首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.

Background

A greater reduction in cardiovascular risk and vascular protection associated with diet rich in polyphenols are generally accepted; however, the molecular targets for polyphenols effects remain unknown. Meanwhile evidences in the literature have enlightened, not only structural similarities between estrogens and polyphenols known as phytoestrogens, but also in their vascular effects. We hypothesized that alpha isoform of estrogen receptor (ERα) could be involved in the transduction of the vascular benefits of polyphenols.

Methodology/Principal Findings

Here, we used ERα deficient mice to show that endothelium-dependent vasorelaxation induced either by red wine polyphenol extract, Provinols™, or delphinidin, an anthocyanin that possesses similar pharmacological profile, is mediated by ERα. Indeed, Provinols™, delphinidin and ERα agonists, 17-beta-estradiol and PPT, are able to induce endothelial vasodilatation in aorta from ERα Wild-Type but not from Knock-Out mice, by activation of nitric oxide (NO) pathway in endothelial cells. Besides, silencing the effects of ERα completely prevented the effects of Provinols™ and delphinidin to activate NO pathway (Src, ERK 1/2, eNOS, caveolin-1) leading to NO production. Furthermore, direct interaction between delphinidin and ERα activator site is demonstrated using both binding assay and docking. Most interestingly, the ability of short term oral administration of Provinols™ to decrease response to serotonin and to enhance sensitivity of the endothelium-dependent relaxation to acetylcholine, associated with concomitant increased NO production and decreased superoxide anions, was completely blunted in ERα deficient mice.

Conclusions/Significance

This study provides evidence that red wine polyphenols, especially delphinidin, exert their endothelial benefits via ERα activation. It is a major breakthrough bringing new insights of the potential therapeutic of polyphenols against cardiovascular pathologies.  相似文献   

2.

Aims

To determine the impact of maternal and post-weaning consumption of a high fat diet on endothelium-dependent vasorelaxation and redox regulation in adult male mouse offspring.

Methods

Female C57BL6J mice were fed an obesogenic high fat diet (HF, 45% kcal fat) or standard chow (C, 21% kcal fat) pre-conception and throughout pregnancy and lactation. Post-weaning, male offspring were continued on the same diet as their mothers or placed on the alternative diet to give 4 dietary groups (C/C, HF/C, C/HF and HF/HF) which were studied at 15 or 30 weeks of age.

Results

There were significant effects of maternal diet on offspring body weight (p<0.004), systolic blood pressure (p = 0.026) and endothelium-dependent relaxation to ACh (p = 0.004) and NO production (p = 0.005) measured in the femoral artery. With control for maternal diet there was also an effect of offspring post-weaning dietary fat to increase systolic blood pressure (p<0.0001) and reduce endothelium-dependent relaxation (p = 0.022) and ACh-mediated NO production (p = 0.007). There was also a significant impact of age (p<0.005). Redox balance was perturbed, with altered regulation of vascular enzymes involved in ROS/NO signalling.

Conclusions

Maternal consumption of a HF diet is associated with changes in vascular function and oxidative balance in the offspring of similar magnitude to those seen with consumption of a high fat diet post-weaning. Further, this disadvantageous vascular phenotype is exacerbated by age to influence the risk of developing obesity, raised blood pressure and endothelial dysfunction in adult life.  相似文献   

3.

Background and Objective

Conflicting results were found between the I-gel™ and the LMA-Supreme™ during anesthesia, so we conducted a meta-analysis of randomized controlled trials (RCTs) to compare the effectiveness and safety of the I-gel™ vs. the LMA-Supreme™during anesthesia.

Methods

A comprehensive search was conducted using Pubmed, EMbase, ISI Web of Knowledge, the Cochrane Library, China Journal Full-text Database, Chinese Biomedical Database, Chinese Scientific Journals Full-text Database, CMA Digital Periodicals, and Google scholar to find RCTs that compare the LMA-S™ with the i-gel™during anesthesia. Two reviewers independently selected trials, extracted data, and assessed the methodological qualities and evidence levels. Data were analyzed by RevMan 5.0 and comprehensive meta-analysis software.

