首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
捕食风险及其对动物觅食行为的影响   总被引:13,自引:0,他引:13  
对捕食风险的涵义及其对猎物动物觅食行为的影响、猎物动物面对捕食风险时的反应进行了论述。捕食风险可以简单地理解为一定时间内猎物动物被杀死的概率。当捕食风险存在时 ,动物会选择相对安全但觅食效益较低的地点觅食 ;由于死亡率和消化方面的限制 ,一般都会产生食谱收缩 ;觅食活动方式的时间格局也会因捕食风险而发生改变 ,如水生动物的昼夜垂直迁移、某些陆生动物昼行性与夜行性活动的转换、月光回避等。在与捕食者发生遭遇时 ,猎物动物的主要反应是 :①发出某些信号以阻止捕食者的追捕 ;②靠近并注视捕食者 ;③逃逸 ;④在一定的时间恢复觅食活动。在以往的研究中 ,对捕食者种类已经有了较多的了解 ,而对猎物如何判断捕食者丰富度信息、估计风险程度等方面则知之甚少 ;同时 ,对捕食风险水平的调控、对多种因素的综合分析也较少涉及。在今后的研究中 ,还应该考虑研究的尺度问题 ,因为在不同尺度的环境条件下 ,猎物动物对于捕食风险的反应可能大相径庭。  相似文献   

2.
觅食活动是动物生存和繁殖所必需的基本的活动,受个体生理状态(如饥饿)和环境状况(如捕食、食物可利用性)时空变化的影响,能量状态-风险分配假说指出,动物在应对不同风险时会优化觅食和反捕食努力的时间和能量分配。然而,有关啮齿动物觅食决策的能量状态-捕食风险分配假说的研究结论尚不统一。本研究在野外实验室以艾鼬(Mustela eversmannii)气味作为捕食风险刺激源,以非捕食者(马)气味源作为对照,首先通过Y型观测箱检验雌性饥饿长爪沙鼠(Meriones unguiculatus)对捕食者气味的辨别能力(Wilcoxon 秩检验);在此基础上通过中立场行为观测箱分别测定饥饿雌鼠在“有食物和天敌气味源”与“有食物和非天敌气味源”环境下的觅食活动,采用Mann-Whitney Z检验比较两者间的行为差异,以验证急性捕食风险限制饥饿沙鼠觅食活动的假设,并探讨动物在饥饿风险与捕食风险共存情况下的觅食行为对策。结果显示,(1)长爪沙鼠对天敌气味反应明显,厌恶和回避有较高潜在捕食风险的空间;(2)虽然觅食潜伏期在捕食风险存在时有所增加,但急性捕食风险并未影响饥饿沙鼠的觅食频次,沙鼠通过缩短每次觅食的持续时间来应对捕食风险;与此同时,(3)饥饿沙鼠在急性捕食风险条件下对环境探究的次数明显增加,一定程度上提高反捕食努力,且自我修饰表现显著,以缓释捕食压力的恐惧效应。这些结果表明,急性捕食风险不能完全抑制饥饿沙鼠的觅食努力,在有捕食风险情况下,饥饿的长爪沙鼠会权衡觅食获取能量和避免捕食的收益和代价,优化觅食策略。本研究结果支持能量状态-风险分配假说关于在短期高风险情况下反捕食努力分配更多,但当动物在饥饿风险持续时间比例显著增加时,动物最终也必须在高风险情况下觅食的预测,也反映了长爪沙鼠对食物资源不可预测及捕食风险高的干旱半干旱荒漠环境的行为适应对策。  相似文献   

