首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Rotary blood pumps have been researched as implantable ventricular assist devices for years. To further reduce the complex of implanted axial pumps, the authors proposed a new concept of intraaortic axial pump, termed previously as “dynamic aortic valve (DAV)”. Instead of being driven by an intraaortic micro-electric motor, it was powered by a magnetic field from outside of body. To ensure the perfusion of coronary artery, the axial flow pump is to be implanted in the position of aortic valve. It could serve as either a blood pump or a mechanical valve depending on the power input. This research tested the feasibility of the new concept in model study. A column, made from permanent magnet, is jointed to an impeller in a concentric way to form a “rotor-impeller”. Supported by a hanging shaft cantilevered in the center of a rigid cage, the rotor-impeller can be turned by the magnetic field in the surrounding space. In the present prototype, the rotor is 8 mm in diameter and 15 mm in length, the impeller has 3 vanes with an outer diameter of 18 mm. The supporting cage is 22 mm in outer diameter and 20 mm in length. When tested, the DAV prototype is inserted into the tube of a mock circuit. The alternative magnetic field is produced by a rotating magnet placed side by side with the rotor-impeller at a distance of 30 mm. Once the alternative magnetic field is presented in the surrounding space, the DAV starts to turn, leading to a pressure difference and liquid flow in the tube. The flow rate or pressure difference is proportioned to rotary speed. At the maximal output of hydraulic power, the flow rate reached 5 L/min against an afterload of 100 mmHg. The maximal pressure difference generated by DAV at a rotation rate of 12600 r/min was 147 mmHg. The preliminary results demonstrated the feasibility of “DAV”, further research on this concept is justifiable.  相似文献   

2.
我们正在研制一种心室辅助径流泵,可在体外循环中代替血泵使用,也可作为心衰病人短期心脏辅助泵使用。此种无密封件的径流的泵的轴尖支承结构由一根据氧化铝陶瓷制成的叶轮轴和两只氧化锆陶瓷制成的轴尖轴承组成。叶轮的外径为72毫米,进流处直径为24毫米。位于叶轮上表面的六个叶片的进流侧高度为5.5毫米。出流侧高度为3毫米。  相似文献   

3.
A variety of methods by which mechanical circulatory support (MCS) can be provided have been described. However, the haemodynamic benefits of the different methods have not been adequately quantified. The aim of this paper is to compare the haemodynamic effects of six forms of MCS by numerical simulation. Three types of ventricular assist device (VAD) are studied: positive displacement; impeller and a novel reciprocating-valve design. Similarly, three pumping modes are modelled: constant flow; counterpulsation and copulsation. The cardiovascular system is modelled using an approach developed previously, using the concentrated parameter method by considering flow resistance, vessel elasticity and inertial effects of blood in individual conduit segments. The dynamic modelling of displacement and impeller pumps is represented by VAD inlet/outlet flow-rate changes. The dynamics of the reciprocating-valve pump is modelled with a specified displacement profile. Results show that in each simulation, the physiological variables of mean arterial pressure and systemic flow are adequately maintained. Modulation of the impeller pump flow profile produces a small (5 mmHg) oscillatory component to arterial pressure, whereas the displacement and reciprocating-valve pumps generate substantial arterial pressure and flow pulsatility. The impeller pump requires the least power input, the reciprocating valve pump slightly more, and the displacement pump the most. The in parallel configuration of the impeller and displacement pump designs with respect to the left ventricle provides near complete unloading and can cause the aortic valve to remain closed throughout the entire cardiac cycle with the attendant risk of aortic valve leaflet fusion following prolonged support. The in series configuration of the reciprocating-valve pump avoids this shortcoming but activation must be carefully synchronized to the cardiac cycle to allow adequate coronary perfusion. The reciprocating-valve pump is associated with haemodynamic advantages and a favourable power consumption.  相似文献   

4.
21毫米人造心脏瓣膜泵的设计及研制   总被引:1,自引:0,他引:1  
为了研究能够长期置入主动脉瓣环的左心室辅助装置,研制出直径21毫米重27克可植入的主动脉瓣膜泵.装置包括一个转子和一个定子.转子由驱动磁钢和叶轮组成;定子装有带铁心的电机线圈和出口导叶.装置被置於主动脉瓣位置,所以不占用额外的解剖空间.血泵能像自然心脏一样直接将血液由心室输送到主动脉,不需要连接管道和旁路,因此对自然生理循环的干扰可以减到最低.血泵流量由最大到零周期变化.血液动力学测试表明,当血泵转速为17500转/分钟时,可以产生流量5升/分钟、压力增益50毫米汞柱的血流;同一转速下,当流量为零时,血泵能保持主动脉舒张压为80毫米汞柱.  相似文献   