Results

Ten RCTs were included. There were no significant differences in oropharyngeal leak pressures (mean difference [MD] 0.72, 95% confidence interval [CI] –1.10 2.53), device placement time (MD –1.3, 95%CI –4.07 1.44), first attempt insertion success (risk ratio [RR] 1.01, 95% CI 0.9 1.14), grade 3 and 4 fiberoptic view (RR 0.89, 95%CI 0.65 1.21), and blood on removal (RR 0.62, 95%CI 0.32 1.22) between the i-gel™ and the LMA-Supreme™, respectively. However, the LMA-Supreme™was associated with easier gastric tube insertion (RR 1.17, 95%CI 1.07 1.29), and more sore throat (RR 2.56, 95%CI 1.60 4.12) than the i-gel™ group.

Conclusions

The LMA-Supreme™ and i-gel™ were similarly successful and rapidly inserted. However, the LMA-Supreme™ was shown to be easier for gastric tube insertion and associated with more sore throat compared with the i-gel™.  相似文献   

4.

Objectives

The aim of this study was to investigate in rat mesenteric artery whether breast feeding (BF) affects the vasomotor response induced by electrical field stimulation (EFS), participation by different innervations in the EFS-induced response and the mechanism/s underlying these possible modifications.

Methods

Experiments were performed in female Sprague-Dawley rats (3 months old), divided into three groups: Control (in oestrous phase), mothers after 21 days of BF, and mothers that had recovered their oestral cycle (After BF, in oestrous phase). Vasomotor response to EFS, noradrenaline (NA) and nitric oxide (NO) donor DEA-NO were studied. Neuronal NO synthase (nNOS) and phosphorylated nNOS (P-nNOS) protein expression were analysed and NO, superoxide anion (O2 .–), NA and ATP releases were also determined.

Results

EFS-induced contraction was higher in the BF group, and was recovered after BF. 1 µmol/L phentolamine decreased the response to EFS similarly in control and BF rats. NA vasoconstriction and release were similar in both experimental groups. ATP release was higher in segments from BF rats. 0.1 mmol/L L-NAME increased the response to EFS in both control and BF rats, but more so in control animals. BF decreased NO release and did not modify O2 .– production. Vasodilator response to DEA-NO was similar in both groups, while nNOS and P-nNOS expressions were decreased in segments from BF animals.

Conclusion

Breast feeding increases EFS-induced contraction in mesenteric arteries, mainly through the decrease of neuronal NO release mediated by decreased nNOS and P-nNOS expression. Sympathetic function is increased through the increased ATP release in BF rats.  相似文献   

5.
6.

Background

Healthy middle-aged postmenopausal women have higher endothelium-dependent dilation and lower vasoconstrictor activity of endothelin-1 than men. Whether these sex-specific differences extend to patients with cardiovascular risk factors has not been investigated. The current study aimed to determine whether, in patients with cardiovascular risk factors, sex-specific differences exist in endothelium-dependent dilation and endothelin-1 activity.

Methods

Forearm blood flow responses were measured by strain-gauge plethysmography during the intra-arterial infusion of acetylcholine, sodium nitroprusside, and the selective endothelin type A receptor blocker BQ-123 in 50 women and 64 men with cardiovascular risk factors.

Results

Acetylcholine and sodium nitroprusside induced a significant vasodilation in women and men alike (p < 0.01 for both). Also BQ-123 caused a significant vasodilation (p < 0.001) in both groups. The vasodilator response to acetylcholine was greater in women compared to men; however there were no differences in the response to sodium nitroprusside and BQ-123 (p = NS for both) between the two sex groups.

