首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
2.
3.
4.
Peri-implantation conceptus (embryo/fetus and associated extraembryonic membranes) growth and development are primarily regulated by secretions from the uterus. This study investigated the effects of progesterone on preimplantation conceptus development and endometrial galectin 15 (LGALS15). Ewes received daily injections of either corn oil (CO) vehicle or 25 mg progesterone (P4) from 36 h postmating to hysterectomy. Treatment with P4 increased blastocyst diameter by 220% on Day 9 and advanced time of elongation of blastocysts to a filamentous conceptus on Day 12. Effects of P4 treatment on blastocyst development were blocked by administration of RU486, a progesterone receptor antagonist. Consistent with early elongation of blastocysts, interferon tau (IFNT) protein was about 50-fold greater in uterine flushes from Day 12 in ewes receiving P4 compared with those receiving CO. Expression of cathepsin L (CTSL) and radical S-adenosyl methionine domain containing 2 (RSAD2), both IFNT-stimulated genes, was increased in endometria of Day 12 P4-treated ewes. LGALS15 mRNA, expressed only in the endometrial luminal epithelium and superficial glands, was detected between Days 9 and 12 and was more abundant in ewes receiving P4 than in those receiving CO on both Days 9 and 12. RU486 treatment ablated P4 induction of LGALS15 mRNA in the endometrial epithelia. LGALS15 protein in uterine flushings was not different on Day 9 but tended to be greater in P4-treated ewes than in those receiving CO on Day 12. The advanced development of blastocysts in P4-treated ewes is hypothesized to involve early induction of specific genes in the endometrial epithelia, such as LGALS15, and undoubtedly components of uterine histotroph.  相似文献   

5.
Major histocompatibility complex (MHC) class I molecules, consisting of an alpha chain and beta2-microglobulin (beta2MG), play an important role in immune rejection responses by discriminating self and nonself and are increased by type I interferons during antiviral responses. Interferon tau (IFNtau), the pregnancy-recognition signal in ruminants, is a type I interferon produced by the ovine conceptus between Days 11 and 21 of gestation. In study 1, expression of MHC class I alpha chain and beta2MG mRNA and protein was detected primarily in endometrial luminal epithelium (LE) and glandular epithelium (GE) on Days 10 and 12 of the estrous cycle and pregnancy. On Days 14-20 of pregnancy, MHC class I and beta2MG expression increased only in endometrial stroma and GE and, concurrently, was absent in LE and superficial ductal GE (sGE). Although neither MHC class I nor beta2MG proteins were detected in Day 20 trophectoderm, beta2MG mRNA was detected in conceptus trophectoderm. In study 2, cyclic ewes were ovariectomized on Day 5, treated daily with progesterone to Day 16, received intrauterine infusions between Days 11 and 16 of either control serum proteins or recombinant ovine IFNtau, and were hysterectomized on Day 17. The IFNtau increased MHC class I and beta2MG expression only in endometrial stroma and GE. During pregnancy, MHC class I and beta2MG gene expression is inhibited in endometrial LE and sGE but, paradoxically, is stimulated by IFNtau in the stroma and GE. The silencing of MHC class I alpha chain and beta2MG genes in the endometrial LE and sGE during pregnancy recognition and establishment may be a critical mechanism preventing immune rejection of the conceptus allograft.  相似文献   

