首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phrenic motoneuron discharge during sustained inspiratory resistive loading   总被引:1,自引:0,他引:1  
Iscoe, Steve. Phrenic motoneuron discharge duringsustained inspiratory resistive loading. J. Appl.Physiol. 81(5): 2260-2266, 1996.I determinedwhether prolonged inspiratory resistive loading (IRL) affects phrenicmotoneuron discharge, independent of changes in chemical drive. Inseven decerebrate spontaneously breathing cats, the discharge patternsof eight phrenic motoneurons from filaments of one phrenic nerve weremonitored, along with the global activity of the contralateral phrenicnerve, transdiaphragmatic pressure, and fractional end-tidalCO2 levels. Discharge patterns during hyperoxic CO2 rebreathingand breathing against an IRL (2,500-4,000cmH2O · l1 · s)were compared. During IRL, transdiaphragmatic pressure increased andthen either plateaued or decreased. At the highest fractional end-tidalCO2 common to both runs,instantaneous discharge frequencies in six motoneurons were greaterduring sustained IRL than during rebreathing, when compared at the sametime after the onset of inspiration. These increased dischargefrequencies suggest the presence of a load-induced nonchemical drive tophrenic motoneurons from unidentified source(s).

  相似文献   

2.
McKenzie, D. K., G. M. Allen, J. E. Butler, and S. C. Gandevia. Task failure with lack of diaphragm fatigue during inspiratory resistive loading in human subjects. J. Appl. Physiol. 82(6): 2011-2019, 1997.Taskfailure during inspiratory resistive loading is thought to beaccompanied by substantial peripheral fatigue of the inspiratorymuscles. Six healthy subjects performed eight resistive breathingtrials with loads of 35, 50, 75 and 90% of maximal inspiratorypressure (MIP) with and without supplemental oxygen. MIP measuredbefore, after, and at every minute during the trial increased slightlyduring the trials, even when corrected for lung volume (e.g., for 24 trials breathing air, 12.5% increase, P < 0.05). In some trials, taskfailure occurred before 20 min (end point of trial), and in thesetrials there was an increase in end-tidalPCO2(P < 0.01), despite the absence of peripheral muscle fatigue. In four subjects (6 trials with task failure), there was no decline in twitch amplitude with bilateral phrenic stimulation or in voluntary activation of the diaphragm, eventhough end-tidal PCO2 rose by 1.6 ± 0.9%. These results suggest that hypoventilation,CO2 retention, and ultimate taskfailure during resistive breathing are not simply dependent on impairedforce-generating capacity of the diaphragm or impaired voluntaryactivation of the diaphragm.

  相似文献   

3.
Chen, Zibin, and Frederic L. Eldridge. Inputs fromupper airway affect firing of respiratory-associated midbrain neurons. J. Appl. Physiol. 83(1): 196-203, 1997.In 16 decerebrated unanesthetized cats, we studied effects ofneural inputs from upper airway on firing of 62 mesencephalic neuronsthat also developed respiratory-associated (RA) rhythmic firing whenrespiratory drive was high [Z. Chen, F. L. Eldridge, and P.G.Wagner. J. Physiol. (Lond.) 437:305-325, 1991] and on firing of 16 neurons that did notdevelop the rhythmic firing (non-RA neurons). Activity in RA neuronsincreased after mechanical expansion of pharynx (45% of those tested)or larynx (68%) and after stimulation of glossopharyngeal (50%) orsuperior laryngeal nerves (77%). The increased neuronal firingoccurred despite decreases or abolition of respiratory activity(expressed in phrenic nerve). Neuronal firing also increased aftermechanical stimulation of nasal mucosa (66%) or by jetsof air directed into the nares (48%) and after lightbrushing of nasal skin (~40%). Most stimuli led to decreased firingin a smaller number of neurons, and some neurons showed no response.None of the non-RA neurons developed an increase of firing after any ofthe stimuli, although one had decreased firing after stimulation of thesuperior laryngeal nerve. We conclude that inputs from the upper airwayand nasal skin have independent modulatory effects on the samemesencephalic neurons that are stimulated by ascending rhythmic RAinput from the medulla. These findings may have relevance to generationof the sensation of dyspnea.