Conclusions

Middle-aged women with cardiovascular risk factors have significantly higher endothelium-dependent dilation than middle-aged men; however, vascular endothelin 1 activity is similar in the two groups. These findings suggest that the presence of cardiovascular risk factors is associated with sex-specific effects on endothelium-dependent dilation but not on endothelin 1 activity. Further study is needed to confirm our findings and to characterize the mechanisms underlying this sex-specific regulation of endothelial function.  相似文献   

7.

Introduction

Glucocorticoids are commonly used as therapeutic agents in many acute and chronic inflammatory and auto-immune diseases. The current study investigated the effects of methylprednisolone (a synthetic glucocorticoid) on aortic distensibility and vascular resistance in lipopolysaccharide-induced chronic inflammation in male Wistar rats.

Methods

Chronic inflammation was induced by implanting a subcutaneous slow-release ALZET osmotic pump (1 mg kg−1 day−1 lipopolysaccharide) for either 2 or 4 weeks. Arterial wave transit time (τ) was derived to describe the elastic properties of aortas using the impulse response function of the filtered aortic input impedance spectra.

Results

Long-term lipopolysaccharide challenge enhanced the expression of advanced glycation end products (AGEs) in the aortas. Lipopolysaccharide also upregulated the inducible form of nitric oxide synthase to produce high levels of nitric oxide (NO), which resulted in vasodilation, as evidenced by the fall in total peripheral resistance (Rp). However, lipopolysaccharide challenge did not influence the elastic properties of aortas, as shown by the unaltered τ. The NO-mediated vascular relaxation may counterbalance the AGEs-induced arterial stiffening so that the aortic distensibility remained unaltered. Treating lipopolysaccharide-challenged rats with methylprednisolone prevented peripheral vasodilation because of its ability to increase Rp. However, methylprednisolone produced an increase in aorta stiffness, as manifested by the significant decline in τ. The diminished aortic distensibility by methylprednisolone paralleled a significant reduction in NO plasma levels, in the absence of any significant changes in AGEs content.

Conclusion

Methylprednisolone stiffens aortas and elastic arteries in lipopolysaccharide-induced chronic inflammation in rats, for NO activity may be dominant as a counteraction of AGEs.  相似文献   

8.

Purpose

To investigate the use of liposomal irinotecan (Irinophore C™) plus or minus 5-fluorouracil (5-FU) for the treatment of colorectal cancer.

Experimental Design

The effect of irinotecan (IRI) and/or 5-FU exposure times on cytotoxicity was assessed in vitro against HT-29 or LS174T human colon carcinoma cells. The pharmacokinetics and biodistribution of Irinophore C™ (IrC™) and 5-FU, administered alone or in combination, were compared in vivo. A subcutaneous model of HT-29 human colorectal cancer in Rag2-M mice was utilized to assess the efficacy of IrC™ alone, and in combination with 5-FU.

Results

The cytotoxicity of IRI and 5-FU were strongly dependent on exposure time. Synergistic interactions were observed following prolonged exposure to IRI/5-FU combinations. Pharmacokinetics/biodistribution studies demonstrated that the 5-FU elimination rate was decreased significantly when 5-FU was co-administered intravenously with IrC™, versus alone. Significant decreases in 5-FU elimination were also observed in plasma, with an associated increase of 5-FU in some tissues when 5-FU was given by intraperitoneal injection and IrC™ was given intravenously. The elimination of IrC™ was not significantly different when administered alone or in combination with 5-FU. Therapeutic studies demonstrated that single agent IrC™ was significantly more effective than the combination of IRI/5-FU; surprisingly, IrC™/5-FU combinations were no more effective than IrC™ alone. The administration of combinations of 5-FU (16 mg/kg) and IrC™ (60 mg IRI/kg) showed increased toxicity when compared to IrC™ alone. Treatment with IrC™ alone (60 mg IRI/kg) delayed the time required for a 5-fold increase in initial tumor volume to day 49, compared to day 23 for controls. When IrC™ (40 mg IRI/kg) was used in combination with 5-FU (16 mg/kg), the time to increase tumor volume 5-fold was 43 days, which was comparable to that achieved when using IrC™ alone (40 mg IRI/kg).

