首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
造血干细胞(hematopoietic stem cells, HSCs)是一类多能干细胞,位于特殊的造血微环境,主要存在于骨髓中。其能自我更新和多向分化为各种功能的血细胞,维持血液系统的建立和动态平衡。造血干细胞的这些重要特性以及造血干细胞移植在临床上的广泛应用,结合基因治疗和基因编辑技术的进步,使得基于造血干细胞治疗多种血液疾病和免疫疾病的基因治疗研究在近年来取得了很大的进展。该文将从造血干细胞生物学特征、来源、造血干细胞微环境的基础研究,以及造血干细胞基因治疗、自体造血干细胞移植治疗β-地中海贫血等方面的临床研究和应用进展进行综述。  相似文献   

2.
脐带血造血干细胞具有极强的自我更新和多向分化潜能,为治疗糖尿病开辟了新的途径,造血干细胞在生成胰岛素分泌细胞前需要经过诱导分化、细胞选择和细胞成熟三个阶段。目前,脐带血造血干细胞在治疗糖尿病中已取得一定进展,将造血干细胞定向分化为胰岛β细胞成为了治疗的关键。本文通过对脐带血的特征、造血干细胞的制备和移植、糖尿病的治疗以及脐带血造血干细胞移植的利与弊等方面进行的归纳总结,分析脐带血造血干细胞在治疗糖尿病方面的进展和应用前景。  相似文献   

3.
造血干细胞移植已成为治疗白血病、再生障碍性贫血、重症免疫缺陷征、地中海贫血、急性放射病、某些恶性实体瘤和淋巴瘤等造血及免疫系统功能障碍性疾病的成熟技术和重要手段,另外这一技术还被尝试用于治疗艾滋病,已取得积极的效果。但是由于移植需要配型相同的供体,并且过程复杂,使得造血干细胞移植因缺少配型相同的供体来源以及费用昂贵而不能被广泛应用。胚胎干细胞是一种能够在体外保持未分化状态并且能进行无限增殖的细胞,在适合条件下能够分化为体内各种类型的细胞,研究胚胎干细胞分化为造血干细胞,不仅可作为研究动物的早期造血发生的模型,而且可以增加造血干细胞的来源,还可以通过基因剔除、治疗性克隆等方法来解决移植排斥的问题,从而为造血干细胞移植的发展扫除了障碍,因此有着重要的研究价值和应用前景。现对胚胎干细胞体外分化为造血干细胞的诱导方法,诱导过程中的调控机制,并对胚胎干细胞分化为造血干细胞的存在问题和发展前景进行讨论。  相似文献   

4.
常灏 《生物学通报》2006,41(2):56-59
干细胞研究是一门新兴的学科。经过50多年的努力,造血干细胞的研究已经成为当今生物医学领域中发展最快的领域。介绍了造血干细胞的来源、分离纯化和检测方法以及“可塑性”等方面的研究情况,并详细说明了一些主要的造血干细胞表面标志以及造血干细胞在干细胞移植、细胞治疗和基因治疗等方面的临床应用和前景。  相似文献   

5.
胚胎发育中,肝脏是一个重要的造血器官。近年来胎肝移植的临床应用重新引起了人们的关注。本文应用染色体的 C-带染色法研究了小鼠骨髓和胎肝造血干细胞在照射受体小鼠中的增殖能力与相互间的竞争作用。实验结果表明胎肝造血干细胞在成年骨髓中的植入率比较同样条件下的成年骨髓造血干细胞低,但胎肝造血干细胞比较成年骨髓造血干细胞具有更强的自我更新或增殖能力。在同种胎肝造血干细胞移植中,为了降低同种移植抗力,提高移植的胎肝造血干细胞在受体中的耐受性,移植前对受体作适当的免疫抑制处理是必要的。因此,克服个体发育屏障和移植免疫屏障是提高同种胎肝造血干细胞移植效果中两个重要的研究课题。  相似文献   

6.
同种异基因造血干细胞移植是急、慢性白血病及其他恶性血液病重要的治疗方法,但急慢性移植物抗宿主病(graft—versus-host disease,GVHD)作为异基因造血干细胞移植的主要并发症严重影响移植患者的存活率,阻碍移植的临床推广。很多研究发现,高表达Foxp3的CD4^+CD25^+调节性T细胞(regulatory T cells,Treg)不仅能控制急慢性GVHD的发生,而且不影响移植物抗白血病效应(graft-versusleukemia,GVL),在急慢性GVHD发生发展及治疗方面有重要的作用。但Treg细胞在体内的数量很少,不能满足临床应用需求。目前应用外源的IL-2联合TCR、CD28信号通路共同刺激以及运用树突状细胞(dendritic cell,DC)刺激均能达到体外有效扩增Treg细胞的目的。这些扩增的Treg细胞在控制造血干细胞移植过程中急慢性GVHD的发生及防治自身免疫性疾病和移植排斥等方面具有明显作用,在疾病控制和临床应用中具有广阔前景。  相似文献   