6.
Total glucose in ovine uterine lumenal fluid increases 6-fold between Days 10 and 15 of gestation, but not the estrous cycle; however, mechanisms for glucose transport into the uterine lumen and uptake by conceptuses (embryo/fetus and associated membranes) are not established. This study determined the effects of the estrous cycle, pregnancy, progesterone (P4), and interferon tau (IFNT) on expression of both facilitative (SLC2A1, SLC2A3, and SLC2A4) and sodium-dependent (SLC5A1 and SLC5A11) glucose transporters in ovine uterine endometria from Days 10 to 16 of the estrous cycle and Days 10 to 20 of pregnancy, as well as in conceptuses from Days 10 to 20 of pregnancy. The SLC2A1 and SLC5A1 mRNAs and proteins were most abundant in uterine luminal epithelia and superficial glandular epithelia (LE/sGE), whereas SLC2A4 was present in stromal cells and glandular epithelia (GE). SLC5A11 mRNA was most abundant in endometrial GE, whereas SLC2A3 mRNA was not detectable in endometria. SLC2A1, SLC2A3, SLC2A4, SLC5A1, and SLC5A11 were expressed in the trophectoderm and endoderm of conceptuses. Steady-state levels of SLC2A1, SLC5A1, and SLC5A11 mRNAs, but not SLC2A4 mRNA, were greater in endometria from pregnant than from cyclic ewes. Progesterone increased SLC2A1, SLC5A11, and SLC2A4 mRNAs in the LE/sGE and SLC5A1 in the GE of ovariectomized ewes. Expression of SLC5A1 was inhibited by ZK136,317 (progesterone receptor antagonist), and the combination of ZK136,317 and IFNT further decreased expression in GE. In constrast, P4 induced and IFNT stimulated expression of SLC2A1 and SLC5A11, and these effects were blocked by ZK136,317. Results of this study indicate differential expression of facilitative and sodium-dependent glucose transporters in ovine uteri and conceptuses for transport and uptake of glucose, and that P4 or P4 and IFNT regulate their expression during the peri-implantation period of pregnancy.  相似文献   

7.
Osteopontin (OPN) is a phosphorylated and glycosylated, secreted protein that is present in various epithelial cells and biological fluids. On freezing and thawing or treatment with proteases, the native 70-kDa protein gives rise to 45- and 24-kDa fragments. Secreted OPN functions as an extracellular matrix (ECM) protein that binds cell surface receptors to mediate cell-cell adhesion, cell-ECM communication, and cell migration. In sheep and humans, OPN is proposed to be a secretory product of uterine glandular epithelium (GE) that binds to uterine luminal epithelium (LE) and conceptus trophectoderm to mediate conceptus attachment, which is essential to maintain pregnancy through the peri-implantation period. Cell-cell adhesion, communication, and migration likely are important at the interface between uterus and placenta throughout pregnancy, but to our knowledge, endometrial and/or placental expression of OPN beyond the peri-implantation period has not been documented in sheep. Therefore, the present study determined temporal and spatial alterations in OPN mRNA and protein expression in the ovine uterus between Days 25 and 120 of pregnancy. The OPN mRNA in total ovine endometrium increased 30-fold between Days 40 and 80 of gestation. In situ hybridization and immunofluorescence analyses revealed that the predominant source of OPN mRNA and protein throughout pregnancy was the uterine GE. Interestingly, the 45-kDa form of OPN was detected exclusively, continuously, and abundantly along the apical surface of LE, on conceptus trophectoderm, and along the uterine-placental interface of both interplacentomal and placentomal regions through Day 120 of pregnancy. The 45-kDa OPN is a proteolytic cleavage fragment of the native 70-kDa OPN, and it is the most abundant form in uterine flushes during early pregnancy. The 45-kDa OPN is more stimulatory to cell attachment and cell migration than the native 70-kDa protein. Collectively, the present results support the hypothesis that ovine OPN is a component of histotroph secreted by the uterine GE that accumulates at the uterine-placental interface to influence maternal-fetal interactions throughout gestation in sheep.  相似文献   