Conclusions

Single agent IrC™ was well tolerated and has significant therapeutic potential. IrC™ may be a suitable replacement for IRI treatment, but its use with free 5-FU is complicated by IrC™-engendered changes in 5-FU pharmacokinetics/biodistribution which are associated with increased toxicity when using the combination.  相似文献   

9.
《PloS one》2014,9(9)

Objective

Different types of carbohydrates have diverse glycemic response, thus glycemic index (GI) and glycemic load (GL) are used to assess this variation. The impact of dietary GI and GL in all-cause mortality is unknown. The objective of this study was to estimate the association between dietary GI and GL and risk of all-cause mortality in the PREDIMED study.

Material and Methods

The PREDIMED study is a randomized nutritional intervention trial for primary cardiovascular prevention based on community-dwelling men and women at high risk of cardiovascular disease. Dietary information was collected at baseline and yearly using a validated 137-item food frequency questionnaire (FFQ). We assigned GI values of each item by a 5-step methodology, using the International Tables of GI and GL Values. Deaths were ascertained through contact with families and general practitioners, review of medical records and consultation of the National Death Index. Cox regression models were used to estimate multivariable-adjusted hazard ratios (HR) and their 95% CI for mortality, according to quartiles of energy-adjusted dietary GI/GL. To assess repeated measures of exposure, we updated GI and GL intakes from the yearly FFQs and used Cox models with time-dependent exposures.

Results

We followed 3,583 non-diabetic subjects (4.7 years of follow-up, 123 deaths). As compared to participants in the lowest quartile of baseline dietary GI, those in the highest quartile showed an increased risk of all-cause mortality [HR = 2.15 (95% CI: 1.15–4.04); P for trend  = 0.012]. In the repeated-measures analyses using as exposure the yearly updated information on GI, we observed a similar association. Dietary GL was associated with all-cause mortality only when subjects were younger than 75 years.

Conclusions

High dietary GI was positively associated with all-cause mortality in elderly population at high cardiovascular risk.  相似文献   

10.

Introduction

Several studies demonstrated that endothelium dependent vasodilatation is impaired in cardiovascular and chronic kidney diseases because of oxidant stress-induced nitric oxide availability reduction. The Mediterranean diet, which is characterized by food containing phenols, was correlated with a reduced incidence of cardiovascular diseases and delayed progression toward end stage chronic renal failure. Previous studies demonstrated that both red and white wine exert cardioprotective effects. In particular, wine contains Caffeic acid (CAF), an active component with known antioxidant activities.

Aim of the study

The aim of the present study was to investigate the protective effect of low doses of CAF on oxidative stress-induced endothelial injury.

Results

CAF increased basal as well as acetylcholine—induced NO release by a mechanism independent from eNOS expression and phosphorylation. In addition, low doses of CAF (100 nM and 1 μM) increased proliferation and angiogenesis and inhibited leukocyte adhesion and endothelial cell apoptosis induced by hypoxia or by the uremic toxins ADMA, p-cresyl sulfate and indoxyl sulfate. The biological effects exerted by CAF on endothelial cells may be at least in part ascribed to modulation of NO release and by decreased ROS production. In an experimental model of kidney ischemia-reperfusion injury in mice, CAF significantly decreased tubular cell apoptosis, intraluminal cast deposition and leukocyte infiltration.

Conclusion

The results of the present study suggest that CAF, at very low dosages similar to those observed after moderate white wine consumption, may exert a protective effect on endothelial cell function by modulating NO release independently from eNOS expression and phosphorylation. CAF-induced NO modulation may limit cardiovascular and kidney disease progression associated with oxidative stress-mediated endothelial injury.  相似文献   

11.

