首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
2.
Summary In vitro-grown potato (Solanum tuberosum L.) microtubers were used as an explant source in the production of transgenic plants by Agrobacterium-mediated gene transfer. In this study we tested four diverse potato cultivars, Lemhi Russet, Russet Burbank, Wauseon, and Yankee Chipper on various levels of zeatin riboside and 3-indoleacetyl-DL-aspartic acid for their ability to regenerate transgenic plants after infection with Agrobacterium tumefaciens. Culturing microtuber blocks from the medullary area separately from cortex and epidermal tissue containing the eyes resulted in fewer transgenic plants, with transgenic shoots arising only from the tissue with the eyes. Lemhi and Russet Burbank microtuber discs were also transformed with a chimeric gene, CLaSP, designed to increase resistance to blackspot bruise in the tuber. This method resulted in transformed plants in every experiment, with an efficiency that appeared to be genotype dependent.Abbreviations GUS -glucuronida (uidA) - IAA-AA 3-indoleacetyl-DL-aspartic acid - LB Luria-Bertani - LSP larval serum storage protein - nos nopaline synthase - npt II neomycin phosphotransferase - MS Murashige and Skoog - PHA phytohemaglutinin - ZR zeatin riboside  相似文献   

3.
Sugar-end defect is a tuber quality disorder and persistent problem for the French fry processing industry that causes unacceptable darkening of one end of French fries. This defect appears when environmental stress during tuber growth increases post-harvest vacuolar acid invertase activity at one end of the tuber. Reducing sugars produced by invertase form dark-colored Maillard reaction products during frying. Acrylamide is another Maillard reaction product formed from reducing sugars and acrylamide consumption has raised health concerns worldwide. Vacuolar invertase gene (VInv) expression was suppressed in cultivars Russet Burbank and Ranger Russet using RNA interference to determine if this approach could control sugar-end defect formation. Acid invertase activity and reducing sugar content decreased at both ends of tubers. Sugar-end defects and acrylamide in fried potato strips were strongly reduced in multiple transgenic potato lines. Thus vacuolar invertase silencing can minimize a long-standing French fry quality problem while providing consumers with attractive products that reduce health concerns related to dietary acrylamide.  相似文献   

4.
Changes of morphogenic competence in mature P. sylvestris L. buds due to frozen storage were investigated. The highest callus formation was registered on explants stored at –18°C for three months, but on explants stored for five months, it was also higher than in the control. Budding and development of needles in vitro was observed only for buds frozen three to five months. Peroxidase activity was lowest in these buds. In contrast, polyphenol oxidase activity in bud tissues continually increased during frozen storage. Within 10 months of frozen storage the content of starch and sugars in resting buds changed. It may be concluded that changes in composition of non-structural sugars in pine buds after five months of frozen storage are part of metabolic changes leading to loss of morphogenic capacity.  相似文献   

5.
Anthers of wheat cultivars Orofen and Pitic 62 were incubated for 8 days at 15, 20, 25, 30, 35 and 40°C before transfer to 25°C. Compared with anthers cultured at 25°C constantly, anthers treated at 30°C produced 40% more microspore callus and green plants in both cultivars whereas those treated at 35°C produced 2–3 fold more green plants. Treatment at 40°C was deleterious. Possible modes of action of high temperature on callus production and albinism were discussed.  相似文献   

6.
Translucent tissue defect (TTD) is an undesirable postharvest disorder of potato tubers characterized by the development of random pockets of semi-transparent tissue containing high concentrations of reducing sugars. Translucent areas turn dark during frying due to the Maillard reaction. The newly released cultivar, Premier Russet, is highly resistant to low temperature sweetening, but susceptible to TTD. Symptoms appeared as early as 170 days after harvest and worsened with time in storage (4–9 °C, 95 % RH). In addition to higher concentrations of glucose, fructose and sucrose, TTD resulted in lower dry matter, higher specific activities of starch phosphorylase and glc-6-phosphate dehydrogenase, higher protease activity, loss of protein, and increased concentrations of free amino acids (esp. asparagine and glutamine). The mechanism of TTD is unknown; however, the disorder has similarities with the irreversible senescent sweetening that occurs in tubers during long-term storage, where much of the decline in quality is a consequence of progressive increases in oxidative stress with advancing age. The respiration rate of non-TTD ‘Premier Russet’ tubers was inherently higher (ca. 40 %) than that of ‘Russet Burbank’ tubers (a non-TTD cultivar). Moreover, translucent tissue from ‘Premier Russet’ tubers had a 1.9-fold higher respiration rate than the average of non-translucent tissue and tissue from non-TTD tubers. Peroxidation of membrane lipids during TTD development resulted in increased levels of malondialdehyde and likely contributed to a measurable increase in membrane permeability. Superoxide dismutase and catalase activities and the ratio of oxidized to total glutathione were substantially higher in translucent tissue. TTD tubers also contained twofold less ascorbate than non-TTD tubers. TTD appears to be a consequence of oxidative stress associated with accelerated aging of ‘Premier Russet’ tubers.  相似文献   