8.
Ubiquitin cross-reactive protein (UCRP) is a 17-kDa protein that shows cross-reactivity with ubiquitin antisera and retains the carboxyl-terminal Leu-Arg-Gly-Gly amino acid sequence of ubiquitin that ligates to, and directs degradation of, cytosolic proteins. It has been reported that bovine endometrial UCRP is synthesized and secreted in response to conceptus-derived interferon-tau (IFNtau). In the present studies, UCRP mRNA and protein were detected in ovine endometrium. Ovine UCRP mRNA was detectable on Day 13, peaked at Day 15, and remained high through Day 19 of pregnancy. The UCRP mRNA was localized to the luminal epithelium (LE), stromal cells (ST) immediately beneath the LE, and shallow glandular epithelium (GE) on Day 13, but it extended to the deep GE, deep ST, and myometrium of uterine tissues by Day 15 of pregnancy. Western blotting revealed induction of UCRP in the endometrial extracts from pregnant, but not cyclic, ewes. Ovine UCRP was also detected in uterine flushings from Days 15 and 17 of pregnancy and immunoprecipitated from Day 17 pregnant endometrial explant-conditioned medium. Treatment of immortalized ovine LE cells with recombinant ovine (ro) IFNtau induced cytosolic expression of UCRP, and intrauterine injection of roIFNtau into ovariectomized cyclic ewes induced endometrial expression of UCRP mRNA. These results are the first to describe temporal and spatial alterations in the cellular localization of UCRP in the ruminant uterus. Collectively, UCRP is synthesized and secreted by the ovine endometrium in response to IFNtau during early pregnancy. Because UCRP is present in the uterus and uterine flushings, it may regulate endometrial proteins associated with establishment and maintenance of early pregnancy in ruminants.  相似文献   

9.
Osteopontin (OPN) is a component of the extracellular matrix that interacts with cell surface receptors, including integrins, to mediate cell adhesion, migration, differentiation, survival, and immune function. In pregnant mice and primates, OPN has been detected in decidualized stroma and is considered to be a gene marker for decidualization. Decidualization involves transformation of spindle-like fibroblasts into polygonal epithelial-like cells that are hypothesized to limit conceptus trophoblast invasion through the uterine wall during invasive implantation. Decidualization is not considered characteristic of species with noninvasive implantation, such as domestic animals. However, the extent of trophoblast invasion between sheep and pigs differs, with sheep exhibiting erosion of the uterine luminal epithelium (LE) and fusion of trophectoderm with LE to form syncytia, and pigs maintaining an intact LE throughout pregnancy. Therefore, the present study measured changes in the decidualization marker genes OPN, desmin, and alpha smooth muscle actin (alphaSMA) in ovine and porcine uterine stroma throughout pregnancy. The morphology of endometrial stromal cells in pregnant ewes changes following conceptus attachment, with cells increasing in size and becoming polyhedral in shape by Day 35 of pregnancy. Expression of OPN mRNA and protein, as well as desmin and alphaSMA proteins, was observed in this same uterine stromal compartment. In contrast, no morphological changes in uterine stroma nor induction of OPN mRNA and protein, or desmin protein, were detected during porcine pregnancy. Interestingly, alphaSMA protein was absent on Day 20, but prominent in uterine stroma of pregnant pigs on Day 45. Collectively, these results indicate that the uterine stroma of sheep undergoes a program of differentiation similar to decidualization in invasive implanting species, whereas porcine stroma exhibits differentiation that is more limited than that in sheep, rodents, or primates. Results suggest that uterine stromal decidualization is common to species with different types of placentation, but the extent is variable and correlates with the depth of trophoblast invasion during implantation.  相似文献   