3.
植食性哺乳动物对食物斑块的选择和利用不仅取决于食物的可利用性,且与觅食环境潜存的各种风险紧密关联。捕食风险是否通过作用于动物觅食活动中的警觉影响其功能反应格局。在新鲜白三叶叶片构成的各类食物密集斑块上,测定东方田鼠觅食行为,建立功能反应模型,检验捕食风险对其功能反应格局的作用。结果发现,捕食风险能显著地延长东方田鼠的觅食决定时间,但其摄入率保持稳定,功能反应构型亦未发生改变,仍为Ⅱ型功能反应;除了对照组个体的采食时间随叶片大小增大无明显变动规律外,处理组个体的采食时间及对照组和处理组个体的处理时间、觅食中断时间均随叶片大小及口量的增大呈线性增高趋势,处理组个体的觅食中断时间明显大于对照组个体的;对照组和处理组个体的采食率均随叶片大小及口量呈非线性渐近递减趋势,但处理组个体的采食率较对照组个体的略有降低。结果揭示,在捕食风险压力下,虽然上述觅食参数变异能潜在地降低摄入率,但个体能通过改变觅食活动中各种警觉行为动作如降低嗅闻和静听监视动作的发生频次,增大视觉监视动作比重,以此缓冲捕食风险压力,维持摄入率。摄入率测定值与模型预测值的线性回归极显著,表明,功能反应模型具有良好的预测性。在可利用植物密集斑块,动物觅食活动中的警觉能缓冲捕食风险压力;动物摄入率是由植物大小调控的口量决定的,且受采食与处理食物竞争及觅食中断的制约;其功能反应仍属Ⅱ型功能反应。  相似文献   

4.
捕食者与猎物的关系研究对了解物种捕食行为及种群空间格局具有重要意义。采用Avisoft Bioacoustics超声波仪录制马铁菊头蝠自然状态下的声波以确定其捕食活动强度,用灯诱法、扫网法和飞行阻隔法相结合采集昆虫,搜集蝙蝠粪便并分析其食物组成。结果表明,马铁菊头蝠在8月份活动最频繁,昆虫丰富度在8月份最丰富,马铁菊头蝠捕食活动与鳞翅目丰富度呈显著正相关。马铁菊头蝠主要以鳞翅目和鞘翅目为食,但食性存在明显的月份变化。卡方检验结果表明,马铁菊头蝠捕食的猎物与环境中可利用的昆虫猎物存在显著差异。在食物资源丰富时,马铁菊头蝠选择性地捕食营养丰富的鞘翅目昆虫。  相似文献   

5.
从经济学观点看,动物的任何一种行为都是一种投资,同时又能获得一定的收益。进化和自然选择将趋于使动物行为的净收益增至最大,这种思想也是组建行为生态学最适模型的基础。如果为海滨蟹提供各种大小不同的贻贝任其选食的话,那么它所选食的贻贝大小往往能使它得到最大的能量净收益。为了精确地计算捕食者应当吃多少不同大小的食物,就需要建立一个最适模型。当动物领域行为的收益大于投资时,自然选择就会促进这种行为的产生和发展,而最佳领域大小则可借助于建立经济模型进行预测。将饥饿风险降至最小的原则可应用于动物的觅食决策。绒斑啄木鸟在觅食时可利用它们所收集的信息使其食物摄取率达到最大。  相似文献   

6.
社群学习对植食性鸟类和哺乳动物觅食行为的作用   总被引:1,自引:0,他引:1  
社群学习是动物的一种可塑性行为表现型式。综述了社群学习对植食性鸟类和哺乳动物觅食行为的作用,并述评了其学习机制。社群同伴对动物个体觅食地点、时间和取食方式均有影响,母体摄食的食物信息可通过胎盘和乳汁显著影响幼体的食物选择。动物通过观察学习、嗅闻学习以及味觉厌恶学习,不仅能更快找到食物资源,提高觅食效率,而且能有效降低中毒与被捕食的风险,从而提高其适合度。  相似文献   

7.
粉红椋鸟是社群型动物,在迁徙、繁殖和觅食中都聚集成群。聚群觅食是依靠从隐蔽处惊吓出猎物而采用一种捕食方式,是对其主要食物蝗虫普遍具有保护色的适应。  相似文献   

