首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
ABSTRACT

The recent movement to include art and design in Science, Technology, Engineering, and Mathematics (STEM) education has made Science, Technology, Engineering, Arts, and Mathematics (STEAM) an increasingly common acronym in the education lexicon. The STEAM movement builds on existing models of interdisciplinary curriculum, but what makes the union of art and design with the STEM disciplines so persuasive? In this article, I draw from research on interdisciplinary curricular projects that fit into the category of STEAM, but may also be considered inquiries into the role of art and design in the creative inquiry process, in order to sketch a transdisciplinary curriculum model that may be applied across disciplines.  相似文献   

2.
ABSTRACT

Recent advances in arts education policy, as outlined in the latest National Core Arts Standards, advocate for bringing digital media into the arts education classroom. The promise of such Science, Technology, Engineering, Arts, and Mathematics (STEAM)–based approaches is that, by coupling Science, Technology, Engineering, and Mathematics (STEM) and the arts, new understandings and artifacts emerge that transcend either discipline. Evidence of this can be seen through fundamental shifts in both fields; in the arts, artists are expanding the creative potential for design through computational flexibility, which affords artists the ability to exceed the limitations of their tools. The infusion of the arts into STEM has shown to be equally transformative, with the emergence of tools and communities that not only engender new content understandings but also invite participation from populations historically underrepresented in STEM fields. Drawing on over a decade of research at the intersection of the arts, creativity, and new technologies from the Creativity Labs at Indiana University, this article theorizes the learning that takes place at effective couplings of STEAM to assist today's educators in realizing the potential for transformative experiences for learners of all levels. This article provides a synthesis of this past work across two compelling cases of STEAM-based tools, materials, and activities (i.e., the media-rich programming environment Scratch as well as the work the LilyPad Arduino used to create electronic textiles), incorporating findings from more than 50 peer-reviewed papers and books, and conceptually outlines an approach to “gathering STEAM” in arts education classrooms today. Implications are explored for policy makers in teacher education to think about preservice curriculum and field experiences; policy makers in arts education to think about tools needed in classrooms today; as well as how art education can play a critical role in STEM disciplines and offer solutions to address STEM pipeline challenges. Such efforts extend current and prior discussions in the arts education landscape about the use of new technologies, and draw our attention to how new technologies can be leveraged for artistic expression.  相似文献   

3.
ABSTRACT

Despite the rise of STEAM (science, technology, engineering, arts and mathematics) as an educational framework, there is a notable gap in the documentation of STEAM teaching practice and research. This article provides an overview of STEAM education connected to the topics in the invited articles authored by STEAM pioneers. It gives an operational definition of STEAM education, traces its development, and questions whether teaching and research in this area have coalesced sufficiently in order to establish STEAM as a “field.”  相似文献   

4.
Close observation is central to both art and science as practitioners in both disciplines describe, compare, and seek to understand or interpret the natural world. Indeed, as the artist and writer Guy Davenport noted, “The vision by which we discover the hidden in nature is sometimes called science, sometimes called art.” In the last decade, the movement to integrate science, technology, engineering, and mathematics with arts and humanities (i.e., STEAM learning) has gained traction in K–12 education. A recent National Academies report (2018) examines the case for integrating humanities and the arts in undergraduate STEM education. Microscopy provides an excellent vehicle for engaging all kinds of students in integrative (STEAM) learning about biology and for encouraging them to observe the world closely. In this essay adapted from my keynote address to the American Microscopical Society in 2020, I highlight activities and approaches that use microscopy to engage learners of all kinds, examine how using microscopes changes students’ attitudes about science and biology, and explore the intersection of microscopy and visual art.  相似文献   