7.
We have usedin vitro-grown microtuber discs in the transformation of Russet Burbank and Lemhi Russet potato (Solanum tuberosum L.) cultivars byAgrobacterium-mediated gene transfer. Transformed plants were selected by their resistance to kanamycin and identified by -glucuronidase activity. Northern blot analysis confirmed the presence of the corresponding messenger RNA. The ability to transform these two cultivars promises significant improvements to agronomically important varieties.Abbreviations MS Murashige and Skoog - LB Luria-Bertani - KS high kanamycin selection medium - NAA naphthaleneacetic acid - BA benzyladenine - GUS -glucuronidase - EDTA ethylenediaminetetraacetic acid - MUG 4-methylumbelliferyl glucuronide  相似文献   

8.
This experiment was conducted to evaluate the effect of four harvesting methods on juice quality and storability in sweet sorghum. Three cultivars (Dale, Theis, and M81-E) were harvested at 90, 115, and 140 days after planting. Stalks were stripped of leaves and topped at the peduncle, then divided into four treatments (whole stalk, 20- or 40-cm billets, or chopped). The sorghum was stored outside at ambient temperature in a shade tent, and juice was extracted from samples removed at 0, 1, 2, and 4 days after harvest. Changes in juice Brix and sugars were reported in an earlier paper (Lingle, Tew, Rukavina, Boykin, Post-harvest changes in sweet sorghum I: Brix and sugars, BioEnergy Research 5:158–167, 2012). In this paper, we report changes in juice pH, titratable acidity (TA), and protein, starch, and mannitol concentrations. Juice pH dropped rapidly after harvest in chopped sorghum, but changed little during 4 days of storage in whole stalks or billets. Similarly, TA increased with storage time in chopped samples, but was unchanged in whole stalks and billets. Protein concentration was highly variable, and no pattern with treatment or storage time could be discerned. In whole stalks and billets, starch content slowly decreased during storage, while in chopped samples starch appeared to increase. This was most likely a result of an increase in dextran synthesized by microorganisms in those samples, which was also detected by the enzymatic starch assay. The concentration of mannitol increased with storage time in chopped samples, but not in whole stalks or billets. Within a harvest date, pH was highly correlated with total sugar, while TA and mannitol were highly negatively correlated with total sugar. The results confirm that whole stalks and billets were little changed over 4 days of storage, while chopped sorghum was badly deteriorated 1 day after harvest. Changes in pH, TA, or mannitol could be used to measure deterioration in sweet sorghum after harvest.  相似文献   

9.
Summary The freezing tolerance of cabbage petioles and asparagus shoot apexes was increased by preincubation with 0.8 M sugar solutions. In cabbage petioles with an initial freezing tolerance of –3 °C (temperature for 50% cell survival), as determined by both electrolyte leakage and fluorescein diacetate vital staining, the freezing tolerance was increased to –13 °C by incubation with sorbitol solutions for 3 h. In meristematic cells of asparagus shoot apexes with an initial freezing tolerance of –7.5 °C, as determined by fluorescein diacetate vital staining, the freezing tolerance was increased to –30 °C by incubation with 0.8 M sugar solutions for 3 h, although other cells in the shoot apexes were killed by higher freezing temperatures. During incubation of both cabbage petioles and asparagus shoot apexes with sugar solutions, sugars were intracellularly taken up by osmotically induced fluid-phase endocytotic vesicles, as indicated by comovement of Lucifer Yellows carbohydrazide (LYCH) observed with a confocal laser scanning microscope. The amounts of intracellularly taken up sugars increased concomitantly with the formation of endocytotic vesicles depending on the time of incubation in parallel with a gradual increase of freezing tolerance. However, the endocytotic vesicles and their contents were retained not only after prolonged incubation after maximum freezing tolerance had been achieved but also after recovery of these tissue cells to isotonic conditions or after freeze-thawing. These results suggest that although sugars are intracellularly taken up by endocytotic vesicles, they might be sequestered within vesicles, casting doubt on their protective role to the plasma membranes as a main site of freezing injury. The pretreatment with 1 mMp-chloromercuribenzenesulfonic acid (PCMBS), an inhibitor of sugar transport, reduced the amounts of intracellular sugar uptake without affecting the formation of endocytotic vesicles, suggesting that sugars were, at least partly, taken up by sugar transporters. In the pretreatment with PCMBS, the freezing tolerance of incubated tissues with sugar solutions was significantly reduced, although addition of PCMBS per se did not affect survival. These results suggest that sugars taken up by sugar transporters, rather than sugars taken up by endocytotic vesicles, are mainly responsible for the increased freezing tolerance of cabbage petioles and asparagus shoot apexes. Furthermore, we aimed to study the occurrence of fluid-phase endocytosis with LYCH in an isotonic condition. Our results indicated that uptake of LYCH by fluid-phase endocytotic vesicles was not detected microscopically in isotonic condition, although LYCH was spectrofluorimetrically taken up in isotonic condition. Spectrofluorimetric uptake of LYCH was inhibited by addition of probenecid, an anion transport inhibitor. These results suggest that in cabbage petioles and asparagus shoot apexes, LYCH is taken up by anion transport but not by fluid-phase endocytosis in isotonic condition, and uptake of LYCH by fluid-phase endocytosis is restricted to occur only in hypertonic condition.Abbreviations CLSM confocal laser scanning microscope - FDA fluorescein diacetate - LYCH Lucifer Yellow carbohydrazide - PCMSB p-chloromercuribenzenesulfonic acid - TEL50 temperature at which 50% electrolyte leakage occurred  相似文献   

