首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanism for oxytocin's (OT) stimulation of PGF2alpha secretion from porcine endometrium is not clear, but is thought to involve mobilization of intracellular Ca2+ and subsequent activation of protein kinase C (PKC). This study determined: (1) if mobilization of inositol trisphosphate-sensitive Ca2+ by thapsigargin or activation of PKC by phorbol 12-myristate 13-acetate (PMA) could stimulate PGF2alpha release from luminal epithelial, glandular epithelial and stromal cells of porcine endometrium and (2) if inhibitors of various PKC isotypes could attenuate the ability of OT, thapsigargin and PMA to stimulate PGF2alpha secretion from these cells. Thapsigargin and PMA each stimulated (P < 0.01) PGF2alpha secretion from all three endometrial cell types examined. However, the effects of thapsigargin and PMA were synergistic (P < 0.05) only in stromal cells. Three protein kinase C inhibitors (i.e. G?6976, G?6983 and Ro-31-8220) differentially attenuated (P < 0.05) the ability of OT, thapsigargin and PMA to stimulate PGF2alpha release. These results are consistent with the hypothesis that OT mobilizes Ca2+ to activate a Ca2+-dependent PKC pathway to promote PGF2alpha secretion from porcine endometrial cells. The differing pattern of response to isotype-specific inhibitors of PKC among cell types suggests that distinct PKC isoforms are differentially expressed in luminal epithelial, glandular epithelial and stromal cells.  相似文献   

2.
The mechanism for oxytocin's (OT) stimulation of PGF(2alpha) secretion from porcine endometrium is not clear, but is thought to involve mobilization of intracellular Ca(2+) and subsequent activation of protein kinase C (PKC). This study determined: (1) if mobilization of inositol trisphosphate-sensitive Ca(2+) by thapsigargin or activation of PKC by phorbol 12-myristate 13-acetate (PMA) could stimulate PGF(2alpha) release from luminal epithelial, glandular epithelial and stromal cells of porcine endometrium and (2) if inhibitors of various PKC isotypes could attenuate the ability of OT, thapsigargin and PMA to stimulate PGF(2alpha) secretion from these cells. Thapsigargin and PMA each stimulated (P < 0.01) PGF(2alpha) secretion from all three endometrial cell types examined. However, the effects of thapsigargin and PMA were synergistic (P < 0.05) only in stromal cells. Three protein kinase C inhibitors (i.e. G?6976, G?6983 and Ro-31-8220) differentially attenuated (P < 0.05) the ability of OT, thapsigargin and PMA to stimulate PGF(2alpha) release. These results are consistent with the hypothesis that OT mobilizes Ca(2+) to activate a Ca(2+)-dependent PKC pathway to promote PGF(2alpha) secretion from porcine endometrial cells. The differing pattern of response to isotype-specific inhibitors of PKC among cell types suggests that distinct PKC isoforms are differentially expressed in luminal epithelial, glandular epithelial and stromal cells.  相似文献   

3.
Although the corpus luteum (CL) is not known as a target tissue for thyrotropin (TSH), this hormone increases progesterone production by porcine luteal cells cultured in vitro. In this study we investigated the optimal conditions for TSH-stimulated progesterone secretion as well as the involvement of protein kinase A (PKA) and protein kinase C (PKC) in the mechanism of TSH action on porcine luteal cells. To study the PKA and PKC signaling mechanisms, luteal cells collected from mature CL were incubated with the inhibitor of PKA and potent activators of both kinases: PKA-forskolin and PKC-phorbol ester 12-myriistate-13-acetate (PMA). The PKA inhibitor totally suppressed progesterone production in TSH alone, forskolin alone and in TSH plus forskolin-stimulated luteal cells. Forskolin increased basal (P < 0.05) and TSH-stimulated (P < 0.05) progesterone secretion and cAMP accumulation (P < 0.05). Forskolin and PMA added together to control (non-TSH-treated) luteal cells had an additive effect on progesterone production. In TSH-treated cells, the effect of PMA was statistically significant but did not show an additive effect with forskolin. Further PMA did not affect cAMP accumulation in control and TSH-treated luteal cells. Treatment of control and TSH-treated luteal cells with forskolin and PMA together showed the same increase in cAMP accumulation as with forskolin alone. This is the first demonstration that TSH acts on luteal cell steroidogenesis by activation of the cAMP/PKA second messenger system and also that the PKC signaling pathway may be involved in luteal TSH action on the corpus luteum.  相似文献   