  相似文献   

4.
Van Lunteren, Erik, and Michelle Moyer. Effects of DAPon diaphragm force and fatigue, including fatigue due toneurotransmission failure. J. Appl.Physiol. 81(5): 2214-2220, 1996.Among theaminopyridines, 3,4-diaminopyridine (DAP) is a more effectiveK+ channel blocker than is4-aminopyridine (4-AP), and, furthermore, DAP enhances neuromusculartransmission. Because 4-AP improves muscle contractility, wehypothesized that DAP would also increase force and, in addition,ameliorate fatigue and improve the neurotransmission failure componentof fatigue. Rat diaphragm strips were studied in vitro (37°C). Infield-stimulated muscle, 0.3 mM DAP significantly increased diaphragmtwitch force, prolonged contraction time, and shifted theforce-frequency relationship to the left without altering peak tetanicforce, resulting in increased force at stimulation frequencies 50 Hz.During 20-Hz intermittent stimulation, DAP increased diaphragm peakforce compared with control during a 150-s fatigue run and,furthermore, significantly improved maintenance of intratrain force.The relative contribution of neurotransmission failure to fatigue wasestimated by comparing the force generated by phrenic nerve-stimulatedmuscles with that generated by curare-treated field-stimulated muscles.DAP significantly increased force in nerve-stimulated muscles and, inaddition, reduced the neurotransmission failure contribution todiaphragm fatigue. Thus DAP increases muscle force atlow-to-intermediate stimulation frequencies, improves overall force andintratrain fatigue during 20-Hz intermittent stimulation, and reducesneurotransmission failure.

  相似文献   

5.
Fournier, Mario, and Michael I. Lewis. Functional roleand structure of the scalene: an accessory inspiratory muscle inhamster. J. Appl. Physiol. 81(6):2436-2444, 1996.Although the scalene muscle (Sca) is a primaryinspiratory muscle in humans, its respiratory function in other speciesis less clear. The electromyographic (EMG) activity of the Sca wasstudied during resting ventilation (eupnea) in both the awake andanesthetized hamster and after a variety of respiratory challenges inthe anesthetized animal. The EMG activities of the medial Sca and thecostal diaphragm were compared. The medial Sca, the major component ofthe Sca, originates from cervical transverse processes 2 to 5 andinserts primarily onto rib 4, with a small segment onto rib 3. In both the anesthetized and awake animal, the Sca was always silent during quiet breathing. WithCO2-stimulated hyperpnea, the Scawas always recruited during inspiration in phase with the diaphragm.Active recruitment of the Sca was also observed after resistive loading and total airway occlusion. After ipsilateral phrenicotomy, the Sca waspersistently recruited during eupnea. The specificity of the EMGsignals was tested both by excluding cross contamination from other ribcage muscles and by selective denervation studies. Muscle spindles wereidentified in the medial Sca histochemically, suggesting that therespiratory activity of the Sca can also be modulated by changes inmuscle length and/or load. These results indicate that the Scafunctions as an accessory inspiratory muscle in the hamster and mayplay an important role in conditions of chronic load.