5.
The U.S. currently enjoys a position among the world’s foremost innovative and scientifically advanced economies but the emergence of new economic powerhouses like China and India threatens to disrupt the global distribution of innovation and economic competitiveness. Among U.S. policy makers, the promotion of advanced education, particularly in the STEM (Science, Technology, Engineering and Mathematics) fields, has become a key strategy for ensuring the U.S.’s position as an innovative economic leader. Since approximately one third of science and engineering post-graduate students in the U.S. are foreign born, the future of the U.S. STEM educational system is intimately tied to issues of global competitiveness and American immigration policy. This study utilizes a combination of national education data, a survey of foreign-born STEM graduate students, and in-depth interviews of a sub-set of those students to explain how a combination of scientists’ and engineers’ educational decisions, as well as their experience in school, can predict a students’ career path and geographical location, which can affect the long-term innovation environment in their home and destination country. This study highlights the fact that the increasing global competitiveness in STEM education and the complex, restrictive nature of U.S. immigration policies are contributing to an environment where the American STEM system may no longer be able to comfortably remain the premier destination for the world’s top international students.  相似文献   

6.
The use of theory and simulation in undergraduate education in biochemistry, molecular biology, and structural biology is now common, but the skills students need and the curriculum instructors have to train their students are evolving. The global pandemic and the immediate switch to remote instruction forced instructors to reconsider how they can use computation to teach concepts previously approached with other instructional methods. In this review, we survey some of the curricula, materials, and resources for instructors who want to include theory, simulation, and computation in the undergraduate curriculum. There has been a notable progression from teaching students to use discipline-specific computational tools to developing interactive computational tools that promote active learning to having students write code themselves, such that they view computation as another tool for solving problems. We are moving toward a future where computational skills, including programming, data analysis, visualization, and simulation, will no longer be considered an optional bonus for students but a required skill for the 21st century STEM (Science, Technology, Engineering, and Mathematics) workforce; therefore, all physical and life science students should learn to program in the undergraduate curriculum.  相似文献   

7.
Gender inequity in Science, Technology, Engineering, and Medicine (STEM) fields, including parasitology, continues to limit the participation of women in scientific leadership and development. Here we highlight the aims and activities of Herminthology, an initiative promoting the work of women in parasitology, alongside the current status quo of men and women scientists in the discipline.  相似文献   

8.
The Algae Foundation®, an American non-profit organization formed in February 2013, is developing a rich portfolio of algal-based Science, Technology, Engineering and Math (STEM) initiatives. The Algae Foundation’s efforts include the following: (1) formation of the Algae Technology Educational Consortium (ATEC); (2) development of two community college degrees: (i) Algal Biology and Cultivation and (ii) Algal Biotechnology; (3) development of the Algae Cultivation Extension Short-courses (ACES); (4) kindergarten to 12th grade (K–12) algal-based STEM curriculum initiatives; (5) student scholarships; and (6) funding of the revision of the Industrial Algae Measurements publication. The Algae Foundation® has been supported by more than 50 volunteers dedicating their time and intellectual capital to achieving its stated goals. The ATEC effort has initiated its first degree program in Algal Biology and Cultivation at Santa Fe Community College (SFCC), New Mexico, USA, in the Fall 2016 semester. The Algal Biotechnology degree program is scheduled to start in the Fall 2017 semester at Austin Community College (ACC), Texas, USA. A K–12 algal-based STEM initiative completed its pilot debut at the Aviara Oaks Middle School, Carlsbad, California, USA, in Spring 2016. The expansion of the algal curriculum K–12 program will reach 50 schools in 2017 to be followed by a national rollout in 2018.  相似文献   