4.
Protein kinase C (PKC) is involved in several cell events including proliferation, survival and differentiation. The aim of this work was to investigate the role of PKC activation on retinal cells proliferation. We demonstrated that PKC activation by phorbol 12-myristate 13-acetate (PMA), a tumor promoter phorbol ester, is able to decrease retinal cells proliferation. This effect was mediated by M1 receptors and dependent on intracellular Ca(2+) increase, tyrosine kinase activity, phosphatidylinositol 3-kinase activity, polypeptide secretion and activation of TrkB receptors. The effect of PMA was not via activation of mitogen-activated protein (MAP) kinase. Carbamylcholine and brain derived neurotrophic factor were both able to decrease retinal cells proliferation to the same level as PMA did. Our results suggest that PKC activation leads to a decrease in retinal cells proliferation through the release of acetylcholine and brain derived neurotrophic factor in the culture, and activation of M1 and TrkB receptors, respectively.  相似文献   

5.
This study was undertaken to evaluate whether a link exists between the activation of protein kinase C (PKC), operation of Na(+)/H(+) exchanger (NHE), cell swelling and serotonin (5-HT) secretion in porcine platelets. Activation of platelets by thrombin or phorbol 12-myristate 13-acetate (PMA), a PKC activator, initiated a rapid rise in the activity of Na(+)/H(+) exchanger and secretion of 5-HT. Both thrombin- and PMA-evoked activation of Na(+)/H(+) exchanger was less pronounced in the presence of ethyl-isopropyl-amiloride (EIPA), an NHE inhibitor, and by GF 109203X, a PKC inhibitor. Monensin (simulating the action of NHE) caused a dose-dependent release of 5-HT that was not abolished by GF 109203X or EGTA. Lack of Na(+) in the suspending medium reduced thrombin-, PMA-, and monensin-evoked 5-HT secretion. GF 109203X nearly completely inhibited 5-HT release induced by PMA-, partly that induced by thrombin, and had no effect on 5-HT release induced by monensin. EIPA partly inhibited 5-HT release induced by thrombin and nearly totally that evoked by PMA. Electronic cell sizing measurements showed an increase in mean platelet volume upon treatment of cells with monensin, PMA or thrombin. The PMA- and thrombin-evoked rise in mean platelet volume was strongly reduced in the presence of EIPA. As judged by optical swelling assay monensin and PMA produced a rapid rise in platelet volume. The swelling elicited by PMA was inhibited by EIPA and its kinetics was similar to that observed in the presence of monensin. Hypoosmotically evoked platelet swelling did not affect platelet aggregation but significantly potentiated thrombin-evoked release of 5-HT and ATP. Taken together, these results show that in porcine platelets PKC may promote 5-HT secretion through the activation of NHE. It is hypothesized that enhanced Na(+)/H(+) antiport may result in a rise in cell membrane tension (due to cell swelling) which in turn facilitates fusion of secretory granules with the plasma membrane leading to 5-HT secretion.  相似文献   

