect on both Mcl-1 stability and apoptosis delay. Conversely, induction of Mcl-1 hyperphosphorylation by the phosphatase inhibitor, okadaic acid, significantly accelerated both Mcl-1 turnover and apoptosis. Neither the calpain inhibitor, carbobenzoxy-valinyl-phenylalaninal, nor the pan caspase inhibitor, benzyloxycarbonyl-VAD-fluoromethylketone, had any effect on Mcl-1 stability under these conditions. These observations indicate that profound changes in the rate of neutrophil apoptosis following cytokine signaling occur via dynamic changes in the rate of Mcl-1 turnover via the proteasome.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号