8.
植食性哺乳动物食物选择的生态学意义及行为机制   总被引:7,自引:1,他引:6  
综述了植食性哺乳动物食物选择行为机制的研究进展。植食性动物的食物选择是觅食生态学研究最为活跃的领域,动物食物选择对策主要有营养选择、植物次生化合物假设、营养平衡假设、最优觅食理论和条件性气味回避假设。动物学习食物选择的行为过程中,觅食个体能通过其认知过程和感知过程来处理食物信息、学习选择食物项目是一种可塑性行为方式,有利于动物获得适应栖息地的行为模式。幼体通过社会学习自母体学习的觅食经验,在幼体一生的食物选择中均具有重要的作用。在环境条件相对稳定条件下,幼体可模仿成体的食物选择模式;在环境剧烈变化的条件下,动物通过试错学习选择的食物项目可能较模仿成体所摄取的食物项目营养含量更丰富。  相似文献   

9.
动物的觅食行为包括对食物的搜寻、捕捉和加工处理三个方面。动物觅食的搜寻方式、捕食效率和处理技能都对动物的食性范围有直接影响。但是这三种觅食技能的相对重要性却依食物的特性而有所不同,以叶栖昆虫为食的小型鸟类就是这方面的一个典型事例,这些鸟类专门以小型和隐蔽的猎物为食,所以它们特别善于搜寻,而不太善于追捕和对付那些比较活跃的动物。下面就动物觅食行为的三种技能分别作些简要介绍。  相似文献   

10.
非人灵长类觅食行为生态学研究进展   总被引:1,自引:0,他引:1  
觅食行为生态学是动物生态学研究的主要内容之一.从食物选择研究方法、食物选择策略机制、觅食行为的影响因素等方面综述非人灵长类动物觅食行为生态学研究进展.食物选择策略和活动时间分配是觅食行为生态学研究的主要内容.非人灵长类动物觅食行为生态学的研究对动物保护、人工驯养和繁殖具有重要意义.  相似文献   

11.
When foraging, animals can maximize their fitness if they are able to tailor their foraging decisions to current environmental conditions. When making foraging decisions, individuals need to assess the benefits of foraging while accounting for the potential risks of being captured by a predator. However, whether and how different factors interact to shape these decisions is not yet well understood, especially in individual foragers. Here we present a standardized set of manipulative field experiments in the form of foraging assays in the tropical lizard Anolis cristatellus in Puerto Rico. We presented male lizards with foraging opportunities to test how the presence of conspecifics, predation-risk perception, the abundance of food, and interactions among these factors determines the outcome of foraging decisions. In Experiment 1, anoles foraged faster when food was scarce and other conspecifics were present near the feeding tray, while they took longer to feed when food was abundant and when no conspecifics were present. These results suggest that foraging decisions in anoles are the result of a complex process in which individuals assess predation risk by using information from conspecific individuals while taking into account food abundance. In Experiment 2, a simulated increase in predation risk (i.e., distance to the feeding tray) confirmed the relevance of risk perception by showing that the use of available perches is strongly correlated with the latency to feed. We found Puerto Rican crested anoles integrate instantaneous ecological information about food abundance, conspecific activity and predation risk, and adjust their foraging behavior accordingly.  相似文献   

12.
In theory, survival rates and consequent population status might be predictable from instantaneous behavioural measures of how animals prioritize foraging vs. avoiding predation. We show, for the 30 most common small bird species ringed in the UK, that one quarter respond to higher predation risk as if it is mass-dependent and lose mass. Half respond to predation risk as if it only interrupts their foraging and gain mass thus avoiding consequent increased starvation risk from reduced foraging time. These mass responses to higher predation risk are correlated with population and conservation status both within and between species (and independently of foraging habitat, foraging guild, sociality index and size) over the last 30 years in Britain, with mass loss being associated with declining populations and mass gain with increasing populations. If individuals show an interrupted foraging response to higher predation risk, they are likely to be experiencing a high quality foraging environment that should lead to higher survival. Whereas individuals that show a mass-dependent foraging response are likely to be in lower quality foraging environments, leading to relatively lower survival.  相似文献   