6.
The release of relaxin from cultured porcine luteal cells derived from pregnant sows was detected by a reverse hemolytic plaque assay. In this assay, luteal cells are cocultured in monolayers with protein-A-coupled ovine erythrocytes. In the presence of porcine relaxin antiserum and complement, a zone of hemolysis--a plaque--develops around relaxin-releasing luteal cells. Treatment with prostaglandin E2 (10(-8) and 10(-6) M) significantly accelerated the rate of plaque formation; in contrast, human chorionic gonadotropin (10-1,000 IU/ml) inhibited the rate of plaque formation. Oxytocin (10(-8) to 10(-4) M) had no detectable effect on relaxin release. However, none of these treatments or long-term preexposure to prostaglandin F2 alpha increased the total proportion of large luteal cells that released relaxin, which remained at about 50%. These results are consistent with the idea that prostaglandins of uterine and/or luteal origin and pituitary luteinizing hormone may contribute, alone or perhaps in combination, to the overall regulation of ovarian relaxin release during pregnancy in the sow. In addition, the results indicate that the effects of prostaglandins are restricted to a subpopulation of large luteal cells that release detectable amounts of relaxin in culture.  相似文献   

7.
8.
Stimulation of chief cells with carbachol or cholecystokinin (CCK) results in the production of inositol trisphosphate (IP3) and diacylglycerol (DAG). Although IP3 increases cell calcium concentration, thereby stimulating pepsinogen secretion, the role of DAG and its target, protein kinase C (PKC), is less clear. To examine the relation between the cellular distribution of PKC activity and pepsinogen secretion, we determined PKC activity in cytosolic and membrane fractions from dispersed chief cells from guinea pig stomach. To validate our assay, we studied the actions of the phorbol ester PMA. PMA caused a rapid, dose-dependent, 6-fold increase in pepsinogen secretion and membrane-associated PKC activity. Similarly, dose-response curves for pepsinogen secretion and the increase in membrane-associated PKC activity induced by a membrane-permeant DAG (1-oleoyl-2-acetylglycerol) were superimposable. In contrast, CCK (0.1 nM to 1.0 microM) and carbachol (0.1 microM to 1.0 mM) caused a 4-fold increase in pepsinogen secretion, but did not alter the distribution of PKC activity. These results indicate that in gastric chief cells, PMA- and DAG-induced pepsinogen secretion is accompanied by increased membrane-associated PKC activity. However, the cellular distribution of PKC activity is not altered by CCK or carbachol.  相似文献   

9.
The mechanism by which Ca2+ regulates proopiomelanocortin (POMC)-derived peptide secretion and POMC mRNA levels was investigated in primary cultures of porcine intermediate lobe (IL) cells maintained in serum-free medium. POMC gene expression was evaluated by the dot blot hybridization assay with a 32P-labeled DNA probe complementary to the full-length sequence of porcine POMC mRNA. Treatment of IL cells for 24 h with the calmodulin (CAM) antagonists W7 and W13 reduced POMC mRNA levels by a maximum of 50% in a dose-dependent manner (ED50 approximately 10(-8) M). Accumulation of alpha-melanocyte-stimulating hormone (alpha-MSH) in the medium was also depressed by 50% after 8 h of treatment. The role of protein kinase C (PKC) was investigated by depleting the IL cell PKC content with phorbol ester treatment. Phorbol 12-myristate 13-acetate (PMA) at 5 X 10(-8) M induced a rapid translocation of cytoplasmic PKC activity toward the membrane. After 12 h of PMA treatment, PKC activity was undetectable in either the cytoplasmic or the particulate fractions. The same dose of PMA induced a time-dependent decrease in POMC mRNA levels (50% inhibition after 24 h). The same effect was seen with the phorbol ester phorbol 12,13-dibutyrate at 5 X 10(-8) M, whereas the inactive phorbol ester 4 alpha-phorbol at 5 X 10(-8) M was without effect after 24 h of treatment. PMA treatment had a biphasic effect on alpha-MSH secretion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The role of cyclic nucleotides (cyclic 3',5'-adenosine monophosphate [cAMP] and cyclic 3',5'-guanosine monophosphate [cGMP]) in the regulation of relaxin release from large porcine luteal cells was examined by use of a reverse hemolytic plaque assay. In this assay, luteal cells are cocultured in monolayers with protein-A-coupled ovine erythrocytes. In the presence of porcine relaxin antiserum and complement, a zone of hemolysis--a plaque--develops around relaxin-releasing luteal cells. The rate of development of plaques in time-course studies has been used as an index of the rate of relaxin release, and the size of plaques formed has been employed as a record of the cumulative amount of relaxin released by each cell. Treatment of monolayers with dibutyryl cAMP (dbcAMP, 60 mM) and dibutyryl GMP (dbcGMP, 15 mM resulted in a prompt inhibition in the rate of plaque formation. In addition, dbcAMP treatment reduced the average size of plaques formed. The stimulatory effect of prostaglandin F2 alpha (PGF2 alpha 10(-6) M) on relaxin release was significantly attenuated by combined treatment with dbcAMP (60 mM). Cholera toxin treatment (500 ng/ml) effectively reduced the average size of plaques formed, but neither this agent nor the beta-adrenergic agonist, isoproterenol (up to 5 X 10(-3) M), influenced the rate of plaque formation. These results--which provide evidence to show that both basal and stimulated relaxin release by large porcine luteal cells can be inhibited by the cyclic nucleotide analogues, dbcAMP and dbcGMP--are consistent with the view that these compounds have the potential to act as a negative regulatory mechanism for relaxin release.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Glyceraldehyde-induced insulin release from rat islets of Langerhans was not affected following down-regulation of protein kinase C (PKC) by prolonged exposure to the tumour-promoting phorbol ester, 4 beta-phorbol myristate acetate (PMA). Glyceraldehyde did not cause translocation of islet PKC under conditions in which PMA stimulated redistribution of enzyme activity. These results indicate that activation of PKC is not required for glyceraldehyde stimulation of insulin secretion from normal rat islets.  相似文献   