Objective

Previous studies have shown that estrogen deficiency, arising in postmenopause, promotes endothelial dysfunction. This study evaluated the effects of aerobic exercise training on endothelial dependent vasodilation of aorta in ovariectomized rats, specifically investigating the role of nitric oxide (NO) and reactive oxygen species (ROS).

Methods

Female Wistar rats ovariectomized (OVX – n=20) or with intact ovary (SHAM – n=20) remained sedentary (OVX and SHAM) or performed aerobic exercise training on a treadmill 5 times a week for a period of 8 weeks (OVX-TRA and SHAM-TRA). In the thoracic aorta the endothelium-dependent and –independent vasodilation was assessed by acetylcholine (ACh) and sodium nitroprusside (SNP), respectively. Certain aortic rings were incubated with L-NAME to assess the NO modulation on the ACh-induced vasodilation. The fluorescence to dihydroethidium in aortic slices and plasma nitrite/nitrate concentrations were measured to evaluate ROS and NO bioavailability, respectively.

Results

ACh-induced vasodilation was reduced in OVX rats as compared SHAM (Rmax: SHAM: 86±3.3 vs. OVX: 57±3.0%, p<0.01). Training prevented this response in OVX-TRA (Rmax: OVX-TRA: 88±2.0%, p<0.01), while did not change it in SHAM-TRA (Rmax: SHAM-TRA: 80±2.2%, p<0.01). The L-NAME incubation abolished the differences in ACh-induced relaxation among groups. SNP-induced vasodilation was not different among groups. OVX reduced nitrite/nitrate plasma concentrations and increased ROS in aortic slices, training as effective to restore these parameters to the SHAM levels.

Conclusions

Exercise training, even in estrogen deficiency conditions, is able to improve endothelial dependent vasodilation in rat aorta via enhanced NO bioavailability and reduced ROS levels.  相似文献   

12.

Background

Video-games have become an integral part of the new multimedia culture. Several studies assessed video-gaming enhancement of spatial attention and eye-hand coordination. Considering the technical difficulty of laparoscopic procedures, legal issues and time limitations, the validation of appropriate training even outside of the operating rooms is ongoing. We investigated the influence of a four-week structured Nintendo® Wii™ training on laparoscopic skills by analyzing performance metrics with a validated simulator (Lap Mentor™, Simbionix™).

Methodology/Principal Findings

We performed a prospective randomized study on 42 post-graduate I–II year residents in General, Vascular and Endoscopic Surgery. All participants were tested on a validated laparoscopic simulator and then randomized to group 1 (Controls, no training with the Nintendo® Wii™), and group 2 (training with the Nintendo® Wii™) with 21 subjects in each group, according to a computer-generated list. After four weeks, all residents underwent a testing session on the laparoscopic simulator of the same tasks as in the first session. All 42 subjects in both groups improved significantly from session 1 to session 2. Compared to controls, the Wii group showed a significant improvement in performance (p<0.05) for 13 of the 16 considered performance metrics.

Conclusions/Significance

The Nintendo® Wii™ might be helpful, inexpensive and entertaining part of the training of young laparoscopists, in addition to a standard surgical education based on simulators and the operating room.  相似文献   

13.

Background

Systemic hypertension may be associated with an increased pulmonary vascular resistance, which we hypothesized could be, at least in part, mediated by increased leptin.

Methods

Vascular reactivity to phenylephrine (1 μmol/L), endothelin-1 (10 nmol/L) and leptin (0.001–100 nmol/L) was evaluated in endothelium-intact and -denuded isolated thoracic aorta and pulmonary arteries from spontaneously hypertensive versus control Wistar rats. Arteries were sampled for pathobiological evaluation and lung tissue for morphometric evaluation.

