首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 373 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
Faithful inheritance of the chromatin structure is essential for maintaining the gene expression integrity of a cell. Histone modification by acetylation and deacetylation is a critical control of chromatin structure. In this study, we test the hypothesis that histone deacetylase 1 (HDAC1) is physically associated with a basic component of the DNA replication machinery as a mechanism of coordinating histone deacetylation and DNA synthesis. Proliferating cell nuclear antigen (PCNA) is a sliding clamp that serves as a loading platform for many proteins involved in DNA replication and DNA repair. We show that PCNA interacts with HDAC1 in human cells and in vitro and that a considerable fraction of PCNA and HDAC1 colocalize in the cell nucleus. PCNA associates with histone deacetylase activity that is completely abolished in the presence of the HDAC inhibitor trichostatin A. Trichostatin A treatment arrests cells at the G(2)-M phase of the cell cycle, which is consistent with the hypothesis that the proper formation of the chromatin after DNA replication may be important in signaling the progression through the cell cycle. Our results strengthen the role of PCNA as a factor coordinating DNA replication and epigenetic inheritance.  相似文献   

10.
Histone acetylation and globin gene switching.   总被引:4,自引:0,他引:4       下载免费PDF全文
  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
Histone acetylation is a key modification that regulates chromatin accessibility. Here we show that treatment with butyrate or other histone deacetylase (HDAC) inhibitors does not induce histone hyperacetylation in metaphase-arrested HeLa cells. When compared to similarly treated interphase cells, acetylation levels are significantly decreased in all four core histones and at all individual sites examined. However, the extent of the decrease varies, ranging from only slight reduction at H3K23 and H4K12 to no acetylation at H3K27 and barely detectable acetylation at H4K16. Our results show that the bulk effect is not due to increased or butyrate-insensitive HDAC activity, though these factors may play a role with some individual sites. We conclude that the lack of histone acetylation during mitosis is primarily due to changes in histone acetyltransferases (HATs) or changes in chromatin. The effects of protein phosphatase inhibitors on histone acetylation in cell lysates suggest that the reduced ability of histones to become acetylated in mitotic cells depends on protein phosphorylation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号