7.
王林  马杰 《生物磁学》2011,(11):2184-2186,2162
目前,干细胞移植在多个中枢神经系统疾病的研究和临床应用中取得突破性进展。其中,干细胞移植治疗脑缺血疾病是细胞移植治疗研究中最活跃的领域。但是,移植细胞是否具有神经元的功能及细胞移植治疗的机制目前存在很多争议。本文就干细胞移植治疗缺血性脑疾病后移植细胞的功能和治疗缺血性脑疾病机制的可能途径的研究情况作一综述。  相似文献   

8.
王林  马杰 《现代生物医学进展》2011,11(11):2184-2186
目前,干细胞移植在多个中枢神经系统疾病的研究和临床应用中取得突破性进展。其中,干细胞移植治疗脑缺血疾病是细胞移植治疗研究中最活跃的领域。但是,移植细胞是否具有神经元的功能及细胞移植治疗的机制目前存在很多争议。本文就干细胞移植治疗缺血性脑疾病后移植细胞的功能和治疗缺血性脑疾病机制的可能途径的研究情况作一综述。  相似文献   

9.
目的探讨亲缘性HLA半相合造血干细胞移植(Hi-HSCT)治疗高危或难治性急性白血病的临床疗效及安全性。方法回顾性分析2009年12月至2013年10月在解放军第三〇九总医院接受Hi-HSCT治疗高危或难治性急性白血病患者23例患者临床资料。移植预处理采用改良BUCY(白舒非+环磷酰胺)或CY/TBI(环磷酰胺/全身放疗)方案,急性移植物抗宿主病(aGVHD)预防方案采用抗胸腺细胞球蛋白(ATG)、环孢菌素、甲氨蝶呤及霉酚酸酯,肝静脉闭塞病(VOD)预防采用前列腺素E联合低分子肝素、复方甘草酸苷。两组患者GVHD发生率比较用c2检验,造血重建时间比较用t检验,两组患者生存分析采用Kaplan-Meier生存曲线方法。结果 28例均获造血重建。3年无病生存率(DFS)及总生存率(OS)分别为52﹪和57﹪。Ⅰ~Ⅱ度与Ⅲ~Ⅳ度aGVHD发生率分别为35﹪和12.5﹪,无一例中重度VOD发生。移植相关死亡(TRM)12例,其中8例(67﹪)死于疾病复发,移植时疾病状态为CR1组患者复发死亡率(16﹪),显著低于CR2与复发组(63﹪)(P=0.03)。结论对于无同胞相合的中、高危急性白血病患者,通过改良预处理方案及恰当的GVHD预防措施可获得较高移植成功率,选择合适的移植时机及恰当的支持治疗可显著提高Hi-HSCT移植疗效。  相似文献   

10.
造血干细胞(HSCs)是血液系统中的一类成体干细胞群,具有自我更新和多谱系分化两个基本特征。造血干细胞移植(HSCT)可以治疗退行性疾病和多种血液系统疾病。脐带血来源造血干细胞(CB HSCs)是降低HLA配型要求的突破点,但单份脐带血中HSCs数量不能满足使用要求,为了获得足够数量的CB HSCs,体外扩增是一种可行的方法。近几年,学者们探索了多种体外扩增方法,包括优化细胞生长因子混合物、与基质细胞共培养及加入小分子化合物(SMCs)激动剂等。目前应用细胞因子联合小分子的扩增方法在多个临床试验中获得成功。本文对目前体外扩增CB HSCs的研究进展做一综述。  相似文献   

