首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
2.
3.
4.
Biogenesis of ribosomes is an essential cellular process conserved across all eukaryotes and is known to require >170 genes for the assembly, modification, and trafficking of ribosome components through multiple cellular compartments. Despite intensive study, this pathway likely involves many additional genes. Here, we employ network-guided genetics—an approach for associating candidate genes with biological processes that capitalizes on recent advances in functional genomic and proteomic studies—to computationally identify additional ribosomal biogenesis genes. We experimentally evaluated >100 candidate yeast genes in a battery of assays, confirming involvement of at least 15 new genes, including previously uncharacterized genes (YDL063C, YIL091C, YOR287C, YOR006C/TSR3, YOL022C/TSR4). We associate the new genes with specific aspects of ribosomal subunit maturation, ribosomal particle association, and ribosomal subunit nuclear export, and we identify genes specifically required for the processing of 5S, 7S, 20S, 27S, and 35S rRNAs. These results reveal new connections between ribosome biogenesis and mRNA splicing and add >10% new genes—most with human orthologs—to the biogenesis pathway, significantly extending our understanding of a universally conserved eukaryotic process.  相似文献   

5.
6.
Ethyl (S)-4-chloro-3-hydroxy butanoate (ECHB) is a building block for the synthesis of hypercholesterolemia drugs. In this study, various microbial reductases have been cloned and expressed in Escherichia coli. Their reductase activities toward ethyl-4-chloro oxobutanoate (ECOB) have been assayed. Amidst them, Baker's yeast YDL124W, YOR120W, and YOL151W reductases showed high activities. YDL124W produced (S)-ECHB exclusively, whereas YOR120W and YOL151W made (R)-form alcohol. The homology models and docking models with ECOB and NADPH elucidated their substrate specificities and enantioselectivities. A glucose dehydrogenase-coupling reaction was used as NADPH recycling system to perform continuously the reduction reaction. Recombinant E. coli cell co-expressing YDL124W and Bacillus subtilis glucose dehydrogenase produced (S)-ECHB exclusively.  相似文献   

7.
8.
9.
In the past two decades, scientists have elucidated the molecular mechanisms behind Drosophila sex determination and dosage compensation. These two processes are controlled essentially by two different sets of genes, which have in common a master regulatory gene, Sex-lethal (Sxl). Sxl encodes one of the best-characterized members of the family of RNA binding proteins. The analysis of different mechanisms involved in the regulation of the three identified Sxl target genes (Sex-lethal itself, transformer, and male specific lethal-2) has contributed to a better understanding of translation repression, as well as constitutive and alternative splicing. Studies using the Drosophila system have identified the features of the protein that contribute to its target specificity and regulatory functions. In this article, we review the existing data concerning Sxl protein, its biological functions, and the regulation of its target genes.  相似文献   

10.
11.
12.
E3 ubiquitin ligases determine the substrate specificity of ubiquitination. Plant U-box (PUB) E3 ligases, with a typical 70-amino acid U-box domain, participate in plant developmental processes and environmental responses. Thus far, 64 PUB proteins have been identified in Arabidopsis and 77 PUB proteins have been identified in Oryza. However, detailed studies on U-box genes in the model microalgae Chlamydomonas reinhardtii are lacking. Here, we present a comprehensive analysis of the genes encoding U-box family proteins in C. reinhardtii. Following BLASTP analysis, 30 full-length U-box genes were identified in the C. reinhardtii genome sequence. Bioinformatics analyses of CrPUB genes were performed to characterize the phylogenetic relationships, chromosomal locations and gene structures of each member. The 30 identified CrPUB proteins are clustered into 3 distinct subfamilies, and the genes for these proteins are unevenly distributed among 14 chromosomes. Furthermore, the quantitative real-time RT-PCR or semi-quantitative RT-PCR analysis of 30 CrPUB mRNA abundances under nitrogen starvation showed that 18 CrPUB genes were induced by N starvation and that 7 genes were repressed in the N-poor environment. We selected five CrPUB genes exhibiting marked changes in expression under N-free conditions for further analysis in RNAi experiments and examined the oil content of these gene-silenced transgenic strains. The silencing of CrPUB5 and CrPUB14, which are typically down-regulated under N starvation, induced 9.8%-45.0% and 14.4%-61.8% lipid accumulation, respectively. In contrast, the silencing of CrPUB11, CrPUB23 and CrPUB28, which are markedly up-regulated under N-free conditions, decreased the lipid content by 5.5%-27.8%, 8.1%-27.3% and 6.6%-27.9%, respectively. These results provide a useful reference for the identification and functional analysis of this gene family and fundamental information for microalgae lipid metabolism research.  相似文献   