  相似文献   

6.
Xu, Fadi, and Donald T. Frazier. Respiratory-relatedneurons of the fastigial nucleus in response to chemical and mechanical challenges. J. Appl. Physiol. 82(4):1177-1184, 1997.Responses of cerebellar respiratory-relatedneurons (CRRNs) within the rostral fastigial nucleus and the phrenicneurogram to activation of respiratory mechano- and chemoreceptors wererecorded in anesthetized, paralyzed, and ventilated cats. Respiratorychallenges included the following: 1) cessation of the ventilator for asingle breath at the end of inspiration (lung inflation) or atfunctional residual capacity, 2)cessation of the ventilator for multiple breaths, and3) exposure to hypercapnia. NineteenCRRNs having spontaneous activity during control conditions werecharacterized as either independent (basic, n = 14) or dependent (pump,n = 5) on the ventilator movement. Thirteen recruited CRRNs showed no respiratory-related activity untilbreathing was stressed. Burst durations of expiratory CRRNs wereprolonged by sustained lung inflation but were inhibited when thevolume was sustained at functional residual capacity; it was vice versafor inspiratory CRRNs. Multiple-breath cessation of the ventilator andhypercapnia significantly increased the firing rate and/orburst duration concomitant with changes noted in the phrenic neurogram.We conclude that CRRNs respond to respiratory inputs fromCO2 chemo- and pulmonarymechanoreceptors in the absence of skeletal muscle contraction.

  相似文献   

7.
Allan, Douglas W., and John J. Greer. Pathogenesis ofnitrofen-induced congenital diaphragmatic hernia in fetal rats. J. Appl. Physiol. 83(2): 338-347, 1997.Congenital diaphragmatic hernia (CDH) is a developmental anomalycharacterized by the malformation of the diaphragm and impaired lungdevelopment. In the present study, we tested several hypothesesregarding the pathogenesis of CDH, including those suggesting that theprimary defect is due to abnormal 1)lung development, 2) phrenic nerveformation, 3) developmentalprocesses underlying diaphragmatic myotube formation, 4) pleuroperitoneal canal closure,or 5) formation of the primordial diaphragm within the pleuroperitoneal fold. The2,4-dichloro-phenyl-p-nitrophenyl ether (nitrofen)-induced CDH rat model was used for thisstudy. The following parameters were compared between normal andherniated fetal rats at various stages of development:1) weight, protein, and DNA contentof lungs; 2) phrenic nerve diameter,axonal number, and motoneuron distribution;3) formation of the phrenic nerve intramuscular branching pattern and diaphragmatic myotube formation; and 4) formation of the precursor ofthe diaphragmatic musculature, the pleuroperitoneal fold. Wedemonstrated that previously proposed theories regarding the primaryrole of the lung, phrenic nerve, myotube formation, and the closure ofpleuroperitoneal canal in the pathogenesis of CDH are incorrect.Rather, the primary defect associated with CDH, at least in thenitrofen rat model, occurs at the earliest stage of diaphragmdevelopment, the formation of the pleuroperitoneal fold.

  相似文献   

8.
Effect of chronic resistive loading on hypoxic ventilatory responsiveness   总被引:2,自引:0,他引:2  
Greenberg, Harly E., Rammohan S. Rao, Anthony L. Sica, andSteven M. Scharf. Effect of chronic resistive loading on hypoxicventilatory responsiveness. J. Appl.Physiol. 82(2): 500-507, 1997.Depression ofventilation mediated by endogenous opioids has been observed acutelyafter resistive airway loading. We evaluated the effects of chronicallyincreased airway resistance on hypoxic ventilatory responsivenessshortly after load imposition and 6 wk later. A circumferentialtracheal band was placed in 200-g rats, tripling tracheal resistance.Sham surgery was performed in controls. Ventilation and the ventilatoryresponse to hypoxia were measured by using barometric plethysmographyat 2 days and 6 wk postsurgery in unanesthetized rats during exposureto room air and to 12% O2-5%CO2-balanceN2. Trials were performed with andwithout naloxone (1 mg/kg ip). Room air arterial blood gases demonstrated hypercapnia with normoxia in obstructed rats at 2 days and6 wk postsurgery. During hypoxia, a 30-Torr fall inPO2 occurred with no change inPCO2. Hypoxic ventilatory responsiveness was suppressed in obstructed rats at 2 days postloading. Naloxone partially reversed this suppression. However, hypoxic responsiveness at 6 wk was not different from control levels. Naloxonehad a small effect on ventilatory pattern at this time with no overalleffect on hypoxic responsiveness. This was in contrast to previouslydemonstrated long-term suppression ofCO2 sensitivity in this model,which was partially reversible by naloxone only during the immediateperiod after load imposition. Endogenous opioids apparently modulateventilatory control acutely after load imposition. Their effect waneswith time despite persistence of depressedCO2 sensitivity.