5.
The objective study was to estimate the rheological properties and physiological compatibility of the blood pump by simulating the internal flow field of the blood pump. In this study we use computational fluid dynamics method to simulate and analyse two models of axial blood pumps with a three-blade diffuser and a six-blade diffuser, named pump I and pump II, respectively, and to compare the flow patterns of these two kinds of blood pumps while both of them satisfy the conditions of the normal human blood differential pressure and blood flow. Results indicate that (i) the high shear force occurs between the diffuser and the rotor in which the crucial place leads to haemolysis and (ii) under the condition of 100 mmHg pressure head and 5 l/min flow rate, the difference between the two kinds of blood pumps, as far as the haemolytic performance is concerned, is notable. The haemolysis index of the two pumps is 0.32% and 0.2%. In conclusion, the performance of the blood pump is influenced by the diffusers' blade number. Pump II performed better than pump I, which can be the basic model for blood pump option.  相似文献   

6.
A portable flow chamber for in situ determination of benthic metabolism   总被引:1,自引:0,他引:1  
1. Many stream ecologists are interested in determining the metabolic rates of benthic organisms, particularly those of production and respiration. It is often necessary to make these measurements on fresh material in the field at remote sites. Recirculating chambers are commonly used for this purpose.
2. A broad variety of recirculating chambers are described in the literature, but each design has inherent limitations. The most common are inability to control flow in the chamber and match it with external flow rates, and a lack of the power required to do this for extended periods. Alteration of spectral irradiance, temperature rise and elevated internal chamber pressures are additional limitations that have received little attention.
3. We have designed and constructed a flow chamber that eliminates some of these problems. The chamber utilizes a DC motor-driven propeller as an efficient recirculator (axial impeller), minimizing power requirements and it is constructed of UVB transparent acrylic to allow a full spectral complement of solar irradiance in the interior. Modular components allow the chamber to be taken apart quickly for cleaning and replacement of parts, making it more functional than some previous designs.
4. The axial impeller chamber was compared to a similar sized conventional chamber that had a small diameter return line and a high capacity centrifugal pump. The axial impeller chamber had less of a temperature rise during field incubations, lower power consumption and less internal pressure in the return line when producing equivalent water velocities.
5. The reported axial impeller design had relatively homogeneous velocity across the working section relative to other chambers and was capable of water velocities in excess of 1 m s–1.  相似文献   

7.
Spontaneous mechanical activity of 36 segments from the ampullar part of human Fallopian tubes was studied in vitro. The age of the patients varied between 37-64 years. Outer diameter and axial tension were continuously measured at an intraluminal pressure of 5 mmHg (0.67 kPa) and at 10% axial extension. All segments have shown periodic contractions both in diameter and axial tension. The amplitude of the outer diameter contractions was 0.03-0.64 mm, the frequencies were between 1.5 and 7.3 min-1. The amplitude of the axial tension contractions was 1.87-33.2 mN, the frequencies varied between 1.8 and 7.6 min-1. The diameter and axial tension contractions were mostly synchronized. The frequency of the basal rhythm increased with age. Increase of the intraluminal pressure up to 15 mmHg (2.0 kPa) significantly increased the diameter and decreased the amplitude of diameter contractions. Increase in the axial length significantly decreased the outer diameter and the amplitude of diameter contractions; it also increased axial tension, and caused a transitory increase in frequency.  相似文献   

8.
The continuous flow ventricular assist device (VAD) is a miniature centrifugal pump, fully suspended by magnetic bearings, which is being developed for implantation in humans. The CF4 model is the first actual prototype of the final design product. The overall performances of blood flow in CF4 have been simulated using computational fluid dynamics (CFD) software: CFX, which is commercially available from ANSYS Inc. The flow regions modeled in CF4 include the inlet elbow, the five-blade impeller, the clearance gap below the impeller, and the exit volute. According to different needs from patients, a wide range of flow rates and revolutions per minute (RPM) have been studied. The flow rate-pressure curves are given. The streamlines in the flow field are drawn to detect stagnation points and vortices that could lead to thrombosis. The stress is calculated in the fluid field to estimate potential hemolysis. The stress is elevated to the decreased size of the blood flow paths through the smaller pump, but is still within the safe range. The thermal study on the pump, the blood and the surrounding tissue shows the temperature rise due to magnetoelectric heat sources and thermal dissipation is insignificant. CFD simulation proved valuable to demonstrate and to improve the performance of fluid flow in the design of a small size pump.  相似文献   

9.