9.
The low success rate of first-year college students in Science, Technology, Engineering, and Mathematics (STEM) programs has spurred many academic achievement studies in which explanatory factors are studied. In this study, we investigated from a person-oriented perspective whether different motivational and academic self-concept profiles could be discerned between male and female first-year college students in STEM and whether differences in early academic achievement were associated with these student groups. Data on autonomous motivation, academic self-concept, and early academic achievement of 1,400 first-year STEM college students were collected. Cluster analyses were used to distinguish motivational profiles based on the relative levels of autonomous motivation and academic self-concept for male and female students. Differences in early academic achievement of the various profiles were studied by means of ANCOVA. Four different motivational profiles were discerned based on the dimensions of autonomous motivation (A) and academic self-concept (S): students scoring high and respectively low on both dimensions (HA-HS or LA-LS), and students scoring high on one dimension and low on the other (HA-LS or LA-HS). Also gender differences were found in this study: male students with high levels of academic self-concept and autonomous motivation had higher academic achievement compared to male students with low levels on both motivational dimensions. For female students, motivational profiles were not associated with academic achievement. The findings partially confirm the internal and external validity of the motivational theories underpinning this study and extend the present insights on identifying subgroup(s) of at risk students in contemporary STEM programs at university level.  相似文献   

10.
Despite international advancements in gender equality across a variety of societal domains, the underrepresentation of girls and women in Science, Technology, Engineering, and Mathematics (STEM) related fields persists. In this study, we explored the possibility that the sex difference in mathematics anxiety contributes to this disparity. More specifically, we tested a number of predictions from the prominent gender stratification model, which is the leading psychological theory of cross-national patterns of sex differences in mathematics anxiety and performance. To this end, we analyzed data from 761,655 15-year old students across 68 nations who participated in the Programme for International Student Assessment (PISA). Most importantly and contra predictions, we showed that economically developed and more gender equal countries have a lower overall level of mathematics anxiety, and yet a larger national sex difference in mathematics anxiety relative to less developed countries. Further, although relatively more mothers work in STEM fields in more developed countries, these parents valued, on average, mathematical competence more in their sons than their daughters. The proportion of mothers working in STEM was unrelated to sex differences in mathematics anxiety or performance. We propose that the gender stratification model fails to account for these national patterns and that an alternative model is needed. In the discussion, we suggest how an interaction between socio-cultural values and sex-specific psychological traits can better explain these patterns. We also discuss implications for policies aiming to increase girls’ STEM participation.  相似文献   

11.
It is widely acknowledged that family and care‐giving responsibilities are driving women away from Science, Technology, Engineering, and Mathematics (STEM) fields. Marine mammal science often incurs heavy fieldwork and travel obligations, which make it a challenging career in which to find work‐life balance. This opinion piece explores gender equality, equity (the principles of fairness that lead to equality), and work‐life balance in science generally and in this field in particular. We aim to (1) raise awareness of these issues among members of the Society for Marine Mammalogy; (2) explore members’ attitudes and viewpoints collected from an online survey and further discussion at a biennial conference workshop in 2015; and (3) make suggestions for members to consider for action, or for the Board of Governors to consider in terms of changes to policy or procedures. Leaks in our pipeline—the attrition of women, and others with additional caring responsibilities—represent an intellectual and economic loss. By striving for equity and promoting work‐life balance, we will help to ensure a healthy and productive Society better able to succeed in its aims promoting education, high quality research, conservation, and management of marine mammals.  相似文献   

12.
Background: Water resources are of fundamental importance to society, and are better managed by stakeholders who understand resource issues. Gaining such knowledge is a lifelong process best begun at an early age and best supported by educational approaches integrating across science, technology, engineering and mathematics (STEM). Research scientists can bring resource education to young audiences through children’s books and curricula that emphasise and integrate across STEM principals.

Aims: To encourage empathy for the environment in younger students, researchers at the Niwot Ridge Long Term Ecological Research site have developed a children’s book series and methods for training teachers in water science education.

Methods: Children’s books in the My Water series are paired with curricula, hands-on learning kits, teacher development training and dissemination of materials through school districts to further water science education.

Results: Thousands of children and educators have received training through the My Water book series, and a more broadly focused, federally funded Schoolyard Children’s Book Series has grown out of these efforts towards water resource education.