  相似文献   

9.
Supinski, G. S., D. Stofan, R. Ciufo, and A. DiMarco.N-acetylcysteine administrationalters the response to inspiratory loading in oxygen-supplemented rats.J. Appl. Physiol. 82(4): 1119-1125, 1997.Based on recent studies, it has been suggested that free radicals are elaborated in the respiratory muscles during strenuous contractions and contribute to the development of muscle fatigue. If this theory is correct, then it should be possible toattenuate the development of diaphragm fatigue and/or delay theonset of respiratory failure during loaded breathing by administering afree radical scavenger. The purpose of the present experiment was,therefore, to examine the effect ofN-acetylcysteine (NAC), a free radicalscavenger and glutathione precursor, on the evolution of respiratoryfailure in decerebrate unanesthetized rats breathing against a largeinspiratory resistive load. We compared the inspiratory volume andpressure generation over time in animals pretreated with either salineor NAC (150 mg/kg) and then loaded until respiratory arrest. Afterarrest, the diaphragm was excised, and samples were assayed for reduced(GSH) and oxidized glutathione. As a control, we also assessedrespiratory function and glutathione concentrations in groups ofnonloaded saline- and NAC-treated animals. We found that NAC-treatedanimals were able to tolerate loading better than the saline-treatedgroup, maintaining higher inspiratory pressures and sustaining higherinspired volumes. Administration of NAC also increased the time thatanimals could tolerate loading before the development of respiratoryarrest. In addition, although saline-treated loaded animals hadsignificant reductions in diaphragmatic GSH levels compared withunloaded controls, the magnitude of this reduction was blunted by NACadministration (i.e., GSH averaged 965 ± 113, 568 ± 83, 907 ± 39, and 784 ± 61 nmol/g for unloaded-saline, loaded-saline,unloaded-NAC, and loaded-NAC groups, P < 0.05, with the value for the loaded-saline group lower than thevalues for the two unloaded groups; GSH for the loaded-NAC group was not different, however, from unloaded controls). These data demonstrate that administration of NAC, a free radical scavenger, slows the rate ofdevelopment of respiratory failure during inspiratory resistiveloading.

  相似文献   

10.
Verbitsky, O., J. Mizrahi, M. Levin, and E. Isakov.Effect of ingested sodium bicarbonate on muscle force, fatigue, and recovery. J. Appl. Physiol. 83(2):333-337, 1997.The influence of acute ingestion ofNaHCO3 on fatigue and recovery ofthe quadriceps femoris muscle after exercise was studied in six healthymale subjects. A bicycle ergometer was used for exercising under three loading conditions: test A, loadcorresponding to maximal oxygen consumption; testB, load in test A + 17%; test C, load intest B but performed 1 h after acuteingestion of NaHCO3.Functional electrical stimulation (FES) was applied to provokeisometric contraction of the quadriceps femoris. The resulting kneetorque was monitored during fatigue (2-min chronic FES) and recovery (10-s FES every 10 min, for 40 min). Quadriceps torques were higher inthe presence of NaHCO3(P < 0.05): withNaHCO3 the peak, residual, andrecovery (after 40 min) normalized torques were, respectively, 0.68 ± 0.05 (SD), 0.58 ± 0.05, and 0.73 ± 0.05; withoutNaHCO3 the values were 0.45 ± 0.04, 0.30 ± 0.06, and 0.63 ± 0.06. The increasedtorques obtained after acute ingestion ofNaHCO3 indicate the possibleexistence of improved nonoxidative glycolysis in isometric contraction,resulting in reduced fatigue and enhanced recovery.