12.
The activation of NK1 receptors on U373 MG human astrocytoma cells by substance P (SP) and related tachykinins was accompanied by an increase in taurine release and an accumulation of inositol phosphates. Both of these effects could be inhibited by spantide, a SP receptor antagonist. The relative potency of tachykinins in stimulating 3H-inositol phosphate accumulation correlated very well with their effects in stimulating the release of [3H]-taurine and inhibition 125I-Bolton-Hunter reagent-conjugated SP binding. The effect on [3H]taurine release was mimicked by a protein kinase C (PKC) activator, phorbol 12-myristate 13-acetate (PMA). The inactive phorbol ester analogue 4-alpha-phorbol 12,13-didecanoate, however, was without effect. Both SP- and PMA-induced releases of [3H]-taurine were markedly inhibited by staurosporine, a potent PKC inhibitor. Pretreatment of U373 MG cells with 10 microM PMA for 19 h to down-regulate PKC activity also markedly inhibited both SP- and PMA-induced releases of [3H]-taurine. Treatment of cells with 100 nM SP induced a time-dependent translocation of PKC from the cytosolic fraction to the membrane fraction. These findings are consistent with the hypothesis that an activation of NK1 receptors on U373 MG cells results in the release of inositol phosphates and activation of PKC, which in turn may regulate the release of taurine.  相似文献   

13.
The objective of this study was to elucidate the role of a [Ca2+]i rise and protein kinase C (PKC) activation on decreases of p34(cdc2) kinase and mitogen-activated protein (MAP) kinase activity during parthenogenetic activation of porcine oocytes. In oocytes treated with 50 microM Ca2+ ionophore, degradations of both p34(cdc2) kinase and MAP kinase activity were observed and half of these oocytes formed pronuclei. However, a supplement of PKC inhibitor, calphostin C, after 50 microM Ca2+ ionophore treatment, was sufficient to inhibit the inactivation of MAP kinase and pronuclear formation in the oocytes. These results showed that PKC played an important role in Ca2+-induced oocyte activation. On the other hand, 10 microM Ca2+ ionophore treatment could not affect the MAP kinase activity but induced a transient decrease of p34(cdc2) kinase activity, which resulted in recovery of p34(cdc2) kinase activity and progression to meiotic metaphase III stage. To investigate the effects of PKC activator on oocytes treated with 10 microM Ca2+ ionophore, matured oocytes were cultured with phorbol 12-myriatate 13-acetate (PMA), after 10 microM Ca2+ ionophore treatment. The additional treatment suppressed the recovery of p34(cdc2) kinase activity and rapidly induced a decrease of MAP kinase activity, and these low activities were maintained until 12-h cultivation. As a result, a significantly higher percentage of these oocytes (67%) had pronuclei at 12-h cultivation. Moreover, PMA treatment without Ca2+ ionophore treatment effectively led to a decrease of MAP kinase activity in a dose-dependent manner but not p34(cdc2) kinase activity in matured porcine oocytes. In conclusion, the parthenogenetic activation of porcine oocytes was mediated by the inactivation of p34(cdc2) kinase via a calcium-dependent pathway and thereafter by the inactivation of MAP kinase via a PKC-dependent pathway.  相似文献   

