首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Agricultural intensification is accepted widely as a cause of bird population declines on farmland in Europe and North America. Although intensification is multivariate, one common theme is the impact on variation in crop structure, both within and between fields. Intensification creates simpler, more homogeneous and denser swards in both tillage crops and grassland. This influences predation risk, exposure to weather extremes and the diversity, abundance and accessibility of food. Birds trade off these pressures in different ways, so that the more uniform and dense the vegetation, the fewer the number of birds and range of species that are able to nest and forage successfully. Reversing recent trends towards dense, simplified and homogeneous swards will improve nesting and foraging habitat conditions for a wide range of species across farming systems, and may represent a cost-effective mechanism for the further improvement of agri-environment scheme options designed to assist the recovery of farmland bird populations.  相似文献   

2.
Capsule Vegetation structure and invertebrate abundance interact to influence both foraging sites and nestling provisioning rate; when invertebrate availability is low, adults may take greater risks to provide food for their young.

Aims To investigate nesting and foraging ecology in a declining farmland bird whose fledging success is influenced by the availability of invertebrate prey suitable for feeding to offspring, and where perceived predation risk during foraging can be mediated by vegetation structure.

Methods Provisioning rates of adult Yellowhammers feeding nestlings were measured at nests on arable farmland. Foraging sites were compared with control sites of both the same and different microhabitats; provisioning rate was related to habitat features of foraging‐sites.

Results Foraging sites had low vegetation density, probably enhancing detection of predators, or high invertebrate abundance at high vegetation density. Parental provisioning rate decreased with increasing vegetation cover at foraging sites with high invertebrate abundance; conversely, where invertebrate abundance was low, provisioning rate increased with increasing vegetation cover.

Conclusions Vegetation structure at foraging sites suggests that a trade‐off between predator detection and prey availability influences foraging site selection in Yellowhammers. Associations between parental provisioning rate and vegetation variables suggest that where invertebrate abundance is high birds increase time spent scanning for predators at higher vegetation densities; however, when prey are scarce, adults may take more risks to provide food for their young.  相似文献   

3.
Predator–prey interactions are strongly influenced by habitat structure, particularly in coastal marine habitats such as seagrasses in which structural complexity (SC) may vary over small spatial scales. For seagrass mesopredators such as juvenile fishes, optimality models predict that fitness will be maximized at levels of SC that enhance foraging but minimize predation risk, both of which are functions of body size. We tested the hypothesis that in eelgrass (Zostera marina) habitat, optimal SC for juvenile giant kelpfish (Heterostichus rostratus), an abundant eelgrass mesopredator in southern California, changes through ontogeny. To do this, we quantified eelgrass SC effects on habitat associations, relative predation risk, and foraging efficiency for three size classes of juvenile giant kelpfish. We found that habitat selection differed with fish size: small fish selected dense eelgrass, whereas larger fish selected sparse eelgrass. Small kelpfish experienced the lowest relative predation risk in dense eelgrass but also had higher foraging efficiency in dense eelgrass, suggesting that dense eelgrass is selected by these fish because it minimizes risk and maximizes potential for growth. Surprisingly, larger kelpfish did not experience lower predation risk than small kelpfish. However, larger kelpfish experienced higher foraging efficiency in sparse eelgrass vs. dense eelgrass, suggesting that they select sparse eelgrass to maximize foraging efficiency. Our study highlights that trade-offs between predation risk and foraging can occur within a single habitat type, that studies should consider how habitat value changes through ontogeny, and that seagrass habitat value may be maximal when within-patch variability in SC is high.  相似文献   