  相似文献   

11.
Inspiratory muscle fatigue can probablydetermine hypercapnic respiratory failure. Diaphragm fatigue isdetected by electrical phrenic stimulation (ELS), but there is nosimple tool to assess rib cage muscle (RCM) fatigue. Cervical magneticstimulation (CMS) costimulates the phrenic nerves and RCM. We reasonedthat changes in transdiaphragmatic pressure twitch (Pdi,tw) with CMSand ELS should be different after selective diaphragm vs. RCM fatigue. Five volunteers performed inspiratory resistive tasks while voluntarily uncoupling diaphragm and RCM. BaselinePdi,twELS andPdi,twCMS were 28.57 ± 1.68 and 32.83 ± 2.92 cmH2O. Afterselective diaphragm loading,Pdi,twELS andPdi,twCMS were reduced by 39 and26%, with comparable decreases in gastric pressure twitch (Pga,tw).Esophageal pressure twitch (Pes,tw) was better preserved with CMS.Therefore Pes,tw/Pga,tw was lower with ELS than CMS (1.24 ± 0.16 vs. 1.73 ± 0.11, P = 0.05). After selectiveRCM loading, there was no diaphragm fatigue, butPes,twCMS was significantlyreduced (30%). These findings support the role of rib cagestiffening by CMS-related RCM contraction in the ELS-CMSdifferences and suggest that CMS can be used to assess RCM fatigue.

  相似文献   

12.
Fothergill, D. M., and N. A. Carlson. Effects ofN2O narcosis on breathing andeffort sensations during exercise and inspiratory resistive loading.J. Appl. Physiol. 81(4):1562-1571, 1996.The influence of nitrous oxide(N2O) narcosis on the responses toexercise and inspiratory resistive loading was studied in thirteen maleUS Navy divers. Each diver performed an incremental bicycle exercisetest at 1 ATA to volitional exhaustion while breathing a 23%N2O gas mixture and a nonnarcoticgas of the same PO2, density, andviscosity. The same gas mixtures were used during four subsequent30-min steady-state submaximal exercise trials in which the subjectsbreathed the mixtures both with and without an inspiratory resistance(5.5 vs. 1.1 cmH2O · s · l1at 1 l/s). Throughout each test, subjective ratings of respiratory effort (RE), leg exertion, and narcosis were obtained with acategory-ratio scale. The level of narcosis was rated between slightand moderate for the N2O mixturebut showed great individual variation. Perceived leg exertion and thetime to exhaustion were not significantly different with the twobreathing mixtures. Heart rate was unaffected by the gas mixture andinspiratory resistance at rest and during steady-state exercise but wassignificantly lower with the N2O mixture during incremental exercise (P < 0.05). Despite significant increases in inspiratory occlusionpressure (13%; P < 0.05),esophageal pressure (12%; P < 0.001), expired minute ventilation (4%;P < 0.01), and the work rate ofbreathing (15%; P < 0.001) when the subjects breathed the N2O mixture,RE during both steady-state and incremental exercise was 25% lowerwith the narcotic gas than with the nonnarcotic mixture(P < 0.05). We conclude that the narcotic-mediated changes in ventilation, heart rate, and RE induced by23% N2O are not of sufficientmagnitude to influence exercise tolerance at surface pressure.Furthermore, the load-compensating respiratory reflexes responsible formaintaining ventilation during resistive breathing are not depressed byN2O narcosis.