Conclusions: Children’s books and curricula that integrate STEM principals can play a key role in the development of environmental empathy and lifelong learning to support resource management.  相似文献   

13.
Active learning methods have been shown to be superior to traditional lecture in terms of student achievement, and our findings on the use of Peer-Led Team Learning (PLTL) concur. Students in our introductory biology course performed significantly better if they engaged in PLTL. There was also a drastic reduction in the failure rate for underrepresented minority (URM) students with PLTL, which further resulted in closing the achievement gap between URM and non-URM students. With such compelling findings, we strongly encourage the adoption of Peer-Led Team Learning in undergraduate Science, Technology, Engineering, and Mathematics (STEM) courses.Recent, extensive meta-analysis of over a decade of education research has revealed an overwhelming consensus that active learning methods are superior to traditional, passive lecture, in terms of student achievement in post-secondary Science, Technology, Engineering, and Mathematics (STEM) courses [1]. In light of such clear evidence that traditional lecture is among the least effective modes of instruction, many institutions have been abandoning lecture in favor of “flipped” classrooms and active learning strategies. Regrettably, however, STEM courses at most universities continue to feature traditional lecture as the primary mode of instruction.Although next-generation active learning classrooms are becoming more common, large instructor-focused lecture halls with fixed seating are still the norm on most campuses—including ours, for the time being. While there are certainly ways to make learning more active in an amphitheater, peer-interactive instruction is limited in such settings. Of course, laboratories accompanying lectures often provide more active learning opportunities. But in the wake of commendable efforts to increase rigorous laboratory experiences at the sophomore and junior levels at Syracuse University, a difficult decision was made for the two-semester, mixed-majors introductory biology sequence: the lecture sections of the second semester course were decoupled from the laboratory component, which was made optional. There were good reasons for this change, from both departmental and institutional perspectives. However, although STEM students not enrolling in the lab course would arguably be exposed to techniques and develop foundational process skills in the new upper division labs, we were concerned about the implications for achievement among those students who would opt out of the introductory labs. Our concerns were apparently warranted, as students who did not take the optional lab course, regardless of prior achievement, earned scores averaging a letter grade lower than those students who enrolled in the lab. However, students who opted out of the lab but engaged in Peer-Led Team Learning (PLTL) performed at levels equivalent to students who also took the lab course [2].Peer-Led Team Learning is a well-defined active learning model involving small group interactions between students, and it can be used along with or in place of the traditional lecture format that has become so deeply entrenched in university systems (Fig 1, adapted from [3]). PLTL was originally designed and implemented in undergraduate chemistry courses [4,5], and it has since been implemented in other undergraduate science courses, such as general biology and anatomy and physiology [6,7]. Studies on the efficacy of PLTL have shown improvements in students’ grade performance, attitudes, retention in the course [611], conceptual reasoning [12], and critical thinking [13], though findings related to the critical thinking benefits for peer leaders have not been consistent [14].Open in a separate windowFig 1The PLTL model.In the PLTL workshop model, students work in small groups of six to eight students, led by an undergraduate peer leader who has successfully completed the same course in which their peer-team students are currently enrolled. After being trained in group leadership methods, relevant learning theory, and the conceptual content of the course, peer leaders (who serve as role models) work collaboratively with an education specialist and the course instructor to facilitate small group problem-solving. Leaders are not teachers. They are not tutors. They are not considered to be experts in the content, and they are not expected to provide answers to the students in the workshop groups. Rather, they help mentor students to actively construct their own understanding of concepts.  相似文献   

14.
Abstract

Assessment in art is notoriously difficult and is probably best approached with skepticism. Artistry is notoriously difficult to assess. Yet measures of student learning in art are needed for both advocacy and art education policy. Assessments, particularly large-scale assessments, influence funding and educational policy at all levels. This article explores some of the challenges of assessment in the visual arts and critically examines the Advanced Placement Studio Art Portfolio to illustrate how a product-oriented assessment might influence teaching and policy.  相似文献   