4.
Schneider NA  Low M  Arlt D  Pärt T 《PloS one》2012,7(2):e31517
Nest predation risk generally increases nearer forest-field edges in agricultural landscapes. However, few studies test whether differences in edge contrast (i.e. hard versus soft edges based on vegetation structure and height) affect edge-related predation patterns and if such patterns are related to changes in nest conspicuousness between incubation and nestling feeding. Using data on 923 nesting attempts we analyse factors influencing nest predation risk at different edge types in an agricultural landscape of a ground-cavity breeding bird species, the Northern Wheatear (Oenanthe oenanthe). As for many other bird species, nest predation is a major determinant of reproductive success in this migratory passerine. Nest predation risk was higher closer to woodland and crop field edges, but only when these were hard edges in terms of ground vegetation structure (clear contrast between tall vs short ground vegetation). No such edge effect was observed at soft edges where adjacent habitats had tall ground vegetation (crop, ungrazed grassland). This edge effect on nest predation risk was evident during the incubation stage but not the nestling feeding stage. Since wheatear nests are depredated by ground-living animals our results demonstrate: (i) that edge effects depend on edge contrast, (ii) that edge-related nest predation patterns vary across the breeding period probably resulting from changes in parental activity at the nest between the incubation and nestling feeding stage. Edge effects should be put in the context of the nest predator community as illustrated by the elevated nest predation risk at hard but not soft habitat edges when an edge is defined in terms of ground vegetation. These results thus can potentially explain previously observed variations in edge-related nest predation risk.  相似文献   

5.
Indirect risk effects of predators on prey behavior can have more of an impact on prey populations than direct consumptive effects. Predation risk can elicit more vigilance behavior in prey, reducing the amount of time available for other activities, such as foraging, which could potentially reduce foraging efficiency. Understanding the conditions associated with predation risk and the specific effects predation risk have on prey behavior is important because it has direct influences on the profitability of food items found under various conditions and states of the forager. The goals of this study were to assess how ducks perceived predation risk in various habitat types and how strongly perceived risk versus energetic demand affected foraging behavior. We manipulated food abundance in different wetland types in Illinois, USA to reduce confounding between food abundance and vegetation structure. We conducted focal‐animal behavioral samples on five duck species in treatment and control plots and used generalized linear mixed‐effects models to compare the effects of vegetation structure versus other factors on the intensity with which ducks fed and the duration of feeding stints. Mallards fed more intensively and, along with blue‐winged teal, used longer feeding stints in open habitats, consistent with the hypothesis that limited visibility was perceived to have a greater predation risk than unlimited visibility. The species temporally nearest to nesting, wood ducks, were willing to take more risks for a greater food reward, consistent with an increase in a marginal value of energy as they approached nesting. Our results indicate that some duck species value energy differently based on the surrounding vegetation structure and density. Furthermore, increases in the marginal value of energy can be more influential than perceived risk in shaping foraging behavior patterns. Based on these findings, we conclude that the value of various food items is not solely determined by energy contained in the item but by conditions in which it is found and the state of the forager.  相似文献   

6.
In theory, survival rates and consequent population status might be predictable from instantaneous behavioural measures of how animals prioritize foraging vs. avoiding predation. We show, for the 30 most common small bird species ringed in the UK, that one quarter respond to higher predation risk as if it is mass-dependent and lose mass. Half respond to predation risk as if it only interrupts their foraging and gain mass thus avoiding consequent increased starvation risk from reduced foraging time. These mass responses to higher predation risk are correlated with population and conservation status both within and between species (and independently of foraging habitat, foraging guild, sociality index and size) over the last 30 years in Britain, with mass loss being associated with declining populations and mass gain with increasing populations. If individuals show an interrupted foraging response to higher predation risk, they are likely to be experiencing a high quality foraging environment that should lead to higher survival. Whereas individuals that show a mass-dependent foraging response are likely to be in lower quality foraging environments, leading to relatively lower survival.  相似文献   