  相似文献   

13.
Madwed, Jeffrey B., and Andrew C. Jackson.Determination of airway and tissue resistances after antigen andmethacholine in nonhuman primates. J. Appl.Physiol. 83(5): 1690-1696, 1997.Antigen challenge of Ascaris suum-sensitiveanimals has been used as a model of asthma in humans. However, noreports have separated total respiratory resistance into airway (Raw)and tissue (Rti) components. We compared input impedance (Zin) andtransfer impedance (Ztr) to determine Raw and Rti in anesthetizedcynomolgus monkeys under control and bronchoconstricted conditions. Zindata between 1 and 64 Hz are frequency dependent during baselineconditions, and this frequency dependence shifts in response toA. suum or methacholine. Thus itcannot be modeled with the DuBois model, and estimates of Raw and Rticannot be determined. With Ztr, baseline data were much less variablethan Zin in all monkeys. After bronchial challenge withA. suum or methacholine, the absoluteamplitude of the resistive component of Ztr increased and its zerocrossing shifted to higher frequencies. These data can estimate Raw and Rti with the six-element DuBois model. Therefore, in monkeys, Ztr hasadvantages over other measures of lung function, since it provides amethodology to separate estimates of Raw and Rti. In conclusion, Ztrshows spectral features similar to those reported in healthy andasthmatic humans.

  相似文献   

14.
In decerebrate, paralyzed, and ventilated cats, we recorded the activity of 100 spontaneously active phrenic motor axons during the increased phrenic discharges characteristic of fictive vomiting (FV) and coughing (FC). During control respiratory cycles, approximately one-half the neurons were recruited in the first decile of inspiration; recruitment continued throughout inspiration. During FV, the duration of phrenic discharge was halved; 20 of 26 motoneurons studied were recruited in the first decile of the burst. During FC, recruitment times did not change compared with control, although the duration of the phrenic burst doubled. Discharge frequencies increased and recruitment order of phrenic motoneurons was virtually unaffected during FC and FV. Limited recruitment of previously inactive neurons in the filaments from which we recorded was found during FV and FC. During FV, 1 previously inactive motoneuron was recruited in 16 filaments containing 25 spontaneously active motor axons. During FC, 3 new motoneurons were recruited in addition to the 64 already active in 35 filaments. Recruitment during FV and FC was absent even when recording from filaments known, on the basis of antidromic activation, to contain inactive motor axons. During FV, 10 of 26 motoneurons began their discharges with doublets (interspike interval < 10 ms); doublets occurred in only 4 of 67 motoneurons during FC. Already active phrenic motoneurons contributed to the intense phrenic activity associated with both respiratory (coughing) and nonrespiratory (vomiting) behavior by increases in discharge frequency, earlier recruitment, and doublets; the contribution of previously quiescent motoneurons remains uncertain.  相似文献   

15.
This study tests three hypotheses regarding mechanisms that produce rapid shallow breathing during a severe inspiratory resistive load (IRL): 1) an intact vagal afferent pathway is necessary; 2) diaphragm fatigue contributes to tachypnea; and 3) hypoxia may alter the pattern of respiration. We imposed a severe IRL on pentobarbital sodium-anesthetized dogs, followed by bilateral vagotomy, then by supplemental O2. IRL alone produced rapid shallow breathing associated with hypercapnia and hypoxia. After the vagotomy, the breathing pattern became slow and deep, restoring arterial PCO2 but not arterial PO2 toward the control values. Relief of hypoxia had no effect, and at no time was there any evidence of fatigue of the diaphragm as measured by the response to phrenic nerve stimulation. We conclude that an intact afferent vagal pathway is necessary for the tachypnea resulting from a severe IRL, neither hypoxia nor diaphragm fatigue played a role, and, although we cannot rule out stimulation of vagal afferents, the simplest explanation for the increased frequency in our experiments is increased respiratory drive due to hypercapnia.  相似文献   

