首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 111 毫秒
1.
The proximo‐distal axis of the arthropod leg is patterned by mutually antagonistic developmental expression domains of the genes extradenticle, homothorax, dachshund, and Distal‐less. In the deutocerebral appendages (the antennae) of insects and crustaceans, the expression domain of dachshund is frequently either absent or, if present, is not required to pattern medial segments. By contrast, the dachshund domain is entirely absent in the deutocerebral appendages of spiders, the chelicerae. It is unknown whether absence of dachshund expression in the spider chelicera is associated with the two‐segmented morphology of this appendage, or whether all chelicerates lack the dachshund domain in their chelicerae. We investigated gene expression in the harvestman Phalangium opilio, which bears the plesiomorphic three‐segmented chelicera observed in “primitive” chelicerate orders. Consistent with patterns reported in spiders, in the harvestman chelicera homothorax, extradenticle, and Distal‐less have broadly overlapping developmental domains, in contrast with mutually exclusive domains in the legs and pedipalps. However, unlike in spiders, the harvestman chelicera bears a distinct expression domain of dachshund in the proximal segment, the podomere that is putatively lost in derived arachnids. These data suggest that a tripartite proximo‐distal domain structure is ancestral to all arthropod appendages, including deutocerebral appendages. As a corollary, these data also provide an intriguing putative genetic mechanism for the diversity of arachnid chelicerae: loss of developmental domains along the proximo‐distal axis.  相似文献   

2.
The appendages of an insect are subdivided into distinct segments or podomeres. Many genes responsible for the regionalization of the growing limb into subdomains have been isolated from Drosophila. So far, only one gene is known in the leg that is solely required for specifying the distal-most pattern element—the pretarsal claw. In Drosophila, the gene aristaless is expressed in the centre of the antennal and leg imaginal disc that represents the most distal position of appendages, and in a proximal region. When Drosophila aristaless function is impaired, antennae and legs develop without their distal-most structures—the arista and the claw. We describe here the analysis of aristaless in the beetle Tribolium—an insect that shows a different, more ancestral mode of appendage formation than Drosophila. In Tribolium, appendages grow out continuously during embryogenesis, and no imaginal discs are formed. Tribolium aristaless (Tc-al) expression starts midway during appendage elongation, and is seen in a distal and a proximal position of head and trunk appendages. At the end of embryogenesis, Tc-al is seen in four expression domains in the leg, in the dorsal epidermis, and ventrally in every segment in lateral groups of cells, presumably the histoblasts. Like in the Drosophila adult, Tc-al is required in the larva for the formation of the most distal structures of the leg and the antenna as revealed by RNAi experiments. We conclude that aristaless is evolutionarily robust, meaning that it has retained its expressional and functional characteristics, although a heterochronic change of the process of appendage elongation took place towards the evolution of the highly derived diptera.Edited by D. Tautz  相似文献   

3.
Leg development in Drosophila has been studied in much detail. However, Drosophila limbs form in the larva as imaginal discs and not during embryogenesis as in most other arthropods. Here, we analyze appendage genes in the spider Cupiennius salei and the beetle Tribolium castaneum. Differences in decapentaplegic (dpp) expression suggest a different mode of distal morphogen signaling suitable for the specific geometry of growing limb buds. Also, expression of the proximal genes homothorax (hth) and extradenticle (exd) is significantly altered: in the spider, exd is restricted to the proximal leg and hth expression extends distally, while in insects, exd is expressed in the entire leg and hth is restricted to proximal parts. This reversal of spatial specificity demonstrates an evolutionary shift, which is nevertheless compatible with a conserved role of this gene pair as instructor of proximal fate. Different expression dynamics of dachshund and Distal-less point to modifications in the regulation of the leg gap gene system. We comment on the significance of this finding for attempts to homologize leg segments in different arthropod classes. Comparison of the expression profiles of H15 and optomotor-blind to the Drosophila patterns suggests modifications also in the dorsal-ventral patterning system of the legs. Together, our results suggest alterations in many components of the leg developmental system, namely proximal-distal and dorsal-ventral patterning, and leg segmentation. Thus, the leg developmental system exhibits a propensity to evolutionary change, which probably forms the basis for the impressive diversity of arthropod leg morphologies.  相似文献   