7.
We studied territory placement and foraging behavior of breeding birds in relation to juxtaposition of forest vegetation and logged patches in southern Vermont, USA Different bird species used disturbed vegetation at differing spatial scales, depending on temtory size Four species Dendroica pensylvamca. Geothlypis trichas, Zonotrichia albicollis, Oporornis Philadelphia showed strong clumping of their small (< 0 5 ha) territories in logged patches and were absent or rare in undisturbed forest Eleven species (e g Seiurus aurocapillus, Vireo ohvaceus) tended to avoid logged areas, especially the centers of cut patches An additional 17 species fell between these two extremes, using a mixture of disturbed and undisturbed forest and showing no tendency to prefer one or the other These 17 species tended to have larger (1 to > 3 ha) territories than disturbance specialists We used ordination and quantitative matrix comparisons to describe and test relationships among 14 of the most common bird species according to their similarities in territory habitat structure, tree species composition, and foraging behavior These analyses did not reveal any strong associations between foraging behavior and use of cut versus uncut forest Habitat use by birds occupying this forest mosaic, with its strong local gradient of vegetation structure, was thus not associated with concurrent variation in foraging behavior The sizes of cut patches of forest (0 7-1 6 ha) in our study area may be close to the minimum required to attract distinct breeding assemblages of non-forest birds to otherwise undisturbed forest ecosystems Bird species that use patches of early-successional vegetation embedded m a forested landscape may adopt a fugitive strategy as they seek nesting habitats in the spring Careful use of forest management techniques may permit both forest-interior and early-successional bird species to coexist m the landscape  相似文献   

8.
Land management intrinsically influences the distribution of animals and can consequently alter the potential for density-dependent processes to act within populations. For declining species, high densities of breeding territories are typically considered to represent productive populations. However, as density-dependent effects of food limitation or predator pressure may occur (especially when species are dependent upon separate nesting and foraging habitats), high territory density may limit per-capita productivity. Here, we use a declining but widespread European farmland bird, the yellowhammer Emberiza citrinella L., as a model system to test whether higher territory densities result in lower fledging success, parental provisioning rates or nestling growth rates compared to lower densities. Organic landscapes held higher territory densities, but nests on organic farms fledged fewer nestlings, translating to a 5 times higher rate of population shrinkage on organic farms compared to conventional. In addition, when parental provisioning behaviour was not restricted by predation risk (i.e., at times of low corvid activity), nestling provisioning rates were higher at lower territory densities, resulting in a much greater increase in nestling mass in low density areas, suggesting that food limitation occurred at high densities. These findings in turn suggest an ecological trap, whereby preferred nesting habitat does not provide sufficient food for rearing nestlings at high population density, creating a population sink. Habitat management for farmland birds should focus not simply on creating a high nesting density, but also on ensuring heterogeneous habitats to provide food resources in close proximity to nesting birds, even if this occurs through potentially restricting overall nest density but increasing population-level breeding success.  相似文献   

9.
Teruaki Hino 《Oecologia》1985,65(3):442-448
Summary The relationship between the bird community and habitat structure in wind shelterbelts of Ishikari district was examined.Breeding birds were classified into nesting guilds (hole, canopy, and bush) and also into foraging guilds (outside, canopy, and bush) Both density and species richness in the outside-foraging guild were positively related to forest age variables. On the other hand, bird density in all three nesting guilds and the other two foraging guilds (canopy and bush) was correlated with the vegetation cover of their nesting or foraging sites, and species richness was positively correlated with tree species complexity variables.Bird species diversity (BSD) was closely related to tree species complexity, but not to foliage height diversity (FHD) within woods. However, if woods were re-classified into two groups such as natural and artificial and these were separately analysed, the correlation between BSD and FHD was significant.From these results, it is concluded that both FHD and tree species complexity should be considered together in order to predict BSD within forests. A new index is proposed for this purpose, and its usefulness discussed.  相似文献   

10.
《新西兰生态学杂志》2011,34(2):237-246
An understanding of the mechanisms influencing habitat selection in reintroduced bird populations is fundamental for successful translocation programmes. Plant species composition, abundance, structure and food availability are likely to influence animal movement and habitat choice, but few studies have evaluated their combined effect on habitat selection of translocated birds. Stewart Island robins (Petroica australis rakiura) and South Island saddlebacks (Philesturnus carunculatus carunculatus) are two threatened New?Zealand bird species that have been reintroduced to Ulva Island (Stewart Island). We hypothesised that their initial settlement patterns were driven by habitat quality. We tested this hypothesis by comparing habitat components between occupied and unoccupied habitats as the population grew after initial tanslocation. We also modelled probabilities of site selection as a function of the composition and structure of vegetation, availability of food (invertebrate composition) and nesting resources (cavity type). Founding pairs of both species first established territories in coastal habitat in the western part of the island, which is characterised by structurally complex broadleaved vegetation. Birds also selected sites with a greater abundance and diversity of food resources. Thus in the early stages of population establishment robins and saddlebacks appear to select high quality habitat that offers enhanced cover and foraging opportunities.  相似文献   