16.
Similowski, Thomas, Selma Mehiri, Alexandre Duguet,Valérie Attali, Christian Straus, and Jean-Philippe Derenne.Comparison of magnetic and electrical phrenic nerve stimulation inassessment of phrenic nerve conduction time. J. Appl.Physiol. 82(4): 1190-1199, 1997.Cervicalmagnetic stimulation (CMS), a nonvolitional test of diaphragm function,is an easy means for measuring the latency of the diaphragm motorresponse to phrenic nerve stimulation, namely, phrenic nerve conductiontime (PNCT). In this application, CMS has some practical advantagesover electrical stimulation of the phrenic nerve in the neck (ES).Although normal ES-PNCTs have been consistently reported between7 and 8 ms, data are less homogeneous for CMS-PNCTs, with some reportssuggesting lower values. This study systematically compares ES-and CMS-PNCTs for the same subjects. Surface recordings ofdiaphragmatic electromyographic activity were obtained for sevenhealthy volunteers during ES and CMS of varying intensities. Onaverage, ES-PNCTs amounted to 6.41 ± 0.84 ms and were littleinfluenced by stimulation intensity. With CMS, PNCTs were significantlylower (average difference 1.05 ms), showing a marked increase as CMSintensity lessened. ES and CMS values became comparable for a CMSintensity 65% of the maximal possible intensity of 2.5 Tesla. Thesefindings may be the result of phrenic nerve depolarization occurringmore distally than expected with CMS, which may have clinicalimplications regarding the diagnosis and follow-up of phrenic nervelesions.

  相似文献   

17.
Episodic hypoxia evokes a sustained augmentation of respiratorymotor output known as long-term facilitation (LTF). Phrenic LTF isprevented by pretreatment with the 5-hydroxytryptamine (5-HT) receptorantagonist ketanserin. We tested the hypothesis that 5-HT receptoractivation is necessary for the induction but not maintenance ofphrenic LTF. Peak integrated phrenic nerve activity (Phr) wasmonitored for 1 h after three 5-min episodes of isocapnic hypoxia(arterial PO2 = 40 ± 2 Torr; 5-minhyperoxic intervals) in four groups of anesthetized, vagotomized,paralyzed, and ventilated Sprague-Dawley rats [1) control(n = 11), 2) ketanserin pretreatment (2 mg/kg iv; n = 7), and ketanserin treatment 0 and 45 minafter episodic hypoxia (n = 7 each)]. Ketanserintransiently decreased Phr, but it returned to baseline levels within10 min. One hour after episodic hypoxia, Phr was significantlyelevated from baseline in control and in the 0- and 45-min posthypoxia ketanserin groups. Conversely, ketanserin pretreatment abolished phrenic LTF. We conclude that 5-HT receptor activation is necessary toinitiate (during hypoxia) but not maintain (following hypoxia) phrenic LTF.

  相似文献   

18.
Freed, Arthur N., Varsha Taskar, Brian Schofield, andChiharu Omori. Effect of furosemide on hyperpnea-induced airway obstruction, injury, and microvascular leakage. J. Appl. Physiol. 81(6): 2461-2467, 1996.Furosemideattenuates hyperpnea-induced airway obstruction (HIAO) in asthmaticsubjects via unknown mechanism(s). We studied the effect of furosemideon dry air-induced bronchoconstriction, mucosal injury, andbronchovascular hyperpermeability in a canine model of exercise-inducedasthma. Peripheral airway resistance (Rp) was recorded before and aftera 2-min dry-air challenge (DAC) at 2,000 ml/min. After pretreatmentwith aerosolized saline containing 0.75% dimethyl sulfoxide, DACincreased Rp 72 ± 11% (SE, n = 7) above baseline; aerosolized furosemide(103 M) reduced thisresponse by ~50 ± 6% (P < 0.01). To assess bronchovascular permeability, colloidal carbon wasinjected (1 ml/kg iv) 1 min before DAC, and after 1 h, the vehicle- andfurosemide-treated airways were prepared for morphometric analysis.Light microscopy confirmed previous studies showing that DAC damagedthe airway epithelium and enhanced bronchovascular permeability.Furosemide did not inhibit dry air-induced mucosal injury orbronchovascular hyperpermeability and in fact tended to increase airwaydamage and vascular leakage. This positive trend toward enhancedbronchovascular permeability in DAC canine peripheral airways isconsistent with the hypothesis that furosemide inhibits HIAO in part byenhancing microvascular leakage and thus counterbalancing theevaporative water loss that occurs during hyperpnea.