15.
While aggregating the throughput of existing disks on cluster nodes is a cost-effective approach to alleviate the I/O bottleneck in cluster computing, this approach suffers from potential performance degradations due to contentions for shared resources on the same node between storage data processing and user task computation. This paper proposes to judiciously utilize the storage redundancy in the form of mirroring existed in a RAID-10 style file system to alleviate this performance degradation. More specifically, a heuristic scheduling algorithm is developed, motivated from the observations of a simple cluster configuration, to spatially schedule write operations on the nodes with less load among each mirroring pair. The duplication of modified data to the mirroring nodes is performed asynchronously in the background. The read performance is improved by two techniques: doubling the degree of parallelism and hot-spot skipping. A synthetic benchmark is used to evaluate these algorithms in a real cluster environment and the proposed algorithms are shown to be very effective in performance enhancement. Yifeng Zhu received his B.Sc. degree in Electrical Engineering in 1998 from Huazhong University of Science and Technology, Wuhan, China; the M.S. and Ph.D. degree in Computer Science from University of Nebraska – Lincoln in 2002 and 2005 respectively. He is an assistant professor in the Electrical and Computer Engineering department at University of Maine. His main research interests are cluster computing, grid computing, computer architecture and systems, and parallel I/O storage systems. Dr. Zhu is a Member of ACM, IEEE, the IEEE Computer Society, and the Francis Crowe Society. Hong Jiang received the B.Sc. degree in Computer Engineering in 1982 from Huazhong University of Science and Technology, Wuhan, China; the M.A.Sc. degree in Computer Engineering in 1987 from the University of Toronto, Toronto, Canada; and the PhD degree in Computer Science in 1991 from the Texas A&M University, College Station, Texas, USA. Since August 1991 he has been at the University of Nebraska-Lincoln, Lincoln, Nebraska, USA, where he is Professor and Vice Chair in the Department of Computer Science and Engineering. His present research interests are computer architecture, parallel/distributed computing, cluster and Grid computing, computer storage systems and parallel I/O, performance evaluation, real-time systems, middleware, and distributed systems for distance education. He has over 100 publications in major journals and international Conferences in these areas and his research has been supported by NSF, DOD and the State of Nebraska. Dr. Jiang is a Member of ACM, the IEEE Computer Society, and the ACM SIGARCH. Xiao Qin received the BS and MS degrees in computer science from Huazhong University of Science and Technology in 1992 and 1999, respectively. He received the PhD degree in computer science from the University of Nebraska-Lincoln in 2004. Currently, he is an assistant professor in the department of computer science at the New Mexico Institute of Mining and Technology. He had served as a subject area editor of IEEE Distributed System Online (2000–2001). His research interests are in parallel and distributed systems, storage systems, real-time computing, performance evaluation, and fault-tolerance. He is a member of the IEEE. Dan Feng received the Ph.D degree from Huazhong University of Science and Technology, Wuhan, China, in 1997. She is currently a professor of School of Computer, Huazhong University of Science and Technology, Wuhan, China. She is the principal scientist of the the National Grand Fundamental Research 973 Program of China “Research on the organization and key technologies of the Storage System on the next generation Internet.” Her research interests include computer architecture, storage system, parallel I/O, massive storage and performance evaluation. David Swanson received a Ph.D. in physical (computational) chemistry at the University of Nebraska-Lincoln (UNL) in 1995, after which he worked as an NSF-NATO postdoctoral fellow at the Technical University of Wroclaw, Poland, in 1996, and subsequently as a National Research Council Research Associate at the Naval Research Laboratory in Washington, DC, from 1997–1998. In 1999 he returned to UNL where he directs the Research Computing Facility and currently serves as an Assistant Research Professor in the Department of Computer Science and Engineering. The Office of Naval Research, the National Science Foundation, and the State of Nebraska have supported his research in areas such as large-scale scientific simulation and distributed systems.  相似文献   