11.
Linking foraging decisions to residential yard bird composition   总被引:1,自引:0,他引:1  
SB Lerman  PS Warren  H Gan  E Shochat 《PloS one》2012,7(8):e43497
Urban bird communities have higher densities but lower diversity compared with wildlands. However, recent studies show that residential urban yards with native plantings have higher native bird diversity compared with yards with exotic vegetation. Here we tested whether landscape designs also affect bird foraging behavior. We estimated foraging decisions by measuring the giving-up densities (GUD; amount of food resources remaining when the final forager quits foraging on an artificial food patch, i.e seed trays) in residential yards in Phoenix, AZ, USA. We assessed how two yard designs (mesic: lush, exotic vegetation; xeric: drought-tolerant and native vegetation) differed in foraging costs. Further, we developed a statistical model to calculate GUDs for every species visiting the seed tray. Birds foraging in mesic yards depleted seed trays to a lower level (i.e. had lower GUDs) compared to birds foraging in xeric yards. After accounting for bird densities, the lower GUDs in mesic yards appeared largely driven by invasive and synanthropic species. Furthermore, behavioral responses of individual species were affected by yard design. Species visiting trays in both yard designs had lower GUDs in mesic yards. Differences in resource abundance (i.e., alternative resources more abundant and of higher quality in xeric yards) contributed to our results, while predation costs associated with foraging did not. By enhancing the GUD, a common method for assessing the costs associated with foraging, our statistical model provided insights into how individual species and bird densities influenced the GUD. These differences we found in foraging behavior were indicative of differences in habitat quality, and thus our study lends additional support for native landscapes to help reverse the loss of urban bird diversity.  相似文献   

12.
Use of non-farmland habitats by species generally perceived as 'farmland birds' is common, yet these habitats are not always considered in conservation strategies aimed at population recovery. At the national scale, many farmland species occur in landscapes not dominated by farmland. An analysis of distribution atlas data coupled with remotely sensed habitat data showed that for 16 out of 28 farmland species, less than half of the breeding range was associated with high cover of lowland farmland. However, with a few exceptions, populations breeding in non-farmland habitats are likely to depend on farmland at some time in the year. Within farmland landscapes, uncropped areas and patches of non-farmland habitat can provide nesting, foraging or roosting resources. Habitats that are scarce on farmland and that provide potential supplementary or complementary resources to those available within the productive areas of farmland include ruderal vegetation, rough grassland and scrub. Enhancing habitat diversity through provision of modest quantities of these habitats will benefit farmland birds. Complete knowledge of year-round habitat requirements and patterns of resource use at all scales is needed if robust national conservation plans are to be developed for farmland species. Similarly, interactions between the farmland and non-farmland sections of populations need to be determined.  相似文献   

13.
We evaluated willow removal as a technique for enhancing habitat for birds of braided rivers by monitoring five bird species at three sites in the Mackenzie Basin, New Zealand, from 1991 to 1994 Four species—banded dotterel (Charadrius bicinctus), pied stilt (Himantopus novaezelandiae), black- fronted tern (Sterna albostriata) and South Island pied oystercatcher (Haematopus ostralegus) used the areas of riverbed cleared of willows for nesting and foraging, at the same or greater density than other areas of riverbed already free from willows. Wrybills (Anarhynchus frontalis) were occasionally seen in cleared areas of riverbed but were not nesting there during the study. Densities of banded dotterel and wrybill were lowest at sites with the greatest densities of willows, and only three out of 327 monitored nests were located in willow habitat. Nest predation rates did not differ significantly among sites with differing levels of willow infestation, nor did they differ between areas of cleared riverbed and riverbed already free from willow. In addition to weed control, predator control may be necessary to increase bird populations. This study indicates that willow removal increases foraging and nesting habitat for some river bird populations, but further surveys are necessary to assess whether willow removal has any long-term benefits.  相似文献   