4.
A major prerequisite to understanding the evolution of developmental programs includes an appreciation of gene function in a comparative context. RNA interference (RNAi) represents a powerful method for reverse genetics analysis of gene function. However, RNAi protocols exist for only a handful of arthropod species. To extend functional analysis in basal arthropods, we developed a RNAi protocol for the two-spotted spider mite Tetranychus urticae focusing on Distal-less (Dll), a conserved gene involved in appendage specification in metazoans. First, we describe limb morphogenesis in T. urticae using confocal and scanning electron microscopy. Second, we examine T. urticae Dll (Tu-Dll) mRNA expression patterns and correlate its expression with appendage development. We then show that fluorescently labeled double-stranded RNA (dsRNA) and short interfering RNA (siRNA) molecules injected into the abdomen of adult females are incorporated into the oviposited eggs, suggesting that dsRNA reagents can be systemically distributed in spider mites. Injection of longer dsRNA as well as siRNA induced canonical limb truncation phenotypes as well as the fusion of leg segments. Our data suggest that Dll plays a conserved role in appendage formation in arthropods and that such conserved genes can serve as reliable starting points for the development of functional protocols in nonmodel organisms.  相似文献   

5.
The insect leg and antenna are thought to be homologous structures, evolved from a common ancestral appendage. The homeotic transformations of antenna to leg in Drosophila produced by mutation of the Hox gene Antennapedia are position-specific, such that every particular antenna structure is transformed into a specific leg counterpart. This has been taken to suggest that the developmental programmes of these two appendages are still similar. In particular, the mechanisms for the specification of a cell's position within the appendage would be identical, only their interpretation would be different and subject to homeotic gene control. Here we explore the degree of conservation between the developmental programmes of leg and antenna in Drosophila and other dipterans, in wild-type and homeotic conditions. Most of the appendage pattern-forming genes are active in both appendages, and their expression domains are partially conserved. However, the regulatory relationships and interactions between these genes are different, and in fact cells change their expression while undergoing homeotic transformation. Thus, the positional information, and the mechanisms which generate it, are not strictly conserved between leg and antenna; and homeotic genes alter the establishment of positional clues, not only their interpretation. The partial conservation of pattern-forming genes in both appendages ensures a predictable re-specification of positional clues, producing the observed positional specificity of homeotic transformations.  相似文献   

6.
The evolution of larval head morphology in holometabolous insects is characterized by reduction of antennal appendages and the visual system components. Little insight has been gained into molecular developmental changes underlying this morphological diversification. Here we compare the expression of the segment polarity gene wingless (wg) in the pregnathal head of fruit fly, flour beetle and grasshopper embryos. We provide evidence that wg activity contributes to segment border formation, and, subsequently, the separation of the visual system and protocerebrum anlagen in the anterior procephalon. In directly developing insects like grasshopper, seven expression domains are formed during this process. The activation of four of these, which correspond to polar expression pairs in the optic lobe anlagen and the protocerebral ectoderm, has shifted to postembryonic stages in flour beetle and Drosophila. The remaining three domains map to the protocerebral neuroectoderm, and form by disintegration of a large precursor domain in flour beetle and grasshopper. In Drosophila, the precursor domain remains intact, constituting the previously described “head blob”. These data document major changes in the expression of an early patterning gene correlated with the dramatic evolution of embryonic visual system development in the Holometabola.  相似文献   

7.
The prosoma of spiders bears different gnathal (labrum, chelicerae, pedipalps) and locomotory appendages (legs). In most species these appendages are also used for additional functions, e.g. sensing, mating, and courtship. The opisthosoma is equipped with four pairs of highly specialized appendages. Two pairs of spinnerets are used for silk production and manipulation. The other two pairs of appendages are internalized during development and give rise to a complex respiratory system of book lungs and tracheae. Thus spiders have a number of different appendage types with radically different adult morphologies. Furthermore, all these appendage types display significant additional species specific diversity correlating with a large spectrum of functions of the appendages. Despite this importance of appendage diversity for the evolution of the spiders we know relatively little about the genetic patterning mechanisms producing this diversity of morphology. We review recent advances concerning the developmental genetics of spider appendage diversification, mainly concentrating on open questions and future directions of research. We conclude that the deeper understanding of appendage development and diversity in spiders can contribute significantly not only to evolutionary developmental biology, but also to behavioral biology, speciation research and population genetics, and the study of sexually dimorphic traits.  相似文献   

8.
Limb loss is common in the wolf spider Pardosa milvina, appearing in nearly one third of adult males but occurring less frequently among adult females and juveniles. Since males wave their first pair of legs during courtship displays, the reproductive consequences of limb loss may be significant. We measured the courtship and mating effects of the loss of one, two, or four legs among adult male P. milvina. Missing one or two legs did not significantly reduce a male's ability to mate, but missing four legs was detrimental to mating success, reduced both courtship intensity and copulation duration, and increased cannibalism frequency. Results suggest behavioral flexibility in compensating for limited leg loss and a defensive function of the anteriormost legs to thwart female cannibalism attempts.  相似文献   