10.
Analysis of osteopontin at the maternal-placental interface in pigs   总被引:11,自引:0,他引:11  
Noninvasive, epitheliochorial placentation in the pig follows a prolonged preimplantation period characterized by migration, spacing and elongation of conceptuses, and secretion of estrogen for maternal recognition of pregnancy. Osteopontin (OPN) is an extracellular matrix protein that binds integrins to promote cell-cell attachment and communication. OPN appears to play a key role in conceptus implantation and maintenance of pregnancy in sheep; however, a role for OPN in the porcine uterus has not been established. Therefore, this study examined OPN expression and function in the porcine uterus and conceptus (embryo/fetus and associated extraembryonic membranes). Northern and slot blot hybridization detected an increase in endometrial OPN expression between Days 25 and 30, and levels remained elevated through Day 85 of pregnancy. In situ hybridization localized OPN mRNA to discrete regions of the uterine luminal epithelium (LE) on Day 15 of pregnancy and to the entire LE thereafter. Glandular epithelial (GE) expression of OPN mRNA was first detected on Day 35 of pregnancy and increased through Day 85. Both 70- and 45-kDa forms of OPN protein were detected in cyclic and pregnant endometrium by Western blotting. OPN protein was localized to the LE and GE by immunofluorescence; however, only the 70-kDa OPN was detected in uterine flushings. OPN protein was present along the entire uterine-placental interface after Day 30 of pregnancy. In addition, OPN mRNA and protein were localized to immune-like cells within the stratum compactum of the endometrium in both Day 9 cyclic and pregnant gilts. Incubation of OPN-coated microbeads with porcine trophectoderm and uterine luminal epithelial cells induced Arg-Gly-Asp (RGD)-dependent integrin activation and transmembrane accumulation of cytoskeletal molecules at the apical cell surface as assessed by immunofluorescence detection of talin or alpha-actinin as markers for focal adhesions. These results suggest that OPN, expressed by uterine epithelium and immune cells, may interact with receptors (i.e., integrins) on conceptus and uterus to promote conceptus development and signaling between these tissues as key contributors to attachment and placentation in the pig.  相似文献   

11.
Molecular cloning of the partial cDNA coding sequences of the four erbB receptors and the epidermal growth factor (EGF)-like ligands EGF, transforming growth factor alpha (TGF), and heparin-binding EGF (HB-EGF) has provided the basis for a comprehensive analysis of the spatiotemporal expression pattern of the EGF receptor/ligand system during the peri-implantation period in the rabbit. Employing nonradioactive in situ hybridization and immunolocalization, we observed differential expression of erbB1-erbB3 within the trophectoderm of the blastocyst. ErbB1 was strongly expressed in the cytotrophoblast but was downregulated upon syncytium formation. ErbB3 was a product of both the cyto- and syncytiotrophoblast. Despite the expression of erbB2 mRNA, the trophectoderm was devoid of immunoreactive ErbB2. ErbB4 gene activity was exclusively detected in the trophoblast at midpregnancy. The luminal and glandular epithelium and stroma of the nonpregnant, pseudopregnant, and pregnant rabbit uterus at Day 6 of gestation also expressed ErbB1-ErbB3. In the peri-implantation period, gene activities of erbB1-erbB3 were upregulated upon decidualization. At the site of implantation, uterine luminal epithelial cells apposing the preimplantation blastocyst displayed a distinct membrane immunolocalization of ErbB2, identifying the uterine epithelium as target for EGF, TGFalpha, and HB-EGF derived from both the embryonic trophectoderm and the uterine epithelium. In the luminal epithelium at the antimesometrial uterine site, HB-EGF gene activity was upregulated at the time of blastocyst attachment, but this upregulation was not reflected in an increase in immunoreactive HB-EGF. The detection of tyrosine phosphorylated ErbB2 in the rabbit placenta indicated the presence of a functional ErbB/EGF-like system in the pregnant rabbit uterus. This study provides strong evidence for a role of the ErbB/EGF-like system in embryo/maternal interactions during the peri-implantation period in the rabbit.  相似文献   