16.
Software Component Frameworks are well known in the commercial business application world and now this technology is being explored with great interest as a way to build large-scale scientific applications on parallel computers. In the case of Grid systems, the current architectural model is based on the emerging web services framework. In this paper we describe progress that has been made on the Common Component Architecture model (CCA) and discuss its success and limitations when applied to problems in Grid computing. Our primary conclusion is that a component model fits very well with a services-oriented Grid, but the model of composition must allow for a very dynamic (both in space and in time) control of composition. We note that this adds a new dimension to conventional service workflow and it extends the “Inversion of Control” aspects of most component systems. Dennis Gannon is a professor of Computer Science at Indiana University. He received his Ph.D. in Computer Science from the University of Illinois in 1980 and his Ph.D. in Mathematics from the University of California in 1974. From 1980 to 1985, he was on the faculty at Purdue University. His research interests include software tools for high performance distributed systems and problem solving environments for scientific computation. Sriram Krishnan received his Ph.D. in Computer Science from Indiana University in 2004. He is currently in the Grid Development Group at the San Diego Supercomputer Center where he is working on designing a Web services based architecture for biomedical applications that is secure and scalable, and is conducive to the creation of complex workflows. He received my undergraduate degree in Computer Engineering from the University of Mumbai, India. Liang Fang is a Ph.D. student in Computer Science at Indiana University. His research interests include Grid computing, Web services, portals, their security and scalability issues. He is a Research Assistant in Computer Science at Indiana University, currently responsible for investigating authorization and other security solutions to the project of Linked Environments for Atmospheric Discovery (LEAD). Gopi Kandaswamy is a Ph.D. student in the Computer Science Department at Indiana University where he is current a Research Assistant. His research interests include Web services and workflow systems for the Grid. Yogesh Simmhan received his B.E. degree in Computer Science from Madras University, India in 2000, and is a doctoral candidate in Computer Science at Indiana University. He is currently working as a Research Assistant at Indiana University, investigating data management issues in the LEAD project. His interests lie in data provenance for workflow systems and its use in data quality estimation. Aleksander Slominski is a Ph.D. student in the Computer Science at Indiana University. His research interests include Grid and Web Services, streaming XML Pull Parsing and performance, Grid security, asynchronous messaging, events, and notifications brokers, component technologies, and workflow composition. He is currently working as a Research Assistant investigating creation and execution of dynamic workflows using Grid Process Execution Language (GPEL) based on WS-BPEL.  相似文献   

17.
The academic disciplines of Science, Technology, Engineering and Mathematics (STEM) have long suffered from a lack of diversity. While in recent years there has been some progress in addressing the underrepresentation of women in STEM subjects, other characteristics that have the potential to impact on equality of opportunity have received less attention. In this study, we surveyed 188 early career scientists (ECRs), defined as within 10 years of completing their PhD, in the fields of ecology, evolutionary biology, behaviour, and related disciplines. We examined associations between ethnicity, age, sexual orientation, sex, socioeconomic background, and disability, with measures of career progression, namely publication record, number of applications made before obtaining a postdoc, type of contract, and number of grant applications made. We also queried respondents on perceived barriers to progression and potential ways of overcoming them. Our key finding was that socioeconomic background and ethnicity were associated with measures of career progression. While there was no difference in the number of reported first‐authored papers on PhD completion, ethnic minority respondents reported fewer other‐authored papers. In addition, ECRs from a lower socioeconomic background were more likely to report being in teaching and research positions, rather than research‐only positions, the latter being perceived as more prestigious by some institutions. We discuss our findings in the context of possible inequality of opportunity. We hope that this study will stimulate wider discussion and help to inform strategies to address the underrepresentation of minority groups in the fields of ecology and evolution, and STEM subjects more widely.  相似文献   