9.
A specimen of the dalmanitacean trilobite Rhenops sp. cf. R. anserinus with ventral appendages is described and discussed. It is shown to have 1 pair of antennae, 4 pairs of cephalic legs, 11 pairs of thoracic legs, and 9(?) pairs of pygidial legs. The pygidial legs differ clearly from those of the thorax in their construction and are also smaller and more closely spaced. Of the outer appendage branch a few sets of lamellar spines are visible. D Trilobita, appendages, segmentation. Vom dalmanitiden Trilobiten Rhenops sp. cf. R. anserinus wird ein Exemplar mit ventralen Extremitaten beschrieben und diskutiert. Es hat 1 Antennenpaar, 4 Kopfbeinpaare, 11 Thorakalbeinpaare, und 9(?) Pygidium-Beinpaare. Die Pygidium-Beinpaare unterscheiden sich in ihrer Konstruktion klar von den Thorakalbeinpaaren. Sie sind kiirzer, und der Abstand zueinander ist schmaler. Lamellendornen (sogen-annte ‘Kiemenanhange’) sind an einigen wenigen Aussenasten sichtbar.  相似文献   

10.
Insects display a whole spectrum of morphological diversity, which is especially noticeable in the organization of their appendages. A recent study in a hemipteran, Oncopeltus fasciatus (milkweed bug), showed that nubbin (nub) affects antenna morphogenesis, labial patterning, the length of the femoral segment in legs, and the formation of a limbless abdomen. To further determine the role of this gene in the evolution of insect morphology, we analyzed its functions in two additional hemimetabolous species, Acheta domesticus (house cricket) and Periplaneta americana (cockroach), and re-examined its role in Drosophila melanogaster (fruit fly). While both Acheta and Periplaneta nub-RNAi first nymphs develop crooked antennae, no visible changes are observed in the morphologies of their mouthparts and abdomen. Instead, the main effect is seen in legs. The joint between the tibia and first tarsomere (Ta-1) is lost in Acheta, which in turn, causes a fusion of these two segments and creates a chimeric nub-RNAi tibia–tarsus that retains a tibial identity in its proximal half and acquires a Ta-1 identity in its distal half. Similarly, our re-analysis of nub function in Drosophila reveals that legs lack all true joints and the fly tibia also exhibits a fused tibia and tarsus. Finally, we observe a similar phenotype in Periplaneta except that it encompasses different joints (coxa–trochanter and femur–tibia), and in this species we also show that nub expression in the legs is regulated by Notch signaling, as had previously been reported in flies and spiders. Overall, we propose that nub acts downstream of Notch on the distal part of insect leg segments to promote their development and growth, which in turn is required for joint formation. Our data represent the first functional evidence defining a role for nub in leg segmentation and highlight the varying degrees of its involvement in this process across insects.  相似文献   

11.
The cDNA of a decapentaplegic (dpp) orthologue from the sawfly, Athalia rosae (Hymenoptera), was cloned and characterized. The clone (Ar dpp) was 2,566 bp long and encoded 395 amino acids in a single open reading frame. Genomic Southern blotting showed that Ar dpp is a single copy gene. The deduced amino acid sequence can be aligned along its entire length with known insect DPPs. It shared common characteristics such as a signal sequence, a pro-domain region, and a ligand domain with seven cysteines at conserved locations. Ar dpp was expressed as a single 5.0-kb mRNA in embryos, larvae, pupae and adults. In situ hybridization showed that Ar dpp was expressed in the dorsal region proper in early embryonic stages and in the embryonic appendages of cephalic segments (labrum, antenna, mandible, maxilla, and labium), thoracic segments (thoracic legs), and all abdominal segments except the tenth segment (pleuropodia and proleg primordia). The present results indicate that Ar dpp expression reflects the primary determination of embryonic appendages.Edited by D. TautzThe sequence reported in this paper has been deposited in the DDBJ/EMBL/GenBank database with the accession number AB121072  相似文献   

12.
A new specimen of the synziphosurine arthropodWeinbergina opitzi is described from the Lower Devonian (Lower Emsian) Hunsrück Slate of Germany (Rhenish Slate Mountains). It is the smallest and only the fifth specimen of this taxon to be described and is preserved in ventral aspect with exceptional preservation of prosomal and opisthosomal appendages. This specimen confirms the presence of a seventh appendage, similar in morphology to the preceding prosomal appendages, associated with opisthosomal segment one. In addition, at least three opisthosomal plates fringed with teeth are confirmed. Correlation of prosomal appendage podomeres betweenWeinbergina and selected chelicerate taxa shows that appendage structure is most similar to eurypterid appendages III–IV and Araneae appendages III–VI. This is in contrast to modern horseshoe crabs which have fewer podomeres in appendages II–V due to an undifferentiated tibiotarsus.   相似文献   