14.
It is well established that pituitary adenylate cyclase-activating polypeptide (PACAP) can stimulate catecholamine biosynthesis and secretion in adrenal chromaffin cells. Recent studies from this laboratory demonstrated that PACAP pretreatment inhibits nicotine (NIC)-induced intracellular Ca(2+) transients and catecholamine secretion in porcine adrenal chromaffin cells. Mechanistically, this effect is mediated by protein kinase C (PKC), and based on indirect evidence, is thought to primarily target voltage-gated Ca(2+) channels. The present study used whole-cell patch-clamp analysis to test this possibility more directly in rat chromaffin cells. Consistent with the porcine data, pretreatment with PACAP or with phorbol ester [phorbol myristate acetate (PMA)] significantly suppressed NIC-induced intracellular Ca(2+) transients and catecholamine secretion in rat chromaffin cells. Exposure to PACAP and PMA significantly reduced peak Ca(2+) current in rat cells. The effects of both PACAP and PMA on Ca(2+) current could be blocked by treating cells with the PKC inhibitor staurosporine. Exposure to selective channel blockers demonstrated that rat chromaffin cells contain L-, N- and P/Q-type Ca(2+) channels. PACAP pretreatment significantly reduced Ca(2+) current gated through all three channel subtypes. These data suggest that PACAP can negatively modulate NIC-induced catecholamine secretion in both porcine and rat adrenal chromaffin cells.  相似文献   

15.
16.
Protein kinase C (PKC) isozymes, a family of serine-threonine kinases, are important regulators of cell proliferation and malignant transformation. Phorbol esters, the prototype PKC activators, cause PKC translocation to the plasma membrane in prostate cancer cells, and trigger an apoptotic response. Studies in recent years have determined that each member of the PKC family exerts different effects on apoptotic or survival pathways. PKCdelta, one of the novel PKCs, is a key player of the apoptotic response via the activation of the p38 MAPK pathway. Studies using RNAi revealed that depletion of PKCdelta totally abolishes the apoptotic effect of the phorbol ester PMA. Activation of the classical PKCalpha promotes the dephosphorylation and inactivation of the survival kinase Akt. Studies have assigned a pro-survival role to PKCepsilon, but the function of this PKC isozyme remains controversial. Recently, it has been determined that the PKC apoptotic effect in androgen-dependent prostate cancer cells is mediated by the autocrine secretion of death factors. PKCdelta stimulates the release of TNFalpha from the plasma membrane, and blockade of TNFalpha secretion or TNFalpha receptors abrogates the apoptotic response of PMA. Molecular analysis indicates the requirement of the extrinsic apoptotic cascade via the activation of death receptors and caspase-8. Dissecting the pathways downstream of PKC isozymes represents a major challenge to understanding the molecular basis of phorbol ester-induced apoptosis.  相似文献   