11.
Radiation-induced (RI) tissue injuries can be caused by radiation therapy, nuclear accidents or radiological terrorism. Notwithstanding the complexity of RI pathophysiology, there are some effective approaches to treatment of both acute and chronic radiation damages. Cytokine therapy is the main strategy capable of preventing or reducing the acute radiation syndrome (ARS), and hematopoietic growth factors (GF) are particularly effective in mitigating bone marrow (BM) aplasia and stimulating hematopoietic recovery. However, first, as a consequence of RI stem and progenitor cell death, use of cytokines should be restricted to a range of intermediate radiation doses (3 to 7 Gy total body irradiation). Second, ARS is a global illness that requires treatment of damages to other tissues (epithelial, endothelial, glial, etc.), which could be achieved using pleiotropic or tissue-specific cytokines. Stem cell therapy (SCT) is a promising approach developed in the laboratory that could expand the ability to treat severe radiation injuries. Allogeneic hematopoietic stem cell transplantation (BM, mobilized peripheral blood and cord blood) transplantation has been used in radiation casualties with variable success due to limiting toxicity related to the degree of graft histocompatibility and combined injuries. Ex vivo expansion should be used to augment cord blood graft size and/or promote very immature stem cells. Autologous SCT might also be applied to radiation casualties from residual hematopoietic stem and progenitor cells (HSPC). Stem cell plasticity of different tissues such as liver or skeletal muscle, may also be used as a source of hematopoietic stem cells. Finally, other types of stem cells such as mesenchymal, endothelial stem cells or other tissue committed stem cells (TCSC), could be used for treating damages to nonhematopoietic organs.  相似文献   

12.
Hematopoietic stem cell transplantation is the oldest and most successful form of stem cell therapy. High dose therapy (HDT) followed by hematopoietic stem cell transplantation allows physicians to administer increased amounts of chemotherapy and/or radiation while minimizing negative side effects such as damage to blood-producing bone marrow cells. Although HDT is successful in treating a wide range of cancers, it leads to lethal therapy-related myelodysplasia syndrome or acute myeloid leukemia (t-MDS/AML) in 5--10% of patients undergoing autologous hematopoietic cell transplantation for Hodgkin lymphoma and non-Hodgkin lymphoma. In this study, we carried out metabolomic analysis of peripheral blood stem cell samples collected in a cohort of patients before hematopoietic cell transplantation to gain insights into the molecular and cellular pathogenesis of t-MDS. Nonparametric tests and multivariate analyses were used to compare the metabolite concentrations in samples from patients that developed t-MDS within 5 years of transplantation and the patients that did not. The results suggest that the development of t-MDS is associated with dysfunctions in cellular metabolic pathways. The top canonical pathways suggested by the metabolomic analysis include alanine and aspartate metabolism, glyoxylate and dicarboxylate metabolism, phenylalanine metabolism, citrate acid cycle, and aminoacyl-t-RNA biosynthesis. Dysfunctions in these pathways indicate mitochondrial dysfunction that would result in decreased ability to detoxify reactive oxygen species generated by chemo and radiation therapy, therefore leading to cancer-causing mutations. These observations suggest predisposing factors for the development of t-MDS.  相似文献   

13.
K Ozawa 《Human cell》1999,12(1):57-61
A hematopoietic stem cell is considered to be one of the ideal targets for gene therapy, and there is expectation that gene therapy will be established based on the technology of hematopoietic stem cell transplantation. However, in recent clinical trials of stem cell gene therapy for monogenic diseases, significant clinical improvement has not been reported. One of the main obstacles is the low efficiency of gene transfer into hematopoietic stem cells. Many investigators have been trying to improve the transduction efficiency to the clinically applicable level. Another approach to solve this problem is to develop the method for selective expansion of transduced hematopoietic stem cells in vivo. We are currently developing novel regulatory genes (selective amplifier genes) for stem cell gene therapy.  相似文献   

14.
Radiotherapy destroys cancer cells and inevitably harms normal human tissues, causing delayed effects of acute radiation exposure (DEARE) and accelerating the aging process in most survivors. However, effective methods for preventing premature aging induced by ionizing radiation are lacking. In this study, the premature aging mice of DEARE model was established after 6 Gy total body irradiation (TBI). Then the therapeutic effects and mechanism of nicotinamide riboside on the premature aging mice were evaluated. The results showed that 6 Gy TBI induced premature aging of the hematopoietic system in mice. Nicotinamide riboside treatment reversed aging spleen phenotypes by inhibiting cellular senescence and ameliorated serum metabolism profiles. Further results demonstrated that nicotinamide riboside supplementation alleviated the myeloid bias of hematopoietic stem cells and temporarily restored the regenerative capacity of hematopoietic stem cells probably by mitigating the reactive oxygen species activated GCN2/eIF2α/ATF4 signaling pathway. The results of this study firstly indicate that nicotinamide riboside shows potential as a DEARE therapeutic agent for radiation-exposed populations and patients who received radiotherapy.  相似文献   