13.
Hazardous duty pay and the foraging cost of predation   总被引:11,自引:0,他引:11  
We review the concepts and research associated with measuring fear and its consequences for foraging. When foraging, animals should and do demand hazardous duty pay. They assess a foraging cost of predation to compensate for the risk of predation or the risk of catastrophic injury. Similarly, in weighing foraging options, animals tradeoff food and safety. The foraging cost of predation can be modelled, and it can be quantitatively and qualitatively measured using risk titrations. Giving‐up densities (GUDs) in depletable food patches and the distribution of foragers across safe and risky feeding opportunities are two frequent experimental tools for titrating food and safety. A growing body of literature shows that: (i) the cost of predation can be big and comprise the forager's largest foraging cost, (ii) seemingly small changes in habitat or microhabitat characteristics can lead to large changes in the cost of predation, and (iii) a forager's cost of predation rises with risk of mortality, the forager's energy state and a decrease in its marginal value of energy. In titrating for the cost of predation, researchers have investigated spatial and temporal variation in risk, scale‐dependent variation in risk, and the role of predation risk in a forager's ecology. A risk titration from a feeding animal often provides a more accurate behavioural indicator of predation risk than direct observations of predator‐inflicted mortality. Titrating for fear responses in foragers has some well‐established applications and holds promise for novel methodologies, concepts and applications. Future directions for expanding conceptual and empirical tools include: what are the consequences of foraging costs arising from interference behaviours and other sources of catastrophic loss? Are there alternative routes by which organisms can respond to tradeoffs of food and safety? What does an animal's landscape of fear look like as a spatially explicit map, and how do various environmental factors affect it? Behavioural titrations will help to illuminate these issues and more.  相似文献   

14.
Species difference in adaptive use of public information in sticklebacks   总被引:4,自引:0,他引:4  
Animals foraging on variable food sources can refine their estimates of patch quality by monitoring the success of others (i.e. collect 'public information'). Here, we show that both three-spined sticklebacks (Gasterosteus aculeatus) and nine-spined sticklebacks (Pungitius pungitius) use past cues provided by others to locate food but only nine-spined sticklebacks use prior public information to assess patch quality, regardless of whether demonstrators were conspecifics or heterospecifics. Moreover, nine-spined but not three-spined sticklebacks preferentially hid in vegetation during the demonstration, a position from which they could observe both patches simultaneously and collect public information. We conclude that species differences in the use of public information can be explained by variations in habitat choice and response to predation. Our findings expand current understanding of the scope of public-information use in animals by showing that fishes can use public-information in a foraging context and from heterospecifics. The study suggests that public-information use is an adaptation that allows animals vulnerable to predation to acquire valuable foraging information at low risk.  相似文献   

15.
According to the optimal foraging theory, an animal is expected to enter into a given activity depending on associated costs and benefits. In line with this assumption, numerous studies have suggested that energetic reward is balanced by predation risk in foraging decisions. Therefore, the use of information about indirect cues of predation risk such as physical structure (e.g. cover, escape substrate) can give individuals a selective advantage. We studied foraging behaviour in the laboratory rat in an experimental maze; it allowed us to vary two environmental parameters: food availability and physical structure. In a first experiment, rats were offered a choice between two areas only differing in cover density. In a second experiment, the two areas only differed in food density. In a third experiment, we crossed both parameters. Our results showed that high “cover” patch was preferentially exploited (experiment 1) and that rats foraged more in the high food density patch (experiment 2). The last experiment showed that rats partially trade-off between cover density and food availability, even if the safest area was still preferred. Therefore, we suggest that foraging decisions depend primarily on safety needs, rather than food availability, at least when animals are not severely food-deprived.  相似文献   

16.
Hundreds of studies have examined how prey animals assess their risk of predation. These studies work from the basic tennet that prey need to continually balance the conflicting demands of predator avoidance with activities such as foraging and reproduction. The information that animals gain regarding local predation risk is most often learned. Yet, the concept of ‘memory’ in the context of predation remains virtually unexplored. Here, our goal was (i) to determine if the memory window associated with predator recognition is fixed or flexible and, if it is flexible, (ii) to identify which factors affect the length of this window and in which ways. We performed an experiment on larval wood frogs, Rana sylvatica, to test whether the risk posed by, and the uncertainty associated with, the predator would affect the length of the tadpoles'' memory window. We found that as the risk associated with the predator increases, tadpoles retained predator-related information for longer. Moreover, if the uncertainty about predator-related information increases, then prey use this information for a shorter period. We also present a theoretical framework aiming at highlighting both intrinsic and extrinsic factors that could affect the memory window of information use by prey individuals.  相似文献   