13.
14.
15.
Saccharomyces cerevisiae mutant strain, KK-211, isolated from serial culture in medium containing isooctane showed an extremely higher tolerance to the hydrophobic organic-solvents, which are toxic to yeast cells compared to the wild-type parent strain, DY-1. To detect genes that are related to this tolerance, a DNA microarray analysis was performed using mRNAs isolated from strains DY-1 and KK-211. Fourteen genes were identified as being related to the tolerance. The expression of 12 genes including ICT1, YNL190W, and PRY3, was induced while the expression of two genes including PHO84 was repressed in strain KK-211. Two genes, ICT1 and YNL190W showed the same profile in the DNA microarray analysis and a differential display-polymerase chain reaction analysis. But, there is no detectable difference in the expression profile of KK-211 cells cultured with or without isooctane. The results suggest that change in expression levels of multiple genes that confer the modification function of the cell surface, not by a single gene, might be required for yeast cell tolerance to organic solvents.  相似文献   

16.
marR genes are members of an ancient family originally identified in Escherichia coli. This family is widely distributed in archaea and bacteria. Homologues of this family have a conserved winged helix fold. MarR proteins are involved in non-specific resistance systems conferring resistance to multiple antibiotics. Extensive studies have shown the importance of MarR proteins in physiology and pathogenicity in Enterobacteria, but little is known about their origin or evolution. In this study, all the marR genes in 43 enterobacterial genomes representing 14 genera were identified, and the phylogenetic relationships and genetic parameters were analyzed. Several major findings were made. Three conserved marR genes originated earlier than Enterobacteriaceae and a geneloss event was found to have taken place in Yersinia pestis Antiqua. Three functional genes, rovA, hor, and slyA, were found to be clear orthologs among Enterobacteriaceae. The copy number of marR genes in Enterobacteriaceae was found to vary from 2 to 11. These marR genes exhibited a faster rate of nucleotide substitution than housekeeping genes did. Specifically, the regions of marR domain were found to be subject to strong purifying selection. The phylogenetic relationship and genetic parameter analyses were consistent with conservation and specificity of marR genes. These dual characters helped MarR to maintain a conserved binding motif and variable C-terminus, which are important to adaptive responses to a number of external stimuli in Enterobacteriaceae.  相似文献   

17.
18.
19.
Plant-specific BURP domain-containing proteins have an essential role in the plant''s development and stress responses. Although BURP domain-containing proteins have been identified in several plant species, genome-wide analysis of the BURP gene family has not been investigated in the common bean. In the present study, we identified 11 BURP family members in the common bean (Phaseolus vulgaris) genome with a comprehensive in silico analysis. Pairwise alignment and phylogenetic analyses grouped PvBURP members into four subfamilies [RD-22 like (3), PG1β-like (4), BNM2-like (3), and USP-like (1)] according to their amino acid motifs, protein domains and intron–exon structure. The physical and biochemical characteristics of amino acids, motif and intron–exon structure, and cis-regulatory elements of BURPs members were determined. Promoter regions of BURP members included stress, light, and hormone response-related cis-elements. Therefore, expression profiles of PvBURP genes were identified with in silico tools and qRT-PCR analyses under stress (salt and drought) and hormone treatment (ABA, IAA) in the current study. While significant activity changes were not observed in BURP genes in RNA-seq data sets related to salt stress, it was determined that some BURP genes were expressed differently in those with drought stress. We identified 12 different miRNA, including miRNA395, miRNA156, miRNA169, miRNA171, miRNA319, and miRNA390, targeting the nine PvBURP genes using two different in silico tools based on perfect or near‐perfect complementarity to their targets. Here we present the first study to identify and characterize the BURP genes in common bean using whole-genome analysis, and the findings may serve as a reference for future functional research in common bean.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12298-021-01052-9.  相似文献   

20.
Plant auxin response factors (ARFs) are involved in plant growth, development and multiple other processes. In this study, the ARF gene family in the peach genome was identified by bioinformatics software and RT-PCR. In total, 18 PpARF candidate genes were found in the peach genome. The DNA-binding and ARF domains, as well as motif III and IV of the PpARF gene family were highly conserved. The phylogenetic analysis revealed that PpARF gene family was divided into five classes: Class I (three members), Class II (four members), Class III (five members), Class IV (three members) and Class V (three members). The results of an intron-exon structure analysis indicated that PpARF gene family members were composed of 2–15 exons. A chromosome mapping analysis revealed that PpARF genes were distributed with different densities over eight chromosomes, with the largest number of PpARF genes on chromosome 1 (four genes), followed by chromosome 4 and 6 (three genes each). Only one gene was located on each of chromosome 3, 7 and 8. A conserved motif analysis revealed that the DNA-binding and ARF domains were observed in all PpARF proteins (except for PpARF18). Class I contained no motifs III or IV (except for PpARF7). RT-PCR results indicated that all of the PpARF genes, with the exception of PpARF15 and PpARF17, were expressed in at least one of the tissues (roots, stems, leaves, flowers and five stages of fruit development). These results suggested that the PpARF gene family members are highly and structurally conserved, and are involved in various aspects of peach growth and development, especially in fruit development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号