13.
The conservation of expression of appendage patterning genes, particularly Distal-less, has been shown in a wide taxonomic sampling of animals. However, the functional significance of this expression has been tested in only a few organisms. Here we report functional analyses of orthologues of the genes Distal-less, dachshund, and homothorax in the appendages of the milkweed bug Oncopeltus fasciatus (Hemiptera). This hemimetabolous insect has typical legs but highly derived mouthparts. Distal-less, dachshund, and homothorax are conserved in their individual expression patterns and functions in the legs of Oncopeltus, but their functions in other appendages are in some cases divergent. We find that specification of antennal identity does not require wild-type Distal-less activity in Oncopeltus as it does in Drosophila. Additionally, the mouthparts of Oncopeltus show novel patterns of gene expression and function, relative to other insects. Expression of Distal-less in the maxillary stylets of Oncopeltus does not seem necessary for proper development of this appendage, while dachshund and homothorax are crucial for formation of the mandibular and maxillary stylets. These data are used to evaluate hypotheses for the evolution of hemipteran mouthparts and the evolution of developmental mechanisms in insect appendages in general.  相似文献   

14.
Chelicerates represent a basal arthropod group, which makes them an excellent system for the study of evolutionary processes in arthropods. To enable functional studies in chelicerates, we developed a double-stranded RNA-interference (RNAi) protocol for spiders while studying the function of the Distal-less gene. We isolated the Distal-less gene from the spider Cupiennius salei. Cs-Dll gene expression is first seen in cells of the prosomal segments before the outgrowth of the appendages. After the appendages have formed, Cs-Dll is expressed in the distal portion of the prosomal appendages, and in addition, in the labrum, in two pairs of opisthosmal (abdominal) limb buds, in the head region, and at the posterior-most end of the spider embryo. In embryos, in which Dll was silenced by RNAi, the distal part of the prosomal appendages was missing and the labrum was completely absent. Thus, Dll also plays a crucial role in labrum formation. However, the complete lack of labrum in RNAi embryos may point to a different nature of the labrum from the segmental appendages. Our data show that the expression of Dll in the appendages is conserved among arthropods, and furthermore that the role of Dll is evolutionarily conserved in the formation of segmental appendages in arthropods.  相似文献   

15.
The cricket Gryllus bimaculatus is a typical hemimetabolous intermediate germ insect, in which the processes of segmentation and appendage formation differ from those in Drosophila, a holometabolous long germ insect. In order to compare their developmental mechanisms, we have focused on Gryllus orthologs of the Drosophila developmental regulatory genes and studied their functions. Here, we report a functional analysis of the Gryllus ortholog of extradenticle (Gbexd) using embryonic and parental RNA interference (RNAi) techniques. We found the following: (1) RNAi suppression of Gb′exd results in the deletion or fusion of body segments. Especially the head was often very severely affected. This gap-like phenotype may be related to reduced expression of the gap genes hunchback and Krüppel in early RNAi germbands. (2) In the appendages, several segments (podomeres) were fused. (3) Head appendages including the antenna were transformed to a leg-like structure consisting of at least one proximal podomere as well as several tarsomeres. The defects in appendages are reminiscent of the phenotype caused by large exd clones in Drosophila antennal discs. These findings led us to the conclusion that (1) Gb′exd is required for segment patterning in the gnathal to abdominal region, acting in a gap gene-like manner in the anterior region. (2) Gb′exd plays important roles in formation of the appendages and the determination of their identities, acting as a regulatory switch that chooses between the fates of head appendages versus the appendage ground state. Although functions of Gb′exd in appendage patterning appear fundamentally conserved between Gryllus and Drosophila, its role in body segmentation may differ from that of Drosophila exd.  相似文献   

16.
The putative regulatory relationships between Antennapedia (Antp), spalt major (salm) and homothorax (hth) are tested with regard to the sensitive period of antenna-to-leg transformations. Although Antp expression repressed hth as predicted, contrary to expectations, hth did not show increased repression at higher Antp doses, whereas salm, a gene downstream of hth, did show such a dose response. Loss of hth allowed antenna-to-leg transformations but the relative timing of proximal-distal transformations was reversed, relative to transformations induced by ectopic Antp. Finally, overexpression of Hth was only partially able to rescue transformations induced by ectopic Antp. These results indicate that there may be additional molecules involved in antenna/leg identity and that spatial, temporal and dosage relationships are more subtle than suspected and must be part of a robust understanding of molecular network behaviour involved in determining appendage identity in Drosophila melanogaster.  相似文献   