12.
Osteopontin (OPN) is an acidic 70-kDa glycoprotein that is cleaved by proteases to yield 45-kDa and 24-kDa fragments. The 70-kDa and 45-kDa proteins contain a Gly-Arg-Gly-Asp-Ser (GRGDS) sequence that binds to cell surface integrins (primarily alpha(v)beta(3) heterodimer) to promote cell-cell attachment and cell spreading. A 70-kDa acidic protein was previously detected by two-dimensional (2D) PAGE in Day 17 pregnant endometrial cytosolic extracts using Stainsall and identified as immunoreactive OPN using Western blotting. Three forms of immunoreactive OPN proteins (70, 45, and 24 kDa) were detected by 1D PAGE and Western blot analysis of endometrial extracts. OPN protein in endometrial extracts did not differ between cyclic and pregnant ewes. However, the amount of 45-kDa OPN increased in uterine flushings from pregnant ewes between Days 11 and 17. Immunoreactive OPN was localized to luminal and glandular epithelia of both cyclic and pregnant ewes, and to trophectoderm of Day 19 conceptuses. The alpha(v) and beta(3) integrins were detected on Day 19 endometrium and conceptuses by immunofluorescence. It was reported that OPN mRNA increases in the uterine glands of pregnant ewes and secretion of OPN protein into the uterine lumen increases during early pregnancy. The present results demonstrate accumulation of OPN protein on endometrial LE and conceptus trophectoderm. Therefore, it is hypothesized that progesterone and/or interferon-tau induce expression, secretion and/or proteolytic cleavage of OPN by uterine epithelium. Secreted OPN is then available as ligand for alpha(v)beta(3) integrin heterodimer on trophectoderm and uterus to 1) stimulate changes in morphology of conceptus trophectoderm and 2) induce adhesion between luminal epithelium and trophectoderm essential for implantation and placentation.  相似文献   

13.
The extracellular matrix protein osteopontin (OPN) is a component of histotroph that increases in uterine flushings from pregnant ewes during the peri-implantation period and is localized on the apical surfaces of the uterine luminal epithelium (LE) and conceptus trophectoderm (Tr). The potential involvement of OPN in the implantation adhesion cascade in sheep was investigated by examining temporal, spatial, and potential functional relationships between OPN, Muc-1, and integrin subunits during the estrous cycle and early pregnancy. Immunoreactive Muc-1 was highly expressed at the apical surfaces of uterine luminal (LE) and glandular epithelium (GE) in both cycling and pregnant ewes but was decreased dramatically on LE by Day 9 and was nearly undetectable by Day 17 of pregnancy when intimate contact between LE and Tr begins. In contrast, integrin subunits alpha(v), alpha(4), alpha(5), beta(1), beta(3), and beta(5) were constitutively expressed on conceptus Tr and at the apical surface of uterine LE and GE in both cyclic and early pregnant ewes. The apical expression of these subunits could contribute to the apical assembly of several OPN receptors including the alpha(v)beta(3), alpha(v)beta(1), alpha(v)beta(5), alpha(4)beta(1), and alpha(5)beta(1) heterodimers on endometrial LE and GE, and conceptus Tr in sheep. Functional analysis of potential OPN interactions with conceptus and endometrial integrins was performed on LE and Tr cells in vitro using beads coated with OPN, poly-L-lysine, or recombinant OPN in which the Arg-Gly-Asp sequence was replaced with RGE or RAD. Transmembrane accumulation of talin or alpha-actinin at the apical surface of uterine LE and conceptus Tr cells in contact with OPN-coated beads revealed functional integrin activation and cytoskeletal reorganization in response to OPN binding. These results provide a physiological framework for the role of OPN, a potential mediator of implantation in sheep, as a bridge between integrin heterodimers expressed by Tr and uterine LE responsible for adhesion for initial conceptus attachment.  相似文献   

