首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 171 毫秒
1.
Given increasing investments in ecological restoration around the globe, there is a need to develop standards of practice to improve professional training and encourage the highest quality of performance possible. Although professional certification is a mechanism for promoting and improving the profession, until now certification has not been available to individuals who practice ecological restoration. The Society for Ecological Restoration (SER) is launching a professional certification program in early 2017. The program requires professional experience, a knowledge base in five broad subject areas, understanding of the foundations of the profession, and adherence to a code of ethics. The SER certification program will certify both practitioners (Certified Ecological Restoration Practitioners [CERPs]) and practitioners‐in‐training (Certified Ecological Restoration Practitioners‐in‐training [CERPITs]).  相似文献   

2.
In response to our recent article (Higgs et al. 2018) in these pages, George Gann and his coauthors defended the Society for Ecological Restoration (SER) International Standards, clarified several points, and introduced some new perspectives. We offer this counter‐response to address some of these perspectives. More than anything, our aims are in sharpening the field of restoration in a time of rapid scaling‐up of interest and effort, and support further constructive dialogue going forward. Our perspective remains that there is an important distinction needed between “Standards” and “Principles” that is largely unheeded by Gann et al. (2018). We encourage SER to consider in future iterations of its senior policy document to lean on principles first, and then to issue advice on standards that meet the needs of diverse conditions and social, economic, and political realities.  相似文献   

3.
Over the last decade, several research and opinion pieces have challenged the tenets of restoration ecology but a lack of centralized data has impeded assessment of how scientific developments relate to on‐the‐ground restoration. In response, the Society for Ecological Restoration (SER) launched the Global Restoration Network (GRN) to catalog worldwide restoration efforts. We reviewed over 200 GRN projects to identify the goals governing restoration and the frequency with which they are measured. We used the SER Primer on Ecological Restoration to frame our analysis, categorizing goals by SER's attributes of restored ecosystems. We developed additional attributes to characterize goals not encompassed by the SER‐defined attributes. Nearly all projects included goals related to ecosystem form, namely similarity to reference conditions and the presence of indigenous species, and these goals were frequently measured. Most projects included goals related to ecosystem function, and many highlighted interactions between abiotic and biotic factors by either modifying abiotic conditions to support focal species or manipulating species to achieve desired ecosystem functions. Few projects had goals related to ecosystem stability, whereas the majority of projects had goals related to social values. Although less frequently measured, social goals were described as important for long‐term project success. In conclusion, science and practice frequently aligned on goals related to ecosystem composition and function, but scientific guidelines on resilience and self‐sustainability appear insufficient to guide practice. In contrast, the common inclusion of goals for human well‐being indicates that, if intended to advise practice, restoration guidelines should give direction on social goals.  相似文献   

4.
Evans and Davis claim the SER Standards use a “pure naturalness” model for restoration baselines and exclude most cultural ecosystems from the ecological restoration paradigm. The SER Standards do neither. The SER Standards consider both “natural” ecosystems (that are unequivocally not cultural) and “similar” cultural ecosystems as suitable reference models. Furthermore, Evans and Davis propose assessing whether a cultural ecosystem exhibits “good, bad, or neutral impacts from humans on ecosystems” as the basis for reference models. We argue that such an approach would overlook the indispensability of native ecosystem benchmarks to measure human impacts and provide a springboard for social‐ecological restoration.  相似文献   

5.
Traditionally, ecological restoration is based on re‐establishing patterns of vegetation communities with the expectation that wildlife will recolonize, restoring the ecological function. However, in many restoration projects, wildlife fails to recolonize, even when vegetation is restored, in many cases because revegetated habitats lack the critical features required by wildlife. We present a new approach to restoration, based on a detailed understanding of ecological process, the mechanisms by which wildlife respond to landscape patterns. Our animal‐centric approach involves measuring the risk‐sensitive decision‐making of individual animals as they balance searching for food, mates, and breeding sites with avoiding being eaten by predators and relates this to fine‐scale habitat and landscape structure. The outcome of these decisions can be measured in occupancy of habitat, the information on which conventional restoration is based. Incorporating landscape genetics allows retrospective assessment of the outcome of dispersal decisions by individual animals on a deeper time frame and at regional scales. Fine‐scale connectivity models can be parameterized with these multiscale spatial and temporal data to direct restoration efforts. We are translating this novel approach to practice in the large Midlands restoration project (4 years, AUD $6 million) in Tasmania, Australia, in partnership with Greening Australia. More than 200 years of intensive agricultural practice in this National Biodiversity Hotspot has resulted in extensive landscape modification, high densities of feral cats, and decline of many native mammals. Our research–practice partnership will alter the way that restoration is done, leading hopefully to successful restoration of wildlife, gene flow, and ecological function.  相似文献   