Purpose

To present a novel design of an implantable glaucoma valve based on ferrofluidic nanoparticles and to compare it with a well-established FDA approved valve.

Setting

Massachusetts Eye & Ear Infirmary, Boston, USA.

Methods

A glaucoma valve was designed using soft lithography techniques utilizing a water-immiscible magnetic fluid (ferrofluid) as a pressure-sensitive barrier to aqueous flow. Two rare earth micro magnets were used to calibrate the opening and closing pressure. In-vitro flow measurements were performed to characterize the valve and to compare it to Ahmed™ glaucoma valve. The reliability and predictability of the new valve was verified by pressure/flow measurements over a period of three months and X-ray diffraction (XRD) analysis over a period of eight weeks. In vivo assessment was performed in three rabbits.

Results

In the in vitro experiments, the opening and closing pressures of the valve were 10 and 7 mmHg, respectively. The measured flow/pressure response was linearly proportional and reproducible over a period of three months (1.8 µl/min at 12 mmHg; 4.3 µl/min at 16 mmHg; 7.6 µl/min at 21 mmHg). X-ray diffraction analysis did not show oxidization of the ferrofluid when exposed to water or air. Preliminary in vivo results suggest that the valve is biocompatible and can control the intraocular pressure in rabbits.

Conclusions

The proposed valve utilizes ferrofluid as passive, tunable constriction element to provide highly predictable opening and closing pressures while maintaining ocular tone. The ferrofluid maintained its magnetic properties in the aqueous environment and provided linear flow to pressure response. Our in-vitro tests showed reliable and reproducible results over a study period of three months. Preliminary in-vivo results were very promising and currently more thorough investigation of this device is underway.  相似文献   

10.
11.
A new compact centrifugal blood pump driven by a miniature DC servomotor has been designed for use for short-term extra corporeal and cardiac-assisted circulation. The impeller of the pump was connected directly to the motor by using a simple-gear coupling. The shaft for the impeller was sealed from blood by both a V-ring and a seal bearing. Either pulsatile or nonpusatile flow was produced by controlling the current supply to the motor. The pump characteristics and the degree of hemolysis were evaluated with regard to the configuration of the impeller with a 38-mm outer diameter in vitro tests; the impeller having the blade angles at the inlet of 20 deg and at the outlet of 50 deg was the most appropriate as a blood pump. The performance in an operation, hemolysis and thrombus formation in the pump were assessed by a left ventricular bypass experiment in dogs. It was suggested by this study that this prototype pump appears promising for use not only in animal experiments but also in clinical application.  相似文献   

12.
An 0.3 Tesla permanent magnet was constructed and incorporated into a complete whole body NMR imager. Axial, sagittal and coronal images from human subjects were obtained using a two-dimensional Fourier Transform analysis of selected planes 8 mm thick, combined with an efficient multislice technique that produces sections centered 12 mm apart. Images were obtained based on inversion recovery and spin echo modes. The permanent magnetic field is uniform to 10 ppm over 38 cm. The magnet requires no special maintenance and has an extremely small fringe field. The magnet design, with its field vertical to the long axis of the subject, permits use of a solenoidal radiofrequency receiving coil for optimal signal-to-noise ratio. Images were shown that are of high quality and produced under conditions simulating those necessary for efficient patient throughout in a clinical setting. Many of the unique features of NMR imaging, such as ability to directly obtain axial, sagittal and coronal projections, the variety of imaging modes, the natural sources of contrast, and the ability to visualize clearly medium and large blood vessels, were demonstrated.  相似文献   