10.
Nicotinic acid, pyridoxine, and picloram were stable in a liquid MS culture medium (pH 5.5–5.6) during autoclaving and during cell-free incubation in the dark at 5°C or 25°C for up to 6 weeks. Thiamine loss under the same conditions was 16% at 5°C and 18% at 25°C. Five percent of the sucrose in the liquid medium was hydrolyzed during autoclaving. During cell-free incubation in the light (100 E m–2 s–1) at 25°C, pyridoxine was not detected after 6 days, while 78% of the picloram and 56% of the thiamine were degraded after 6 weeks. All of the niacin and pyridoxine, 13% of the picloram and 42% of the thiamine in a liquid MS culture medium were utilized in 4 days by potato (cv. Lemhi Russet) tuber suspension cultures growing in the dark at 25°C.Abbreviations BS Gamborg et al. medium (1968) - 2,4-D 2,4-dichlorophenoxyacetic acid - IAA indoleacetic acid - MS Murashige & Skoog (1962) - NAA naphthaleneacetic acid - PAA phenylacetic acid  相似文献   

11.
Lilies regenerating on scale segments may develop dormancy in vitro depending on the culture conditions. The dormancy is broken by storage for several weeks at a low temperature (5 °C). The effect of the low temperature on sprouting, time of leaf emergence and further bulb growth was studied. Dormant and non-dormant bulblets were regenerated in vitro on bulb scale segments cultured at 20 °C or 15 °C, respectively. The low temperature not only affected the number of sprouted bulblets but also the time of emergence. The longer the cold storage, the faster and more uniform leaf emergence occurred. Both dormant and non-dormant bulblets grew faster after a low temperature treatment of six weeks. Thus, during dormancy breaking the tissue is prepared not only for sprouting but also for subsequent bulb growth. These processes are rather independent as low temperature stimulates growth in non-dormant bulblets whereas these bulblets sprout also without treatment at low temperature. Moreover, the hormone gibberellin induces rapid sprouting but has no influence on further bulb growth. Good growth in bulblets exposed to the low temperature coincided with production of an increased leaf weight. However, the relationship is not absolute as bulblets that were cold-treated for six weeks grew larger than bulblets cold-treated for four weeks but the formation of leaf biomass was similar. During storage at low temperature starch was hydrolyzed in the bulb scales and sugars accumulated. This indicates that during this period, preparation for later bulb growth involves mobilization of carbohydrate reserves which play a role in leaf growth and development of the photosynthetic apparatus. Starch hydrolysis proceeded in the outer scales after planting. Approximately six weeks later, the switch from source to sink took place in the bulblet, which became visible as a deposition of starch in the middle scales.  相似文献   

12.

Key message

High soil temperature during bulking and maturation of potatoes alters postharvest carbohydrate metabolism to attenuate genotypic resistance to cold-induced sweetening and accelerate loss of process quality.