17.
B Lutz-Bucher  J M Félix  B Koch 《Peptides》1990,11(6):1183-1189
The present study was aimed at investigating the effect of protein kinase C (PKC) activation on CRF receptor function of proopiomelanocortin (POMC) cells in culture. Incubation of tissues with the phorbol ester PMA selectively potentiated corticotropin-releasing factor (CRF)-stimulated ACTH secretion and cyclic AMP formation of anterior pituitary (AP) cells, while, in sharp contrast, it failed to similarly affect intermediate pituitary (IP) cells and AtT-20 corticotrophs exposed to CRF. Unexpectedly, however, long-term treatment of cultures with PMA, which depletes cell stores of PKC, resulted in a similar dramatic attenuation of stimulated peptide release from both corticotrophs and melanotrophs, while being without significant effect on cyclic AMP production. Exposure of cells to PMA did not change either basal or CRF-enhanced levels of POMC mRNA. We conclude that activation of PKC fails to synergize with CRF-mediated signalling in IP and AtT-20 cells, although optimal CRF receptor expression requires the presence of a functional kinase C pathway, thus suggesting cross-talks between both messenger systems.  相似文献   

18.
19.
The role of protein kinase C (PKC) in stimulus recognition and insulin secretion was investigated after long-term (24 h) treatment of RINm5F cells with phorbol 12-myristate 13-acetate (PMA). Three methods revealed that PKC was no longer detectable, and PMA-induced insulin secretion was abolished. Such PKC-deficient cells displayed enhanced insulin secretion (2-6-fold) in response to vasopressin and carbachol (activating phospholipase C) as well as to D-glyceraldehyde and alanine (promoting membrane depolarization and voltage-gated Ca2+ influx). Insulin release stimulated by 1-oleoyl-2-acetylglycerol (OAG) was also greater in PKC-deficient cells. OAG caused membrane depolarization and raised the cytosolic Ca2+ concentration ([Ca2+]i), both of which were unaffected by PKC down-regulation. Except for that caused by vasopressin, the secretagogue-induced [Ca2+]i elevations were similar in control and PKC-depleted cells. The [Ca2+]i rise evoked by vasopressin was enhanced during the early phase (observed both in cell suspensions and at the single cell level) and the stimulation of diacylglycerol production was also augmented. These findings suggest more efficient activation of phospholipase C by vasopressin after PKC depletion. Electrically permeabilized cells were used to test whether the release process is facilitated after long-term PMA treatment. PKC deficiency was associated with only slightly increased responsiveness to half-maximally (2 microM) but not to maximally stimulatory Ca2+ concentrations. At 2 microM-Ca2+ vasopressin caused secretion, which was also augmented by PMA pretreatment. The difference between intact and permeabilized cells could indicate the loss in the latter of soluble factors which mediate the enhanced secretory responses. However, changes in cyclic AMP production could not explain the difference. These results demonstrate that PKC not only exerts inhibitory influences on the coupling of receptors to phospholipase C but also interferes with more distal steps implicated in insulin secretion.  相似文献   

20.
We examined the effect of phorbol 12-myristate 13-acetate (PMA) on release of arachidonic acid (AA) and its metabolites in osteoblastic cells in an attempt to study mechanism of the regulation of phospholipase A2 (PLA2) activity. In the MOB 3-4-F2 cell line, a subclone of the clonal osteoblastic MOB 3-4 cell line, PMA (0.1-100 nM) changed its appearance and increased AA release in a dose- and time-dependent manner, whereas 4 alpha-phorbol 12,13-didecanoate (4 alpha-PDD) did not show a significant affect on the release. The addition of 1,2-bis(O-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA, greater than or equal to 1.5 mM), a Ca2+ chelator, almost completely inhibited the PMA-induced AA release without affecting the intrinsic AA release. Preincubation with staurosporine (5-20 nM), an inhibitor of protein kinase C (PKC), partially (approximately 60%) blocked the AA release. However, 30-min preincubation with H-7 (50-200 microM), an inhibitor of PKC, failed to block the AA release. PMA, thus, appeared to stimulate AA release partially by a staurosporine-sensitive mechanism, probably an activation of PKC, in an external Ca(2+)-dependent manner. On the other hand, MOB 3-4 cells responded to PMA with an increased AA release but not with a drastic change of its shape. Both staurosporine and BAPTA exerted similar inhibitory effects. Prolonged exposure (48 h) to PMA (0.1-10 nM) enhanced DNA synthesis of MOB 3-4-F2 cells, but not MOB 3-4 cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号