首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 62 毫秒
1.
Recent studies in the literature have appliedphylogenetic methods based on genetic distancesto set priorities for conservation of domesticanimal breeds. While these methods may beappropriate for between-species conservation,they are clearly inappropriate forwithin-species breed conservation, because theyignore within-breed variation. In this paper weshow the basic tools to analyse geneticdiversity in subdivided populations withinspecies, and illustrate the errors incurred byapplying methods based exclusively on geneticdistances. We also show that maximisation ofgenetic diversity (minimisation of coancestryor kinship) is equivalent to maximisation ofeffective population size, as in undividedpopulations, and derive a generalisation ofprevious equations for the prediction ofeffective size. Finally, we discuss thestrategies for conservation in the light of thetheory.  相似文献   

2.
The association between population dynamics and genetic variability is of fundamental importance for both evolutionary and conservation biology. We combined long-term population monitoring and molecular genetic data from 123 offspring and their parents at 28 microsatellite loci to investigate changes in genetic diversity over 14 cohorts in a small and relatively isolated population of mountain goats (Oreamnos americanus) during a period of demographic increase. Offspring heterozygosity decreased while parental genetic similarity and inbreeding coefficients (F(IS) ) increased over the study period (1995-2008). Immigrants introduced three novel alleles into the population and matings between residents and immigrants produced more heterozygous offspring than local crosses, suggesting that immigration can increase population genetic variability. The population experienced genetic drift over the study period, reflected by a reduced allelic richness over time and an 'isolation-by-time' pattern of genetic structure. The temporal decline of individual genetic diversity despite increasing population size probably resulted from a combination of genetic drift due to small effective population size, inbreeding and insufficient counterbalancing by immigration. This study highlights the importance of long-term genetic monitoring to understand how demographic processes influence temporal changes of genetic diversity in long-lived organisms.  相似文献   

3.
    
Selection and mating methods for controlling inbreeding in selection programmes are based on relationships obtained from pedigrees. The efficiency of these methods has always been tested by studies using genetic models of independent loci. However, under linkage the rate of inbreeding obtained from pedigrees can be different from the probability of identity by descent of genes. We simulated a quantitative trait under artificial selection controlled by a large number of genes spread on genome regions of different sizes. A method to control inbreeding based on minimising the average coancestry of selected individuals with a restriction in the loss of selection response, and a mating procedure to control inbreeding were applied. These methods, that use coancestry relationships, were not effective in controlling inbreeding when the genome sizes were smaller than five morgans or so. However, for larger genome sizes the methods were sufficiently efficient. For very tight linkage, methods that utilise molecular information from markers should be used. We finally discuss the effects of the selection of individual major genes on the neutral variability of adjacent genome regions.  相似文献   

4.
Grant  Peter R.  Grant  B. Rosemary  Petren  Kenneth 《Genetica》2001,(1):359-382
Events occurring at the founding of a population, and in the next few generations, are potentially of great importance for the future evolution of the population. This study reports demographic, genetic, and morphological changes that took place during and after the colonization of the small Galápagos island of Daphne Major by three male and two female large ground finches, Geospiza magnirostris, at the end of 1982. Using assignment tests with microsatellite DNA data we demonstrate heterogeneity among the immigrants. Their sources included both a near island (Santa Cruz) and a far island (Marchena). However, almost all immigrants that stayed to breed were from an intermediate island (Santiago) and its satellites. Song may have been responsible for this selectivity. Mean heterozygosity stayed roughly constant over the next 15 years while allelic diversity almost doubled, after an initial decline, as the breeding population increased to a maximum of 30 pairs. Although close inbreeding occurred, with a reduction in heterozygosity, an expected net decline in heterozygosity did not occur, for two reasons: it was counteracted by continuing gene flow from immigrants at a low rate, and inbred birds (in one cohort) were at a selective disadvantage. An abrupt step-function shift in beak shape occurred after 9 years. Thus the study provides evidence of drift and selection causing morphological and genetic divergence in the establishment of a new population and in the first few generations.  相似文献   