Abstract

The effects of soil temperature during tuber development on physiological processes affecting retention of postharvest quality in low-temperature sweetening (LTS) resistant and susceptible potato cultivars were investigated. ‘Premier Russet’ (LTS resistant), AO02183-2 (LTS resistant) and ‘Ranger Russet’ (LTS susceptible) tubers were grown at 16 (ambient), 23 and 29 °C during bulking (111–164 DAP) and maturation (151–180 DAP). Bulking at 29 °C virtually eliminated yield despite vigorous vine growth. Tuber specific gravity decreased as soil temperature increased during bulking, but was not affected by temperature during maturation. Bulking at 23 °C and maturation at 29 °C induced higher reducing sugar levels in the proximal (basal) ends of tubers, resulting in non-uniform fry color at harvest, and abolished the LTS-resistant phenotype of ‘Premier Russet’ tubers. AO02183-2 tubers were more tolerant of heat for retention of LTS resistance. Higher bulking and maturation temperatures also accelerated LTS and loss of process quality of ‘Ranger Russet’ tubers, consistent with increased invertase and lower invertase inhibitor activities. During LTS, tuber respiration fell rapidly to a minimum as temperature decreased from 9 to 4 °C, followed by an increase to a maximum as tubers acclimated to 4 °C; respiration then declined over the remaining storage period. The magnitude of this cold-induced acclimation response correlated directly with the extent of buildup in sugars over the 24-day LTS period and thus reflected the effects of in-season heat stress on propensity of tubers to sweeten and lose process quality at 4 °C. While morphologically indistinguishable from control tubers, tubers grown at elevated temperature had different basal metabolic (respiration) rates at harvest and during cold acclimation, reduced dormancy during storage, greater increases in sucrose and reducing sugars and associated loss of process quality during LTS, and reduced ability to improve process quality through reconditioning. Breeding for retention of postharvest quality and LTS resistance should consider strategies for incorporating more robust tolerance to in-season heat stress.  相似文献   

13.
The effects of pot size, timing of the application of paclobutrazol (PTZ) and gibberellic acid (GA3), and the counteractive effect of these two compounds on growth and tuber yield of greenhouse-grown Norland and Russet Burbank potatoes were investigated. Plants were grown either in 1.5-liter pots (15 cm deep) or 3.0-liter pots (18 cm deep) and received a foliar application of either 1.5 mm PTZ or 9 × 10−3 mm GA3 at early or late stolon initiation. Some plants that had been foliar treated with 1.5 mm PTZ at early stolon initiation were foliar treated with 9 × 10−3 mm GA3 at late stolon initiation. PTZ reduced haulm length in both cultivars significantly, particularly when the treatment was applied at early stolon initiation, but the late treatment reduced haulm length only when growing in 3.0-liter pots. Irrespective of the timing of treatment, GA3 increased haulm length in Norland growing in both pot sizes, but the treatment increased haulm length in Russet Burbank only when applied at late stolon initiation. GA3 applied after PTZ did not overcome the growth-inhibiting effect of the PTZ treatment. The PTZ treatment effectively increased usable tuber number/plant (UTN) in Norland, but PTZ had no effect on UTN in Russet Burbank. PTZ reduced usable tuber weight/plant (UTW) only in Norland growing in 1.5-liter pots. By contrast, GA3 increased UTN only when treated at late stolon initiation of 1.5-liter pot-grown Norland, whereas the same treatment was effective when applied only at early stolon initiation for Russet Burbank. For Norland, the increase in UTN by early applied PTZ was reduced by the subsequent application of GA3. The use of 3.0-liter pots for minituber production in both Norland and Russet Burbank appears to have no advantage over growing in 1.5-liter pots, particularly when PTZ or GA3 is used to enhance tuberization. Received May 30, 1997; accepted February 3, 1998  相似文献   

14.
Callus tissues derived from chilling-tolerant herbaceous plant, Atractylodes lancea, Atropa belladonna, Bupleurum falcatum, Dioscorea tokoro, Lithospermum erythrorhizon and Phytolacca americana could be cold-stored at 4°C for three months or more, whereas those from chilling-sensitive herbaceous plants such as Datura innoxia and Perilla frutescens var. crispa and a deciduous tree, Mallotus japonicus, could not survive after cold storage for two to three months. Tobacco callus cultures could be stored at 4°C for two or four months depending on a callus strain. The effect of cold storage on secondary metabolite production varied. Nicotine and betalain production suffered from cold storage of tobacco and Phytolacca americana callus cultures, respectively. However, production of anthocyanin in cultures of Mallotus japonicus and Bupleurum falcatum and shikonin derivatives in Lithospermum erythrorhizon callus was affected very little. Root-forming ability was retained for more than one year in cold-stored callus tissues of Bupleurum falcatum, while the control callus tissues maintained at 25°C completely lost the organogenetic ability six months after the first subculture.  相似文献   