15.
The clinical potential of stem cells   总被引:14,自引:0,他引:14  
Stem cells are defined by their capacity for self-renewal and multilineage differentiation, making them uniquely situated to treat a broad spectrum of human diseases. For example, because hematopoietic stem cells can reconstitute the entire blood system, bone marrow transplantation has long been used in the clinic to treat various diseases. Similarly, the transplantation of other tissue-specific stem cells, such as stem cells isolated from epithelial and neural tissues, can treat mouse disease models and human patients in which epithelial and neural cells are damaged. An alternative to tissue-specific stem cell therapy takes advantage of embryonic stem cells, which are capable of differentiating into any tissue type. Furthermore, nuclear transfer, the transfer of a post-mitotic somatic cell nucleus into an enucleated oocyte, creates a limitless source of autologous cells that, when combined with gene therapy, can serve as a powerful therapeutic tool.  相似文献   

16.
Sordi V  Piemonti L 《Cytotherapy》2011,13(6):647-660
Transplantation is the treatment of choice for many diseases that result in organ failure, but its success is limited by organ rejection. Stem cell therapy has emerged in the last years as a promising strategy for the induction of tolerance after organ transplantation. Here we discuss the ability of different stem cell types, in particular mesenchymal stromal cells, neuronal stem/progenitor cells, hematopoietic stem cells and embryonic stem cells, to modulate the immune response and induce peripheral or central tolerance. These stem cells have been studied to explore tolerance induction to several transplanted organs, such as heart, liver and kidney. Different strategies, including approaches to generating tolerance in islet transplantation, are discussed here.  相似文献   

17.
Effective hematopoiesis requires the presence of normal hematopoietic progenitors and a supporting microenvironment. Impairment of one of these marrow compartments will result in marrow failure. Total body irradiation (TBI) followed by bone marrow transplantation (BMT) is becoming an established modality in the treatment of malignant hematopoietic disorders. The objectives of irradiation are to ablate host marrow and immunocompetent cells as well as to eradicate neoplastic cells. Although leukemic cells are thought to have the same radiobiological characteristics as their normal counterparts, it has been proposed recently that some leukemic cells may possess a substantial capacity to repair sublethal radiation damage. Thus, radiation administered at different dose rates or fractions might differ in its ability to ablate malignant cells and consequently affect the relapse rate in the post-transplant period. Different modes of irradiation can also affect the proliferative capacity and the hematopoietic supportive function of the marrow microenvironment. Bone marrow ablation must be accomplished with the least possible damage to other tissues. Impairment of the proliferative capacity of the marrow microenvironment or its hematopoietic supportive function can result in graft failure in the post-transplant period. In this review, we discuss the radiobiological characteristics of normal hematopoietic, leukemic and stromal cells and their relevance to bone marrow transplantation.  相似文献   

18.
In utero hematopoietic stem cell transplantation is a therapeutic procedure that could potentially cure many developmental diseases affecting the immune and hematopoietic systems. In most clinical and experimental settings of fetal hematopoietic transplantation the level of donor cell engraftment has been low, suggesting that even in the fetus there are significant barriers to donor cell engraftment. In postnatal hematopoietic transplantation donor cells obtained from mobilized peripheral blood engraft more rapidly than cells derived from marrow. We tested the hypothesis that use of donor hematopoietic/stem cells obtained from mobilized peripheral blood would improve engraftment and the level of chimerism after in utero transplantation in non-human primates. Despite the potential competitive advantage from the use of CD 34(+) from mobilized peripheral blood, the level of chimerism was not appreciably different from a group of animals receiving marrow-derived CD 34(+) donor cells. Based on these results, it is unlikely that this single change in cell source will influence the clinical outcome of fetal hematopoietic transplantation.  相似文献   

19.
The acute reaction in the course of a total body irradiation (TBI) appears in an organ-specific damage of the stem cells. Moreover, there are unspecified central-nervous stress reactions. Clinical reactions are obtained by the study and symptomatic therapy is proposed. 90 patients with different forms of leukaemia were observed. We documented the course in a specific "protocol system". Reactions like an increase of body temperature, changes of pulse and blood pressure were registered. The occurrence of gastro-intestinal reactions is a typical symptom of the acute radiation syndrome e.g. vomiting and diarrhoea are demonstrated in dependence of the applicated dose of irradiation. Further symptoms of TBI appeared in the later period. Mucositis, parotitis, a decreased function of the salivary glands and diarrhoea as well as vomiting are characterized by different intensity and temporary termination. A difference between allogeneic and autologous transplantation is caused by a medicamental additional treatment. During the late period these symptoms will disappear completely. Moreover, after TBI and BMT late effects are a cataract and some changes in the hormonal system demanding a specific correction or substitution respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号