14.
David B. Lewis  Lisa A. Eby 《Oikos》2002,96(1):119-129
The effect of habitat structure on interactions between predators and prey may vary spatially. In estuarine salt marshes, heterogeneity in refuge quality derives from spatial variation in vegetation structure and in tidal inundation. We investigated whether predation by blue crabs on periwinkle snails was influenced by distance from the seaward edge of the salt marsh and by characteristics of the primary habitat structure, smooth cordgrass ( Spartina alterniflora ). Spartina may provide refuge for snails and interfere with foraging by crabs. Furthermore, predation risk should decline with distance from the seaward edge because landward regions require more travel time for crabs during tidal inundation. We investigated these processes using a comparative survey of snails and habitat traits, an experiment that assessed the crab population and measured predation risk, and a size-structured model that estimated encounter rates. Taken together, these approaches indicated that predation risk for snails was lower where Spartina was present and was lower in a landward direction. Furthermore, Spartina architecture and distance from the seaward edge interacted. The strength of the predation gradient between seaward and landward regions of the marsh was greater where Spartina was tall or dense. These predation gradients emerge because vegetation and distance inland decrease encounter rates between crabs and snails. This study suggests that habitat modification, a process not uncommon in salt marshes, may have consequences for interactions among intertidal fauna.  相似文献   

15.
Nest predation highly determines the reproductive success in birds. In agricultural grasslands, vegetation characteristics and management practices influences the predation risk of ground breeders. Little is known so far on the predation pressure on non-passerine nests in tall swards. Investigations on the interaction of land use with nesting site conditions and the habitat selection of nest predators are crucial to develop effective conservation measures for grassland birds.In this study, we used artificial nests baited with quail and plasticine eggs to identify potential predators of ground nests in floodplain meadows and related predation risk to vegetation structure and grassland management.Mean daily predation rate was 0.01 (±0.012) after an exposure duration of 21 days. 70% of all observed nest predations were caused by mammals (Red Fox and mustelids) and 17.5% by avian predators (corvids). Nest sites close to the meadow edge and those providing low forb cover were faced with a higher daily predation risk. Predation risk also increased later in the season. Land use in the preceding year had a significant effect on predation risk, showing higher predation rates on unmanaged sites than on mown sites. Unused meadows probably attract mammalian predators, because they provide a high abundance of small rodents and a more favourable vegetation structure for foraging, increasing also the risk of incidental nest predations. Although mowing operation is a major threat to ground-nesting birds, our results suggest that an annual removal of vegetation may reduce predation risk in the subsequent year.  相似文献   

16.
The potential of fallow lands to favor farmland bird conservation is widely recognized. Since fallows provide key resources for birds within the agricultural matrix, such as nesting sites, shelter and forage, complete understanding of the effect of field-management strategies on vegetation structure and food is essential to fulfill bird requirements and improve habitat management. In this study we experimentally compare the most common field practices (ploughing, shredding, herbicide application and cover cropping) on fallow lands by assessing the resources they provide for birds in terms of vegetation structure and food resources (leaf and seed availability), as well as the economic costs of their implementation. Fallow management treatments are ranked for six target species in a lowland area of the north-eastern Iberian Peninsula, according to the available information on their requirements. The different agronomic practices offer various quantities and types of resources, highlighting the importance of fallow management in bird conservation. Shredding and early herbicide application (February) are estimated to be good practices for Little Bustard (Tetrax tetrax) and Calandra Lark (Melanocorypha calandra), providing both favorable habitat and foraging conditions, while being economical. Meanwhile, superficial tillage in spring is found to be optimum for the rest of the species tested, despite being among the poorest food providers. Alternating patches of the best treatments would improve the effectiveness of agri-environmental schemes by maximizing the harboring habitat for the endangered species.  相似文献   