15.
16.
To clarify the effects of storage temperature on potato components and acrylamide in chips, tubers from five cultivars were stored at various temperatures (2, 6, 8, 10, and 18 degrees C) for 18 weeks, and the contents of sugars, free amino acids in tubers, and acrylamide in chips after frying were analyzed. At temperatures lower than 8 degrees C, the contents of reducing sugars increased markedly in all cultivars, with similar increases in the acrylamide level and dark brown chip color. Free amino acids showed little change at the storage temperatures tested and varied within certain ranges characteristic of each cultivar. The contents of reducing sugars correlated well with the acrylamide level when the fructose/asparagine molar ratio in the tubers was <2. When the fructose/asparagine ratio was >2 by low-temperature storage, the asparagine content, rather than the reducing sugar content, was found to be the limiting factor for acrylamide formation.  相似文献   

17.
18.
Kennebec (cv) potatoes randomly developed translucent areas in their centrally located pith-parenchymal cells during storage. These defective areas were characterized as having reduced starch concentration and increased levels of free sugars (i. e. sucrose and glucose) and inorganic phosphate. Electron micrographs of potato tubers stored at 10° ± 1°C for 8 months indicated that the amyloplast membrane was still intact and continuous around starch granules in both normal and prematurely sweetened tissue. The total activities of phosphorylase and sucrose-6-P synthase were elevated 5.4- and 3.8-fold, respectively, in the defective tissue compared to healthy nonsweetened tubers while there were no significant differences in the levels of sucrose synthase, UDPglucose pyrophosphorylase, invertase, or α-amylase. Total and specific activities of acid phosphatase were only slightly elevated in translucent tissue but their increase was significant (P < 0.05, t test) over that seen in healthy tubers. The premature sweetening in storage may have been indirectly triggered by moisture and heat stress experienced during development. Translucency eventually led to physical deterioration of the tissue.  相似文献   

19.
In addition to cultural practices, the application of the fungicide mefenoxam is an important disease management tactic used to control both pink rot and leak on potato tubers grown in the USA. Mefenoxam resistance has been identified in many of the potato growing regions, and therefore resistance management strategies are very important for retaining this fungicide as a tool to manage these storage rot diseases. The relationship between mefenoxam efficacy and cultivar susceptibility to pink rot and leak was assessed in post‐harvest inoculation studies. Mefenoxam was applied to potato (Solanum tuberosum) cultivars known to express varying levels of susceptibility to pink rot and leak caused by Phytophthora erythroseptica and Pythium ultimum, respectfully. Tubers harvested from plants treated with in‐furrow and foliar applications of mefenoxam were inoculated with isolates sensitive to the fungicide. Incidence and severity of both diseases ranged widely among cultivars. Russet Norkotah was the most susceptible to infection by P. erythroseptica, while cvs Pike and Atlantic were the most resistant. Cultivars Dark Red Norland, Russet Norkotah, Goldrush and Russet Burbank were most susceptible to infection by P. ultimum whereas Snowden was most resistant. Control of pink rot differed significantly among cultivars following mefenoxam treatment, ranging from 28% (cv. Goldrush) to 67% (cv. Snowden) and generally provided the greatest level of disease control on susceptible and moderately susceptible cultivars such as Russet Norkotah and Snowden, respectively. In contrast, the impact of mefenoxam on leak development was minimal and disease control did not differ significantly among the cultivars. The fungicide failed to control leak in the susceptible cvs Atlantic and Pike and control ranged from 1.7% to 5.2% in cvs Goldrush, Russet Norkotah, Dark Red Norland, Russet Burbank and Kennebec. The greatest level of leak control was achieved with the moderately resistant cv., Snowden, at 12.7%. Cultivars most likely to benefit from mefenoxam treatments should be targeted as part of a pink rot management programme. Judicious use of the fungicide, when matched with the level of cultivar susceptibility, may prove to be an efficient and effective approach to reduce infection rates and possibly manage mefenoxam resistance thereby maintaining longevity of the compound.  相似文献   

20.
Meristem-tip tissues of Cavendish banana were incubated at 17°C under light on cheesecloth over cotton saturated with 3% solution of various kinds of sugars. All the sugars tested were found to be capable of extending the survival time of banana tissues and ribose was the best followed by sucrose, glucose, fructose and lactose. After 21 months, 33% of banana tissues incubated with ribose solution remained viable and resumed growth within two weeks after being transferred to fresh SM medium. About 99% of plantlets developed from these tissues were normal. In a separate experiment, 67% of banana tissues incubated with 3% ribose solution remained viable after 24 months. Ribose solutions at 0.3% and 0.03% were not as effective and over saturation of cotton with 3% ribose solution was not beneficial. The new technique may be useful for storage of tissue cultures of other species and cultivars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号