18.
Load balancing in a workstation-based cluster system has been investigated extensively, mainly focusing on the effective usage of global CPU and memory resources. However, if a significant portion of applications running in the system is I/O-intensive, traditional load balancing policies can cause system performance to decrease substantially. In this paper, two I/O-aware load-balancing schemes, referred to as IOCM and WAL-PM, are presented to improve the overall performance of a cluster system with a general and practical workload including I/O activities. The proposed schemes dynamically detect I/O load imbalance of nodes in a cluster, and determine whether to migrate some I/O load from overloaded nodes to other less- or under-loaded nodes. The current running jobs are eligible to be migrated in WAL-PM only if overall performance improves. Besides balancing I/O load, the scheme judiciously takes into account both CPU and memory load sharing in the system, thereby maintaining the same level of performance as existing schemes when I/O load is low or well balanced. Extensive trace-driven simulations for both synthetic and real I/O-intensive applications show that: (1) Compared with existing schemes that only consider CPU and memory, the proposed schemes improve the performance with respect to mean slowdown by up to a factor of 20; (2) When compared to the existing approaches that only consider I/O with non-preemptive job migrations, the proposed schemes achieve improvements in mean slowdown by up to a factor of 10; (3) Under CPU-memory intensive workloads, our scheme improves the performance over the existing approaches that only consider I/O by up to 47.5%. Xiao Qin received the BSc and MSc degrees in computer science from Huazhong University of Science and Technology in 1992 and 1999, respectively. He received the PhD degree in computer science from the University of Nebraska-Lincoln in 2004. Currently, he is an assistant professor in the department of computer science at the New Mexico Institute of Mining and Technology. His research interests include parallel and distributed systems, storage systems, real-time computing, performance evaluation, and fault-tolerance. He served on program committees of international conferences like CLUSTER, ICPP, and IPCCC. During 2000–2001, he was on the editorial board of The IEEE Distributed System Online. He is a member of the IEEE. Hong Jiang received the B.Sc. degree in Computer Engineering in 1982 from Huazhong University of Science and Technology, Wuhan, China; the M.A.Sc. degree in Computer Engineering in 1987 from the University of Toronto, Toronto, Canada; and the PhD degree in Computer Science in 1991 from the Texas A&M University, College Station, Texas, USA. Since August 1991 he has been at the University of Nebraska-Lincoln, Lincoln, Nebraska, USA, where he is Associate Professor and Vice Chair in the Department of Computer Science and Engineering. His present research interests are computer architecture, parallel/distributed computing, computer storage systems and parallel I/O, performance evaluation, middleware, networking, and computational engineering. He has over 70 publications in major journals and international Conferences in these areas and his research has been supported by NSF, DOD and the State of Nebraska. Dr. Jiang is a Member of ACM, the IEEE Computer Society, and the ACM SIGARCH and ACM SIGCOMM. Yifeng Zhu received the B.E. degree in Electrical Engineering from Huazhong University of Science and Technology in 1998 and the M.S. degree in computer science from University of Nebraska Lincoln (UNL) in 2002. Currently he is working towards his Ph.D. degree in the department of computer science and engineering at UNL. His main fields of research interests are parallel I/O, networked storage, parallel scheduling, and cluster computing. He is a student member of IEEE. David Swanson received a Ph.D. in physical (computational) chemistry at the University of Nebraska-Lincoln (UNL) in 1995, after which he worked as an NSF-NATO postdoctoral fellow at the Technical University of Wroclaw, Poland, in 1996, and subsequently as a National Research Council Research Associate at the Naval Research Laboratory in Washington, DC, from 1997–1998. In early 1999 he returned to UNL where he has coordinated the Research Computing Facility and currently serves as an Assistant Research Professor in the Department of Computer Science and Engineering. The Office of Naval Research, the National Science Foundation, and the State of Nebraska have supported his research in areas such as large-scale parallel simulation and distributed systems.  相似文献   

19.
Arts organizations that partner with schools to design, implement, and evaluate arts education programs are rethinking traditional practices of evaluation to more directly engage school partners, artists, and administrators. External arts partners are also being held accountable for learning outcomes that result from their programs. In this article, the authors describe an urban arts organization that is moving toward an institutional culture that engages teachers, artists, students, parents, and administrators in a process of documentation and action research that enhances the ability to evaluate teaching and learning. This layered research approach within an arts organization enables participants to link teaching standards to student work and contributes to the larger dialogue about arts education programs in schools.  相似文献   