17.
Afforestation programs such as the one promoted by the EU Common Agrarian Policy have contributed to spread tree plantations on former cropland. Nevertheless these afforestations may cause severe damage to open habitat species, especially birds of high conservation value. We investigated predation of artificial bird nests at young tree plantations and at the open farmland habitat adjacent to the tree plantations in central Spain. Predation rates were very high at both tree plantations (95.6%) and open farmland habitat (94.2%) after two and three week exposure. Plantation edge/area ratio and development of the tree canopy decreased predation rates and plantation area and magpie (Pica pica) abundance increased predation rates within tree plantations, which were also affected by land use types around plantations. The area of nearby tree plantations (positive effect), distance to the tree plantation edge (negative effect), and habitat type (mainly attributable to the location of nests in vineyards) explained predation rates at open farmland habitat. We conclude that predation rates on artificial nests were particularly high and rapid at or nearby large plantations, with high numbers of magpies and low tree development, and located in homogenous landscapes dominated by herbaceous crops and pastures with no remnants of semi-natural woody vegetation. Landscape planning should not favour tree plantations as the ones studied here in Mediterranean agricultural areas that are highly valuable for ground-nesting bird species.  相似文献   

18.
A major challenge in habitat restoration is targeting the key aspects of a species' niche for enhancement, particularly for species that use a diverse set of habitat features. However, restoration that focuses on limited aspects of a species' niche may neglect other resources that are critical to population persistence. We evaluated the ability of native plant hedgerows, planted to increase pollen and nectar resources for wild bees in agricultural landscapes, to provide suitable nesting habitat and enhance nesting rates of ground‐nesting bees. We found that, when compared to unmanaged field edges (controls), hedgerows did not augment most indicators of nest habitat quality (bare ground, soil surface irregularity, and soil hardness), although coarser soils were associated with higher incidence and richness of nesting bees. Hedgerows did not augment nesting rates when compared to control edges. Although all the bee species we detected nesting were also found foraging on floral resources, the foraging versus nesting assemblages found within a site were highly dissimilar. These results may reflect sampling error; or, species found foraging but not nesting in hedgerows could be utilizing hedgerows as “partial habitats,” nesting outside hedgerow plantings but foraging on the floral resources they provide. We conclude that although hedgerows are known to provide critical floral resources to wild bees especially in resource‐poor intensive agricultural landscapes, simply increasing vegetative diversity and structure may not be simultaneously enhancing nesting habitat for ground‐nesting bees.  相似文献   

19.
Windbreaks often form networks of forest habitats that improve connectivity and thus conserve biodiversity, but little is known of such effects in the tropics. We determined bird species richness and community composition in windbreaks composed of remnant native vegetation amongst tea plantations (natural windbreaks), and compared it with the surrounding primary forests. Fifty-one, ten-minute point counts were conducted in each habitat type over three days. Despite the limited sampling period, our bird inventories in both natural windbreaks and primary forests were nearly complete, as indicated by bootstrap true richness estimator. Bird species richness and abundance between primary forests and windbreaks were similar, however a difference in bird community composition was observed. Abundances of important functional groups such as frugivores and insectivores did not vary between habitat types but nectarivores were more abundant in windbreaks, potentially as a result of the use of windbreaks as traveling routes, foraging and nesting sites. This preliminary study suggests that natural windbreaks may be important habitats for the persistence of bird species in a production landscape. However, a better understanding of the required physical and compositional characteristics for windbreaks to sustain bird communities is needed for effective conservation management.  相似文献   

20.
Conceived to combat widescale biodiversity erosion in farmland, agri-environment schemes have largely failed to deliver their promises despite massive financial support. While several common species have shown to react positively to existing measures, rare species have continued to decline in most European countries. Of particular concern is the status of insectivorous farmland birds that forage on the ground. We modelled the foraging habitat preferences of four declining insectivorous bird species (hoopoe, wryneck, woodlark, common redstart) inhabiting fruit tree plantations, orchards and vineyards. All species preferred foraging in habitat mosaics consisting of patches of grass and bare ground, with an optimal, species-specific bare ground coverage of 30-70% at the foraging patch scale. In the study areas, birds thrived in intensively cultivated farmland where such ground vegetation mosaics existed. Not promoted by conventional agri-environment schemes until now, patches of bare ground should be implemented throughout grassland in order to prevent further decline of insectivorous farmland birds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号