17.
The uniramous ‘great appendages’ of several arthropods from the Early to Middle Cambrian are a characteristic pair of pre‐oral limbs, which served for prey capture. It has been assumed that the morphological differences between the ‘great‐appendage’ arthropods indicate that raptorial antero‐ventral and anteriorly pointing appendages evolved more than once in arthropod phylogeny. One set of Cambrian ‘great‐appendage’ arthropods has, however, very similar short antero‐ventral appendages with a peduncle of two segments angled against each other (elbowed) and with stout distally or medio‐distally directed spines or long flexible flagellate spines on each of the four distal segments. Moreover, the head appendages of all these forms comprise the ‘great appendages’ and three pairs of biramous limbs. To this set of taxa we can add a new form from the Lower Cambrian Maotianshan Shale of southern China, Haikoucaris ercaiensis n. gen. and n. sp. It is known from three specimens, possibly being little abundant in the faunal community. It can be distinguished from all other taxa by the prominence of the proximal claw segment of its ‘great appendages’ and by only three distal spines (one on each of the distal segments). The similarity of the short, spiky ‘great appendages’ of Haikoucaris with the chelicera of the Chelicerata leads us to hypothesize that this particular type of ‘great appendages’ was the actual precursor of the chelicera. Homeobox gene and developmental data recently demonstrated the homology between the antenna of ateloceratans and the antennula of crustaceans on one side and the chelicera of chelicerates on the other. To this we add palaeontological evidence for the homology between the chelicerae of chelicerates and the ‘short great appendages’ of certain Cambrian arthropods, which leads us to hypothesize that the evolutionary path went from the ‘short great appendages’, by progressive compaction, toward the chelicera with only a two‐spined chela. The new form from China is regarded as the possible latest offshoot, whereas the other ‘great appendages’ arthropods with similar short grasping limbs were derivatives of the stem lineage of the crown‐group Chelicerata. Consequently, the chelicera with a chela with one fixed and one mobile finger is an autapomorphy of the crown group of Chelicerata, whereas a raptorial, but more limb‐like antenna, with more distal spine‐bearing segments, characterized the ground pattern of Chelicerata. Further taxa having ‘great appendages’, including the large Anomalocarididae, are also discussed in the light of their possible affinities to the Chelicerata and possible monophyly of all of these arthropods with raptorial anterior appendages.  相似文献   

18.
Our understanding of the developmental mechanisms underlying the vast diversity of arthropod appendages largely rests on the peculiar case of the dipteran Drosophila melanogaster. In this insect, homothorax (hth) and extradenticle (exd) together play a pivotal role in appendage patterning and identity. We investigated the role of the hth homologue in the cricket Gryllus bimaculatus by parental RNA interference. This species has a more generalized morphology than Oncopeltus fasciatus, the one other insect besides Drosophila where homothorax function has been investigated. The Gryllus head appendages represent the morphologically primitive state including insect-typical mandibles, maxillae and labium, structures highly modified or missing in Oncopeltus and Drosophila. We depleted Gb’hth function through parental RNAi to investigate its requirement for proper regulation of other appendage genes (Gb’wingless, Gb’dachshund, Gb’aristaless and Gb’Distalless) and analyzed the terminal phenotype of Gryllus nymphs. Gb’hth RNAi nymphs display homeotic and segmentation defects similar to hth mutants or loss-of-function clones in Drosophila. Intriguingly, however, we find that in Gb’hth RNAi nymphs not only the antennae but also all gnathal appendages are homeotically transformed, such that all head appendages differentiate distally as legs and proximally as antennae. Hence, Gb’hth is not specifically required for antennal fate, but fulfills a similar role in the specification of all head appendages. This suggests that the role of hth in the insect antenna is not fundamentally different from its function as cofactor of segment-specific homeotic genes in more posterior segments.  相似文献   

19.
Kim  Il-Hoi 《Hydrobiologia》1994,(1):161-169
Copepodid stages of Conchyliurus quintus Tanaka, a poecilostomatoid copepod associated with bivalve mollusks, are described. Comparisons with other poecilostomes were made on the developmental changes of appendages. Some general patterns of poecilostomatoid leg development and characteristics in C. quintus are shown.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号