20.
I/O bottlenecks are already a problem in many large-scale applications that manipulate huge datasets. This problem is expected to get worse as applications get larger, and the I/O subsystem performance lags behind processor and memory speed improvements. At the same time, off-the-shelf clusters of workstations are becoming a popular platform for demanding applications due to their cost-effectiveness and widespread deployment. Caching I/O blocks is one effective way of alleviating disk latencies, and there can be multiple levels of caching on a cluster of workstations. Previous studies have shown the benefits of caching—whether it be local to a particular node, or a shared global cache across the cluster—for certain applications. However, we show that while caching is useful in some situations, it can hurt performance if we are not careful about what to cache and when to bypass the cache. This paper presents compilation techniques and runtime support to address this problem. These techniques are implemented and evaluated on an experimental Linux/Pentium cluster running a parallel file system. Our results using a diverse set of applications (scientific and commercial) demonstrate the benefits of a discretionary approach to caching for I/O subsystems on clusters, providing as much as 48% savings in overall execution time over indiscriminately caching everything in some applications. Parts of this paper have appeared in the Proceedings of the 3rd IEEE/ACM Symposium on Cluster Computing and the Grid (CCGrid'03). This paper is an extension of these prior results, and includes a more extensive performance evaluation. Murali Vilayannur is a Ph.D. student in the Department of Computer Science and Engineering at The Pennsylvania State University. His research interests are in High-Performance Parallel I/O, File Systems, Virtual Memory Algorithms and Operating Systems. Anand Sivasubramaniam received his B.Tech. in Computer Science from the Indian Institute of Technology, Madras, in 1989, and the M.S. and Ph.D. degrees in Computer Science from the Georgia Institute of Technology in 1991 and 1995 respectively. He has been on the faculty at The Pennsylvania State University since Fall 1995 where he is currently an Associate Professor. Anand's research interests are in computer architecture, operating systems, performance evaluation, and applications for both high performance computer systems and embedded systems. Anand's research has been funded by NSF through several grants, including the CAREER award, and from industries including IBM, Microsoft and Unisys Corp. He has several publications in leading journals and conferences, and is on the editorial board of IEEE Transactions on Computers and IEEE Transactions on Parallel and Distributed Systems. He is a recipient of the 2002 IBM Faculty Award. Anand is a member of the IEEE, IEEE Computer Society, and ACM. Mahmut Kandemir received the B.Sc. and M.Sc. degrees in control and computer engineering from Istanbul Technical University, Istanbul, Turkey, in 1988 and 1992, respectively. He received the Ph.D. from Syracuse University, Syracuse, New York in electrical engineering and computer science, in 1999. He has been an assistant professor in the Computer Science and Engineering Department at the Pennsylvania State University since August 1999. His main research interests are optimizing compilers, I/O intensive applications, and power-aware computing. He is a member of the IEEE and the ACM. Rajeev Thakur is a Computer Scientist in the Mathematics and Computer Science Division at Argonne National Laboratory. He received a B.E. from the University of Bombay, India, in 1990, M.S. from Syracuse University in 1992, and Ph.D. from Syracuse University in 1995, all in computer engineering. His research interests are in the area of high-performance computing in general and high-performance networking and I/O in particular. He was a member of the MPI Forum and participated actively in the definition of the I/O part of the MPI-2 standard. He is the author of a widely used, portable implementation of MPI-IO, called ROMIO. He is also a co-author of the book “Using MPI-2: Advanced Features of the Message Passing Interface” published by MIT Press. Robert Ross received his Ph.D. in Computer Engineering from Clemson University in 2000. He is now an Assistant Scientist in the Mathematics and Computer Science Division at Argonne National Laboratory. His research interests are in message passing and storage systems for high performance computing environments. He is the primary author and lead developer for the Parallel Virtual File System (PVFS), a parallel file system for Linux clusters. Current projects include the ROMIO MPI-IO implementation, PVFS, PVFS2, and the MPICH2 implementation of the MPI message passing interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号