13.
Magnetically suspended left ventricular assist devices have only one moving part, the impeller. The impeller has absolutely no contact with any of the fixed parts, thus greatly reducing the regions of stagnant or high shear stress that surround a mechanical or fluid bearing. Measurements of the mean flow patterns as well as viscous and turbulent stresses were made in a shaft-driven prototype of a magnetically suspended centrifugal blood pump at several constant flow rates (3-9 L/min) using particle image velocimetry (PIV). The chosen range of flow rates is representative of the range over which the pump may operate while implanted. Measurements on a three-dimensional measurement grid within several regions of the pump, including the inlet, blade passage, exit volute, and diffuser are reported. The measurements are used to identify regions of potential blood damage due to high shear stress and/or stagnation of the blood, both of which have been associated with blood damage within artificial heart valves and diaphragm-type pumps. Levels of turbulence intensity and Reynolds stresses that are comparable to those in artificial heart valves are reported. At the design flow rate (6 L/min), the flow is generally well behaved (no recirculation or stagnant flow) and stress levels are below levels that would be expected to contribute to hemolysis or thrombosis. The flow at both high (9 L/min) and low (3 L/min) flow rates introduces anomalies into the flow, such as recirculation, stagnation, and high stress regions. Levels of viscous and Reynolds shear stresses everywhere within the pump are below reported threshold values for damage to red cells over the entire range of flow rates investigated; however, at both high and low flow rate conditions, the flow field may promote activation of the clotting cascade due to regions of elevated shear stress adjacent to separated or stagnant flow.  相似文献   

14.
A resistive magnet, operating at 1.2 T, intended to magnetic resonance spectroscopy in man was set up and evaluated in the hospital of Chamonix. Drusch S.A. in collaboration with Institut d' Electronique fondamentale built the system with the following characteristics: weight: 12 t, pole diameter: 55 cm, distance between coils: 36 cm. Cooling the magnet was provided by water flowing at 50 l/min. The magnetic field homogeneity was 3 X 10(-7) in a 60 mm diameter sphere. Stability was regulated at +/- 1 mGs. Five correcting circuits were used (X, Y, Z, Z2, XY). For experiments in man useful window was 120 X 20 cm and allowed measurements in brain and limbs. With this type of magnet, 1H, 31P and 23Na NMR spectra equalled in quality those obtained with superconducting magnets which work at a very higher cost.  相似文献   

15.
Catheter-delivered intravascular probes are widely used in clinical practice to measure coronary arterial velocity and pressure, but the artefactual effect of the probe on the variables being measured is not well characterised. A coronary artery was simulated with a 180 degrees curved tube 3mm in diameter and the effect of catheters of different diameters was modelled numerically under pulsatile flow conditions. The presence of a catheter increased pressure by 1.3-4.3 mmHg depending on its diameter, and reduced velocity-pressure phase-lag. For an ultrasound sample volume 5mm downstream from the probe tip, the underestimation in velocity measurement attributed to catheter blockage is approximately 15-21% for an average inlet velocity of 0.1m/s. The velocity measurement error is lower at higher mean flow velocity. Accuracy of clinical velocity measurements could be improved by moving the sample volume farther downstream from the probe tip, because the centrifugal pressure gradient intrinsic to the curvature promotes re-development of flow.  相似文献   

16.
Synthetic leaflet heart valves have been widely studied as possible alternatives to the current mechanical and bioprosthetic valves. Assessing the in vitro hydrodynamic function of these prostheses is of great importance to predict their hemodynamic behaviour prior to implantation. This study introduces an innovative concept of a low-profile semi-stented surgical aortic valve (SSAV) made of a novel nanocomposite polyurethane with a polycarbonate soft segment (PCU) and polyhedral oligomeric silsesquioxane (POSS) nanoparticles covalently bonded as a pendant cage to the hard segment. The POSS–PCU is already used in surgical implants, including lacrimal duct, bypass graft, and recently, a tracheal replacement. Nine valves of three leaflet thicknesses (100, 150 and 200 μm) and 21 mm internal diameter were prepared using an automated dip-coating procedure, and assessed in vitro for their hydrodynamic performance on a pulse duplicator system. A commercially available porcine bioprosthetic valve (Epic?, St. Jude Medical) of equivalent size was selected as a control model. Compared to the bioprosthetic valve, the SSAVs showed a considerably lower transvalvular pressure drop and larger effective orifice area (EOA). They were also characterised by a lower systolic energy loss, especially at high cardiac outputs. The leaflet thickness was found to significantly affect the hydrodynamics of these valves (P<0.01). The SSAVs with 100 μm leaflets demonstrated improved flow characteristics compared to the bioprosthetic valve. The enhanced hydrodynamic function of the SSAV suggests that the proposed design together with the advanced POSS–PCU material can represent a significant step towards the introduction of polyurethane valves into the clinical application.  相似文献   