5.
  总被引:1,自引:0,他引:1  
Abstract Theory predicts a significant relationship between the size of a population and the magnitude and composition of its genetic load, but few natural populations have been investigated. We examined the magnitude of genetic load due to recessive deleterious alleles (GL) both segregating and fixed within Gentianella germanica populations of varying size by selfing and reciprocally crossing plants within and between natural populations according to a partial diallel design and by comparing the performance of the experimental progeny in a common-garden experiment. The results show that GL for total fitness in small populations (fewer than 200 plants) was mainly due to fixed recessive deleterious alleles, whereas GL for total fitness in larger populations (more than 200 plants) appeared to be mainly due to segregating deleterious recessive alleles. The total fitness of selfed plants increased with decreasing population size, indicating some purging of deleterious alleles associated with declining population sizes. The magnitudes of GL due to fixed deleterious alleles in small populations and segregating deleterious alleles in large populations, however, were overall similar, suggesting that purging selection was an insignificant force when compared to genetic drift in determining the magnitude of GL in small natural populations in this species. The results of this study highlight the importance of population size in determining the dynamics of genetic loads of natural populations and are overall in line with a large body of theoretical work indicating that small populations may face higher extinction risks due to the fixation and accumulation of deleterious alleles of small effect.  相似文献   

6.
Refugia are expected to preserve genetic variation of relict taxa, especially in polyploids, because high gene dosages could prevent genetic erosion in small isolated populations. However, other attributes linked to polyploidy, such as asexual reproduction, may strongly limit the levels of genetic variability in relict populations. Here, ploidy levels and patterns of genetic variation at nuclear microsatellite loci were analysed in Prunus lusitanica, a polyploid species with clonal reproduction that is considered a paradigmatic example of a Tertiary relict. Sampling in this study considered a total of 20 populations of three subspecies: mainland lusitanica (Iberian Peninsula and Morocco), and island azorica (Azores) and hixa (Canary Islands and Madeira). Flow cytometry results supported an octoploid genome for lusitanica and hixa, whereas a 16‐ploid level was inferred for azorica. Fixed heterozygosity of a few allele variants at most microsatellite loci resulted in levels of allelic diversity much lower than those expected for a high‐order polyploid. Islands as a whole did not contain higher levels of genetic variation (allelic or genotypic) than mainland refuges, but island populations displayed more private alleles and higher genotypic diversity in old volcanic areas. Patterns of microsatellite variation were compatible with the occurrence of clonal individuals in all but two island populations, and the incidence of clonality within populations negatively correlated with the estimated timing of colonization. Our results also suggest that gene flow has been very rare among populations, and thus population growth following founder events was apparently mediated by clonality rather than seed recruitment, especially in mainland areas. This study extends to clonal taxa the idea of oceanic islands as important refugia for biodiversity, since the conditions for generation and maintenance of clonal diversity (i.e. occasional events of sexual reproduction, mutation and/or seed immigration) appear to have been more frequent in these enclaves than in mainland areas.  相似文献   

7.
    
It has been assumed, based on theoretical studies, that lethals with the level of dominance estimated from experimental studies would have an allele frequency that is virtually independent of effective population size. However, here it is shown numerically that the expected frequency of lethals with low levels of dominance is also dependent on finite population size, although not as much as completely recessive lethals. This finding is significant in determining the standing level of inbreeding depression and the consequent potential for the evolution of self-fertilization. In addition, the architecture of genetic variation influencing inbreeding depression in populations with a history of small size may be of important consequence in endangered species. Finally, it is shown that the loss of lethal genetic variation often occurs much more quickly than the regeneration of lethal variation by mutation. This asymmetry may result in a lower standing genetic variation for inbreeding depression than expected from mutation rates and contemporary population size data.  相似文献   

8.
9.
Gene products of 18 allozyme loci from 1268 individuals of a Japanese freshwater goby called donko, Odontobutis obscura (Odontobutidae; Gobioidei), from 33 localities in the Koya River, Yamaguchi Prefecture, Japan, were investigated to determine the extent of genetic divergence and gene flow within a river metapopulation. Genetic indices including GST(mean FST 0.182), FIT(mean 0.192) and D(mean 0.015) indicated a considerable divergence of local populations in the river. The genetic distance (D) and channel distance between pairs of populations did not show a good correlation, and geographical neighbors were not always genetic neighbors. Therefore, the genetic divergence of populations is attributable to independent genetic drift with restricted gene flow among populations. The agricultural dams and weirs constructed across the river must be responsible for the restricted gene flow. The metapopulation structure of O. obscura in the Koya River may be barely sustained by one-way gene flow only from the upper to the lower populations. An occasional artificial transplantation of some individuals from the lower to the upper populations may be one alternative to maintain a river metapopulation structure safely.  相似文献   

10.
居群遗传学原理及其在珍稀濒危植物保护中的应用   总被引:20,自引:0,他引:20       下载免费PDF全文
居群遗传学在珍稀濒危植物保护研究中有着重要的应用价值。本文首先介绍了居群遗传学中的几个重要概念——有效居群大小、近交繁殖、遗传漂变和基因流,然后详细叙述了居群遗传学原理在珍稀濒危植物保护中的应用途径和前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号