14.
Stanniocalcin (STC) is a hormone in fish that regulates calcium levels. Mammals have two orthologs of STC with roles in calcium and phosphate metabolism and perhaps cell differentiation. In the kidney and gut, STC regulates calcium and phosphate homeostasis. In the mouse uterus, Stc1 increases in the mesometrial decidua during implantation. These studies determined the effects of pregnancy and related hormones on STC expression in the ovine uterus. In Days 10-16 cyclic and pregnant ewes, STC1 mRNA was not detected in the uterus. Intriguingly, STC1 mRNA appeared on Day 18 of pregnancy, specifically in the endometrial glands, increased from Day 18 to Day 80, and remained abundant to Day 120 of gestation. STC1 mRNA was not detected in the placenta, whereas STC2 mRNA was detected at low abundance in conceptus trophectoderm and endometrial glands during later pregnancy. Immunoreactive STC1 protein was detected predominantly in the endometrial glands after Day 16 of pregnancy and in areolae that transport uterine gland secretions across the placenta. In ovariectomized ewes, long-term progesterone therapy induced STC1 mRNA. Although interferon tau had no effect on endometrial STC1, intrauterine infusions of ovine placental lactogen (PL) increased endometrial gland STC1 mRNA abundance in progestinized ewes. These studies demonstrate that STC1 is induced by progesterone and increased by a placental hormone (PL) in endometrial glands of the ovine uterus during conceptus (embryo/fetus and extraembryonic membranes) implantation and placentation. Western blot analyses revealed the presence of a 25-kDa STC1 protein in the endometrium, uterine luminal fluid, and allantoic fluid. The data suggest that STC1 secreted by the endometrial glands is transported into the fetal circulation and allantoic fluid, where it is hypothesized to regulate growth and differentiation of the fetus and placenta, by placental areolae.  相似文献   

15.
16.
17.
Control over the action of steroid hormones in the uterus and conceptus during the initial period of gestation appears to be regulated locally by growth factors. This study involved immunohistochemical detection of epidermal growth factor (EGF), transforming growth factor-alpha (TGF-alpha) and transforming growth factor-beta s (TGF-beta s), to determine their role in the caprine peri-implantation period. Epidermal growth factor was expressed in the luminal and glandular endometrial epithelium of goats on all days studied (Days 22 to 30 post coitum), but it was not detected in trophoblastic cells or in other embryonic structures. Between Days 22 and 30 post coitum, TGF-alpha was detected in the epithelial cells and superficial stroma of the uterus and in the trophoendodermic cells of the embryo. Transforming growth factor-beta s expression, observed in the endometrium, embryo and extraembryonic membranes on Day 22 post coitum, decreased by Day 24 post coitum and disappeared in the embryo by Day 30 post coitum, while remaining in the other structures. The presence of these growth factors during the peri-implantation period in the goat suggests their participation in proliferation and differentiation phenomena which occur during implantation and embryonic development.  相似文献   

18.
Progesterone (P4) is unequivocally required to maintain a uterine environment conducive to pregnancy. This study investigated the effects of P4 treatment on expression of selected growth factors (fibroblast growth factor 7 [FGF7], FGF10, hepatocyte growth factor [HGF], and insulin-like growth factors [IGF1 and IGF2]), their receptors (MET, FGFR2(IIIB), and IGF1R), and IGF binding proteins (IGFBPs) in the ovine uterus. Ewes received daily injections of corn oil vehicle (CO) or 25 mg of P4 in vehicle from 36 h after mating (Day 0) to hysterectomy on Day 9 or Day 12. Another group received P4 to Day 8 and 75 mg of mifepristone (RU486, a P4 receptor antagonist) from Day 8 through Day 12. Endometrial FGF10 mRNA levels increased between Day 9 and Day 12 and in response to P4 on Day 9 in CO-treated ewes, which had larger blastocysts, and were substantially reduced in P4+RU486-treated ewes, which had no blastocysts on Day 12. Endometrial FGF7 or HGF mRNA levels were not affected by day or reduced by RU486 treatment, but MET mRNA levels were higher in P4-treated ewes on Day 9 and Day 12. Levels of IGF1, IGF2, and IGF1R mRNA in the endometria were not affected by early P4 treatment. Although stromal IGFBPs were unaffected by P4, levels of IGFBP1 and IGFBP3 mRNA in uterine luminal epithelia were increased substantially between Day 9 and Day 12 of pregnancy in CO-treated ewes and on Day 9 in early P4-treated ewes. Therefore, FGF10, MET, IGFBP1, and IGFBP3 are P4-regulated factors within the endometrium of the ovine uterus that have potential effects on endometrial function and peri-implantation blastocyst growth and development.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号