17.
A Kolin  J S Imai  J R Steele  M W Lenz 《Life sciences》1974,14(7):1291-1307
This paper describes the construction details and circuitry of a system for electromagnetic determination of blood flow by means of intravascular flow sensors passed through angiographic catheters introuced by percutaneous technique. The extracorporeal magnet coil is fed by a sinusodial current and the sinusodial induced flow signal is detected by a phase-sensitive amplifier. The main novel feature of this amplifier is a combination of phase-sensitive detection with a boxcar integrator which results in an exceptionally high signal-to-noise ratio. A two channel system is also described which permits simultaneous monitoring of a signal in phase quadrature with respect to the magnetic field and, hence, to the flow signal. This system makes it also possible to monitor variations in artery diameter which is measured through a transformer e.m.f. induced in a loop of the sensor whose area is modified by the artery diameter in a fashion securing approximate linear relationship between the artery diameter and the loop output. The loop output voltage is also used to ascertain the instrument calibration in case of an arbitrary orientation and distance from the magnet coil of the intravascular sensor.The intravascular sensor is a loop of insulated fine elastic wire which forms an oval frame which collapses as it is introduced through an intravascular catheter and expands maximally as it emerges into an artery which harbors the catheter end portion. Two diametrically opposed electrodes placed across the loop, pick up the flow signal induced in the blood stream by an extracorporeal air-core magnet coil whose magnetic axis is as nearly as possible perpendicular to the area of the sensor and to the artery axis.The paper reviews artifacts and the capabilities as well as the limitations of the method in its present form and suggests a solution for the main weakness--the inability to provide a reliable zero-based line without recourse to arrest of blood flow.  相似文献   

18.
The hemodynamic conditions of aorta are relatively uniform prenatally and become more heterogeneous postnatally. Our objective was to quantify the heterogeneity of geometry and mechanical properties during growth and development. To accomplish this objective, we obtained a systematic set of data on the geometry and mechanical properties along the length of mouse aorta during postnatal development. C57BL/6 mice of ages 1-33 days were studied. The ascending aorta was cannulated in situ and preconditioned with several cyclic changes in pressure. We investigated the axial variations of geometry (diameter and length) and mechanical properties (stress-stain relation, elastic modulus and compliance) of the mouse aorta from the aortic valve to the common iliac. Our results show that the arterial blood pressure of mice increased from approximately 30 to 80 mmHg during the first 2 wk of life. The stretch ratio, diameter, wall (intima-media) thickness, and total lumen volume of mouse aorta increased with age. The aorta was transformed from a cylindrical tube at birth to a tapered structure during growth. Furthermore, we found the mechanical properties were fairly uniform along the length of the aorta at birth and become more nonuniform with age. We conclude that the rapid change of blood pressure and blood flow after birth alter the geometric and mechanical properties differentially along the length of the aorta. Hence, the axial nonuniformity of the aorta increases as the organ becomes more specialized during growth and development.  相似文献   

19.
A modification of the well-known air driven water pump is described. Suitable tube diameter (about 5 mm) and location of air entry well above the lower tube end (compensation for the recoil effect) significantly increase the pumps capacity to overcome greater differences in water levels.  相似文献   

20.
To analyze the effects of decellularization on the biomechanical properties of porcine common carotid arteries, decellularization was performed by a detergent-enzymatic procedure that preserves extracellular matrix scaffold. Internal diameter, external diameter, and wall thickness were measured by optical microscopy on neighboring histological sections before and after decellularization. Rupture tests were conducted. Inner diameter and wall thickness were measured by echo tracking during pressure inflation from 10 to 145 mmHg. Distensibility and incremental elastic modulus were computed. At 10 mmHg, mean diameter of decellularized arteries was 5.38 mm, substantially higher than controls (4.1 mm), whereas decellularized and control arteries reached the same internal diameter (6.7 mm) at 145 mmHg. Wall thickness decreased 16% for decellularized and 32% for normal arteries after pressure was increased from 10 to 145 mmHg. Decellularized arteries withstood pressure >2,200 mmHg before rupture. At 145 mmHg, decellularization reduced compliance by 66% and increased incremental elastic modulus by 54%. Removal of cellular elements from media led to changes in arterial dimensions. Collagen fibers engaged more rapidly during inflation, yielding a stiffer vessel. Distensibility was therefore significantly lower (by a factor of 3) in decellularized than in normal vessels: reduced in the physiological range of pressures. In conclusion, decellularization yields vessels that can withstand high inflation pressures with, however, markedly different geometrical and biomechanical properties. This may mean that the potential use of a decellularized artery as a scaffold for the creation of xenografts may be compromised because of geometrical and compliance mismatch.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号