17.
The effects of predation on the use of social foraging tactics, such as producing and scrounging, are poorly known in animals. On the one hand, recent theoretical models predict increased use of scrounging with increasing predation risk, when scroungers seeking feeding opportunities also have a higher chance of detecting predators. On the other hand, there may be no relation between tactic use and predation when antipredator vigilance is not compatible with scanning flockmates. We investigated experimentally the effects of predation risk on social foraging tactic use in tree sparrows, Passer montanus. We manipulated predation risk in the field by changing the distance between shelter and a feeder. Birds visited the feeder in smaller flocks, spent less time on it and were somewhat more vigilant far from shelter than close to it. Increased predation risk strongly affected the social foraging tactic used: birds used the scrounger tactic 30% more often far from cover than close to it. Between-flock variability in scrounging frequency was not related to the average vigilance level of the flock members, and within-flock variability in the use of scrounging was negatively related to the vigilance of birds. Our results suggest that in tree sparrows, the increased frequency of scrounging during high predation risk cannot simply be explained by an additional advantage of increasing antipredator vigilance. We propose alternative mechanisms (e.g. increased stochasticity in food supply, and that riskier places are used by individuals with lower reserves) that may explain increased scrounging when animals forage under high predation risk.  相似文献   

18.
Correct decision making is crucial for animals to maximize foraging success and minimize predation risk. Group-living animals can make such decisions by using their own personal information or by pooling information with other group members (i.e. social information). Here, we investigate how individuals might best balance their use of personal and social information. We use a simple modelling approach in which individual decisions based upon social information are more likely to be correct when more individuals are involved and their personal information is more accurate. Our model predicts that when the personal information of group members is poor (accurate less than half the time), individuals should avoid pooling information. In contrast, when personal information is reliable (accurate at least half the time), individuals should use personal information less often and social information more often, and this effect should grow stronger in larger groups. One implication of this pattern is that social information allows less well-informed members of large groups to reach a correct decision with the same probability as more well-informed members of small groups. Thus, animals in larger groups may be able to minimize the costs of collecting personal information without impairing their ability to make correct decisions.  相似文献   

19.
Non-lethal effects of predation in birds   总被引:2,自引:2,他引:0  
WILL CRESSWELL 《Ibis》2008,150(1):3-17
Predators can affect individual fitness and population and community processes through lethal effects (direct consumption or ‘density’ effects), where prey is consumed, or through non‐lethal effects (trait‐mediated effects or interactions), where behavioural compensation to predation risk occurs, such as animals avoiding areas of high predation risk. Studies of invertebrates, fish and amphibians have shown that non‐lethal effects may be larger than lethal effects in determining the behaviour, condition, density and distribution of animals over a range of trophic levels. Although non‐lethal effects have been well described in the behavioural ecology of birds (and also mammals) within the context of anti‐predation behaviour, their role relative to lethal effects is probably underestimated. Birds show many behavioural and physiological changes to reduce direct mortality from predation and these are likely to have negative effects on other aspects of their fitness and population dynamics, as well as affecting the ecology of their own prey and their predators. As a consequence, the effects of predation in birds are best measured by trade‐offs between maximizing instantaneous survival in the presence of predators and acquiring or maintaining resources for long‐term survival or reproduction. Because avoiding predation imposes foraging costs, and foraging behaviour is relatively easy to measure in birds, the foraging–predation risk trade‐off is probably an effective framework for understanding the importance of non‐lethal effects, and so the population and community effects of predation risk in birds and other animals. Using a trade‐off approach allows us to predict better how changes in predator density will impact on population and community dynamics, and how animals perceive and respond to predation risk, when non‐lethal effects decouple the relationship between predator density and direct mortality rate. The trade‐off approach also allows us to identify where predation risk is structuring communities because of avoidance of predators, even when this results in no observable direct mortality rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号