6.
Developing and strengthening a more mutualistic relationship between the science of restoration ecology and the practice of ecological restoration has been a central but elusive goal of SERI since its inaugural meeting in 1989. We surveyed the delegates to the 2009 SERI World Conference to learn more about their perceptions of and ideas for improving restoration science, practice, and scientist/practitioner relationships. The respondents' assessments of restoration practice were less optimistic than their assessments of restoration science. Only 26% believed that scientist/practitioner relationships were “generally mutually beneficial and supportive of each other,” and the “science–practice gap” was the second and third most frequently cited category of factors limiting the science and practice of restoration, respectively (“insufficient funding” was first in both cases). Although few faulted practitioners for ignoring available science, many criticized scientists for ignoring the pressing needs of practitioners and/or failing to effectively communicate their work to nonscientists. Most of the suggestions for bridging the gap between restoration science and practice focused on (1) developing the necessary political support for more funding of restoration science, practice, and outreach; and (2) creating alternative research paradigms to both facilitate on‐the‐ground projects and promote more mutualistic exchanges between scientists and practitioners. We suggest that one way to implement these recommendations is to create a “Restoration Extension Service” modeled after the United States Department of Agriculture's Cooperative Extension Service. We also recommend more events that bring together a fuller spectrum of restoration scientists, practitioners, and relevant stakeholders.  相似文献   

7.
The Society for Ecological Restoration's 2016 (SER) “International Standards for the Practice of Ecological Restoration” is a living document intended to guide restoration projects “anywhere in the world.” Given its intended global scope and in hopes of informing future editions, this document is critically assessed in light of the role people have played in ecosystems around the world. We argue that the Standards has an underlying nature–culture dichotomization that limits its applicability; in qualifying what it calls “cultural ecosystems” for rehabilitation, rather than restoration, the Standards privileges colonial visions of ecological restoration. We also discuss the Standards' representation of the ecological impacts and practices of indigenous groups. Whereas the Standards claims that preindustrial cultural ecosystems exist in states similar to unmodified areas, many historians, anthropologists, and paleoecologists would point out that preindustrial people sometimes had massive environmental impacts through agriculture, hydrological engineering, over‐hunting, living in dense urban environments, transporting species, burning on a scale capable of changing the climate, and other practices. Furthermore, the Standards does not discuss how the cultural goals of indigenous groups fit into the overall picture of ecological restoration. Future drafts of the Standards should more accurately frame the diverse roles people play in nature, and create global standards that account for the validity of cultural goals for ecological restoration.  相似文献   

8.
Conservation and restoration interventions can be mutually reinforcing and are converging through an increased focus on social dimensions. This paper examines how to more effectively integrate the complementary goals of conservation and restoration of tropical forests. Forest conservation and restoration interventions are integral components of a broad approach to forest ecosystem and landscape management that aims to maintain and restore key ecological processes and enhance human well‐being, while minimizing biodiversity loss. The forest transition model provides a useful framework for understanding the relative importance of forest conservation and restoration interventions in different regions. Harmonizing conservation and restoration presents serious challenges for forest policy in tropical countries, particularly regarding the use and management of secondary forests, fallow vegetation, and forests degraded by logging and fire. Research to implement restoration more effectively in tropical regions can be stimulated by transforming questions that initially focused on conservation issues. Examination of papers published in Biotropica from 2000–2018 shows that most studies relevant to tropical forest conservation do not address forest restoration issues. Forest restoration studies, on the other hand, show a consistent association with conservation issues. There is much scope for further integration of conservation and restoration in research, practice, and policy. Securing a sustainable future for tropical forests requires developing and applying integrated approaches to landscape management that effectively combine knowledge and tools from multiple disciplines with practical experience and engagement of local stakeholders. Abstract in Portuguese is available with online material.  相似文献   

9.
Science‐Driven Restoration: A Square Grid on a Round Earth?   总被引:3,自引:1,他引:2  
Is formal science necessarily an effective framework and methodology for designing and implementing ecological restoration programs? My experience as an ecologist in Hawaii suggests that even when scientific research programs are explicitly designed to guide and facilitate restoration, the culture of science, heterogeneity of nature, and real‐world complexities of implementing land management practices often limit the practical relevance of conventional scientific research. Although alternative models such as adaptive management and transdisciplinary science may facilitate research that more robustly models the real world, there is often little professional support or incentive to orient even these nonconventional research approaches toward actually solving on‐the‐ground problems. Thus, if one’s goal is to accomplish ecological restoration as quickly and efficiently as possible, a trial‐and‐error/intelligent tinkering–type approach might often be better than using more rigorous, data‐intensive scientific methodology. However, the sympatric implementation of ecological restoration and scientific research programs can lead to valuable synergies such as mutual logistical and financial support and the exchange of distinct forms of knowledge. The professional activities and mere presence of scientists can also greatly enhance a program’s prestige and visibility, which in turn can indirectly promote more and better ecological restoration. Improving our understanding of when formal science can directly assist restoration projects and when its value will more likely be synergistic and indirect could lead to better science, better ecological restoration, and better relationships between these two cultures.  相似文献   

10.
The SER Primer on Ecological Restoration provides a succinct introduction to, and overview of, the rapidly growing field of ecological restoration. The Primer was issued initially in 2002 by the Society for Ecological Restoration (SER) and reissued verbatim 2 years later in a more attractive format ( http://www.ser.org/resources;resources-detail-view/ser-international-primer-on-ecological-restoration ). A SER committee recently began deliberations to update the Primer, and much discussion is underway. As two of the Primer's principal authors, we were invited to share our views on how the Primer can be advantageously revised in the light of any changes or new insights since 2002. In particular, we were asked how the Primer might be modified to reflect the ways that ecological restoration address conservation issues raised by climate change and other rapid environmental shifts and global changes. We also touch on questions relating to the benefits of ecological restoration to human society, as this is an area where the Primer needs sharper focus. We have structured the following in a ‘Frequently Asked Questions’ format to highlight issues raised in the recent literature and to focus attention on other issues that merit consideration in the Primer revision process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号