Results

In control rats, endothelin-1 induced a higher level of contraction in the pulmonary artery than in the aorta. After phenylephrine or endothelin-1 precontraction, leptin relaxed intact pulmonary artery and aortic rings, while no response was observed in denuded arteries. Spontaneously hypertensive rats presented with increased reactivity to phenylephrine and endothelin-1 in endothelium-intact pulmonary arteries. After endothelin-1 precontraction, endothelium-dependent relaxation to leptin was impaired in pulmonary arteries from hypertensive rats. In both strains of rats, aortic segments were more responsive to leptin than pulmonary artery. In hypertensive rats, pulmonary arteries exhibited increased pulmonary artery medial thickness, associated with increased expressions of preproendothelin-1, endothelin-1 receptors type A and B, inducible nitric oxide synthase and decreased endothelial nitric oxide synthase, together with decreased leptin receptor and increased suppressor of cytokine signaling 3 expressions.

Conclusions

Altered pulmonary vascular reactivity in hypertension may be related to a loss of endothelial buffering of vasoconstriction and decreased leptin-induced vasodilation in conditions of increased endothelin-1.  相似文献   

14.

Background

The functions of free radicals on the effects of insulin that result in protection against cerebral ischemic insult in diabetes remain undefined. This present study aims to explain the contradiction among nitric oxide (NO)/superoxide/peroxynitrite of insulin in amelioration of focal cerebral ischemia–reperfusion (FC I/R) injury in streptozotocin (STZ)-diabetic rats and to delineate the underlying mechanisms. Long-Evans male rats were divided into three groups (age-matched controls, diabetic, and diabetic treated with insulin) with or without being subjected to FC I/R injury.

Results

Hyperglycemia exacerbated microvascular functions, increased cerebral NO production, and aggravated FC I/R-induced cerebral infarction and neurological deficits. Parallel with hypoglycemic effects, insulin improved microvascular functions and attenuated FC I/R injury in STZ-diabetic rats. Diabetes decreased the efficacy of NO and superoxide production, but NO and superoxide easily formed peroxynitrite in diabetic rats after FC I/R injury. Insulin treatment significantly rescued the phenomenon.

Conclusions

These results suggest that insulin renders diabetic rats resistant to acute ischemic stroke by arresting NO reaction with superoxide to form peroxynitrite.  相似文献   

15.

Background

Sitting time and breaks in sitting influence cardio-metabolic health. New monitors (e.g. activPAL™) may be more accurate for measurement of sitting time and breaks in sitting although how to optimize measurement accuracy is not yet clear. One important issue is the minimum sitting/upright period (MSUP) to define a new posture. Using the activPAL™, we investigated the effect of variations in MSUP on total sitting time and breaks in sitting, and also determined the criterion validity of different activPAL™ settings for both constructs.

Methods

We varied setting of MSUP in 23 children (mean (SD) age 4.5 y (0.7)) who wore activPAL™ (24 hr/d) for 5–7 d. We first studied activPAL™ using the default setting of 10 s MSUP and then reduced this to 5 s, 2 s and 1 s. In a second study, in a convenience sample of 30 pre-school children (mean age 4.1 y (SD 0.5)) we validated the activPAL™ measures of sitting time and breaks in sitting at different MSUP settings against direct observation.

Results

Comparing settings of 10, 5, 2 and 1 s, there were no significant differences in sitting time (6.2 hr (1.0), 6.3 hr (1.0), 6.4 hr (1.0) and 6.3 hr (1.6), respectively) between settings but there were significant increases in the apparent number of breaks - (8(3), 14(2), 21(4) and 28 (6)/h) at 10, 5, 2 and 1 s settings, respectively. In comparison with direct observation, a 2 s setting had the smallest error relative to direct observation (95% limits of agreement: -14 to +17 sitting bouts/hr, mean difference 1.83, p = 0.2).

Conclusion

With activPAL™, breaks in sitting, but not total sitting time, are highly sensitive to the setting of MSUP, with 2 s optimal for young children. The MSUP to define a new posture will need to be empirically determined if accurate measurements of number of breaks in sitting are to be obtained.  相似文献   

16.