  相似文献   

19.
Kocis, Keith C., Peter J. Radell, Wayne I. Sternberger, JaneE. Benson, Richard J. Traystman, and David G. Nichols. Ultrasound evaluation of piglet diaphragm function before and after fatigue. J. Appl. Physiol. 83(5):1654-1659, 1997.Clinically, a noninvasive measure of diaphragmfunction is needed. The purpose of this study is to determine whetherultrasonography can be used to 1)quantify diaphragm function and 2)identify fatigue in a piglet model. Five piglets were anesthetized withpentobarbital sodium and halothane and studied during the followingconditions: 1) baseline (spontaneous breathing); 2) baseline + CO2 [inhaledCO2 to increase arterial PCO2 to 50-60 Torr (6.6-8kPa)]; 3) fatigue + CO2 (fatigue induced with 30 minof phrenic nerve pacing); and 4)recovery + CO2 (recovery after 1 hof mechanical ventilation). Ultrasound measurements of the posteriordiaphragm were made (inspiratory mean velocity) in the transverseplane. Images were obtained from the midline, just inferior to thexiphoid process, and perpendicular to the abdomen. M-mode measures weremade of the right posterior hemidiaphragm in the plane just lateral tothe inferior vena cava. Abdominal and esophageal pressures weremeasured and transdiaphragmatic pressure (Pdi) was calculated duringspontaneous (Sp) and paced (Pace) breaths. Arterial blood gases werealso measured. Pdi(Sp) and Pdi(Pace)during baseline + CO2 were 8 ± 0.7 and 49 ± 11 cmH2O, respectively, anddecreased to 6 ± 1.0 and 27 ± 7 cmH2O,respectively, during fatigue + CO2. Mean inspiratory velocityalso decreased from 13 ± 2 to 8 ± 1 cm/s during theseconditions. All variables returned to baseline during recovery + CO2. Ultrasonography can beused to quantify diaphragm function and identify piglet diaphragm fatigue.

  相似文献   

20.
Haberberger, Rainer, Michael Schemann, Holger Sann, andWolfgang Kummer. Innervation pattern of guinea pig pulmonary vasculature depends on vascular diameter. J. Appl.Physiol. 82(2): 426-434, 1997.The pulmonaryvasculature is supplied by various neurochemically distinct types ofnerve fibers, including sensory substance P-containing and autonomicnoradrenergic, nitrergic, and cholinergic axons.Pharmacological experiments have suggested that various segments of thepulmonary vascular tree respond differently to the respectiveneuromediators. We, therefore, aimed to determine histochemically andimmunohistochemically for each of these neurochemically distinctperivascular axons their quantitative distribution along the vasculartree from the extrapulmonary trunks to the smallest intraparenchymalramifications in control guinea pigs(n = 5). Generally, arterialinnervation was more developed than that of veins. Along the arterialtree, noradrenergic and substance P-containing axons were ubiquitousfrom the pulmonary trunk to smallest intraparenchymal vessels, whereasnitrergic axons were practically restricted to large (>700-µm)extrapulmonary arteries. Cholinergic axons were regularly present atarteries down to 100 µm in diameter and innervated two-thirds ofsmall arteries (50-100 µm). The results demonstrate thatthe noradrenergic vasoconstrictor innervation extends throughout thepulmonary vascular system whereas the innervation pattern with varioustypes of vasodilator fibers changes with vascular diameter, parallel toknown pharmacological differences in cholinergic and nitrergicvasodilator effects.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号