Background

Red wine polyphenols can prevent cardiovascular and inflammatory diseases. Resveratrol, the most extensively studied constituent, is unlikely to solely account for these beneficial effects because of its rather low abundance and bioavailability. Malvidin is far the most abundant polyphenol in red wine; however, very limited data are available about its effect on inflammatory processes and kinase signaling pathways.

Methods & Findings

The present study was carried out by using RAW 264.7 macrophages stimulated by bacterial lipopolysaccharide in the presence and absence of malvidin. From the cells, activation of nuclear factor-kappaB, mitogen-activated protein kinase, protein kinase B/Akt and poly ADP-ribose polymerase, reactive oxygen species production, mitogen-activated protein kinase phosphatase-1 expression and mitochondrial depolarization were determined. We found that malvidin attenuated lipopolysaccharide-induced nuclear factor-kappaB, poly ADP-ribose polymerase and mitogen-activated protein kinase activation, reactive oxygen species production and mitochondrial depolarization, while upregulated the compensatory processes; mitogen-activated protein kinase phosphatase-1 expression and Akt activation.

Conclusions

These effects of malvidin may explain the previous findings and at least partially account for the positive effects of moderate red wine consumption on inflammation-mediated chronic maladies such as obesity, diabetes, hypertension and cardiovascular disease.  相似文献   

17.

Introduction

Taurine is a sulfur-containing amino acid that exerts protective effects on vascular function and structure in several models of cardiovascular diseases through its antioxidant and anti-inflammatory properties. Early protein malnutrition reprograms the cardiovascular system and is linked to hypertension in adulthood. This study assessed the effects of taurine supplementation in vascular alterations induced by protein restriction in post-weaning rats.

Methods and Results

Weaned male Wistar rats were fed normal- (12%, NP) or low-protein (6%, LP) diets for 90 days. Half of the NP and LP rats concomitantly received 2.5% taurine supplementation in the drinking water (NPT and LPT, respectively). LP rats showed elevated systolic, diastolic and mean arterial blood pressure versus NP rats; taurine supplementation partially prevented this increase. There was a reduced relaxation response to acetylcholine in isolated thoracic aortic rings from the LP group that was reversed by superoxide dismutase (SOD) or apocynin incubation. Protein expression of p47phox NADPH oxidase subunit was enhanced, whereas extracellular (EC)-SOD and endothelial nitric oxide synthase phosphorylation at Ser 1177 (p-eNOS) were reduced in aortas from LP rats. Furthermore, ROS production was enhanced while acetylcholine-induced NO release was reduced in aortas from the LP group. Taurine supplementation improved the relaxation response to acetylcholine and eNOS-derived NO production, increased EC-SOD and p-eNOS protein expression, as well as reduced ROS generation and p47phox expression in the aortas from LPT rats. LP rats showed an increased aortic wall/lumen ratio and taurine prevented this remodeling through a reduction in wall media thickness.

Conclusion

Our data indicate a protective role of taurine supplementation on the high blood pressure, endothelial dysfunction and vascular remodeling induced by post-weaning protein restriction. The beneficial vascular effect of taurine was associated with restoration of vascular redox homeostasis and improvement of NO bioavailability.  相似文献   

18.

Background

The purpose of this study was to determine whether autologous mesenchymal stem cells (MSCs) implantation improves endothelial dysfunction in a rabbit ischemic limb model.

Methods

We evaluated the effect of MSC implantation on limb blood flow (LBF) responses to acetylcholine (ACh), an endothelium-dependent vasodilator, and sodium nitroprusside (SNP), an endothelium-independent vasodilator, in rabbits with limb ischemia in which cultured MSCs were implanted (n = 20) or saline was injected as a control group (n = 20). LBF was measured using an electromagnetic flowmeter. A total of 106 MSCs were implanted into each ischemic limb.

Results

Histological sections of ischemic muscle showed that capillary index (capillary/muscle fiber) was greater in the MSC implantation group than in the control group. Laser Doppler blood perfusion index was significantly increased in the MSC implantation group compared with that in the control group. LBF response to ACh was greater in the MSC group than in the control group. After administration of NG-nitro-L-arginine, a nitric oxide synthase inhibitor, LBF response to ACh was similar in the MSC implantation group and control group. Vasodilatory effects of SNP in the two groups were similar.

Conclusions

These findings suggest that MSC implantation induces angiogenesis and augments endothelium-dependent vasodilation in a rabbit ischemic model through an increase in nitric oxide production.  相似文献   

19.

Purpose

Exogenous surfactant is not very effective in adults with ARDS, since surfactant does not reach atelectatic alveoli. Perfluorocarbons (PFC) can recruit atelectatic areas but do not replace impaired endogenous surfactant. A surfactant-PFC-mixture could combine benefits of both therapies. The aim of the proof-of-principal-study was to produce a PFC-in-surfactant emulsion (Persurf) and to test in surfactant depleted Wistar rats whether Persurf achieves I.) a more homogenous pulmonary distribution and II.) a more homogenous recruitment of alveoli when compared with surfactant or PFC alone.

Methods

Three different PFC were mixed with surfactant and phospholipid concentration in the emulsion was measured. After surfactant depletion, animals either received 30 ml/kg of PF5080, 100 mg/kg of stained (green dye) Curosurf™ or 30 ml/kg of Persurf. Lungs were fixated after 1 hour of ventilation and alveolar aeration and surfactant distribution was estimated by a stereological approach.

Results

Persurf contained 3 mg/ml phospholipids and was stable for more than 48 hours. Persurf-administration improved oxygenation. Histological evaluation revealed a more homogenous surfactant distribution and alveolar inflation when compared with surfactant treated animals.

Conclusions

In surfactant depleted rats administration of PFC-in-surfactant emulsion leads to a more homogenous distribution and aeration of the lung than surfactant alone.  相似文献   

20.

Aims

Hypoglycemia is a severe side effect of intensive insulin therapy. Recurrent hypoglycemia (RH) impairs the counter-regulatory response (CRR) which restores euglycemia. During hypoglycemia, ventromedial hypothalamus (VMH) production of nitric oxide (NO) and activation of its receptor soluble guanylyl cyclase (sGC) are critical for the CRR. Hypoglycemia also increases brain reactive oxygen species (ROS) production. NO production in the presence of ROS causes protein S-nitrosylation. S-nitrosylation of sGC impairs its function and induces desensitization to NO. We hypothesized that during hypoglycemia, the interaction between NO and ROS increases VMH sGC S-nitrosylation levels and impairs the CRR to subsequent episodes of hypoglycemia. VMH ROS production and S-nitrosylation were quantified following three consecutive daily episodes of insulin-hypoglycemia (RH model). The CRR was evaluated in rats in response to acute insulin-induced hypoglycemia or via hypoglycemic-hyperinsulinemic clamps. Pretreatment with the anti-oxidant N-acetyl-cysteine (NAC) was used to prevent increased VMH S-nitrosylation.

Results

Acute insulin-hypoglycemia increased VMH ROS levels by 49±6.3%. RH increased VMH sGC S-nitrosylation. Increasing VMH S-nitrosylation with intracerebroventricular injection of the nitrosylating agent S-nitroso-L-cysteine (CSNO) was associated with decreased glucagon secretion during hypoglycemic clamp. Finally, in RH rats pre-treated with NAC (0.5% in drinking water for 9 days) hypoglycemia-induced VMH ROS production was prevented and glucagon and epinephrine production was not blunted in response to subsequent insulin-hypoglycemia.

Conclusion

These data suggest that NAC may be clinically useful in preventing impaired CRR in patients undergoing intensive-insulin therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号