首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
We examined how maxillary molar dimensions change with body and skull size estimates among 54 species of living and subfossil strepsirrhine primates. Strepsirrhine maxillary molar areas tend to scale with negative allometry, or possibly isometry, relative to body mass. This observation supports several previous scaling analyses showing that primate molar areas scale at or slightly below geometric similarity relative to body mass. Strepsirrhine molar areas do not change relative to body mass(0.75), as predicted by the metabolic scaling hypothesis. Relative to basicranial length, maxillary molar areas tend to scale with positive allometry. Previous claims that primate molar areas scale with positive allometry relative to body mass appear to rest on the incorrect assumption that skull dimensions scale isometrically with body mass. We identified specific factors that help us to better understand these observed scaling patterns. Lorisiform and lemuriform maxillary molar scaling patterns did not differ significantly, suggesting that the two infraorders had little independent influence on strepsirrhine scaling patterns. Contrary to many previous studies of primate dental allometry, we found little evidence for significant differences in molar area scaling patterns among frugivorous, folivorous, and insectivorous groups. We were able to distinguish folivorous species from frugivorous and insectivorous taxa by comparing M1 lengths and widths. Folivores tend to have a mesiodistally elongated M1 for a given buccolingual M1 width when compared to the other two dietary groups. It has recently been shown that brain mass has a strong influence on primate dental eruption rates. We extended this comparison to relative maxillary molar sizes, but found that brain mass appears to have little influence on the size of strepsirrhine molars. Alternatively, we observed a strong correlation between the relative size of the facial skull and relative molar areas among strepsirrhines. We hypothesize that this association may be underlain by a partial sharing of the patterning of development between molar and facial skull elements.  相似文献   

2.
The ilium and ischiopubic bones of the pelvis arise from different regulatory pathways, and as a result, they may be modular in their organization such that features on one bone may be morphologically integrated with each other, but not with features on the other pelvic bone. Modularity at this gross level of organization can act to increase the ability of these structures to respond to selection pressures (i.e., their evolvability). Furthermore, recent work has suggested that the evolution of the human pelvis was facilitated by low levels of integration and high levels of evolvability relative to other African apes. However, the extent of morphological integration and modularity of the bones of the pelvic girdle is not well understood, especially across the entire order of primates. Therefore, the hypothesis that the ilium and ischiopubis constitute separate modules was tested using three-dimensional landmark data that were collected from 752 pelves from 35 primate species. In addition, the hypothesis that the human pelvis demonstrates greatest evolvability was tested by comparing it to all other primates. The results demonstrate that regardless of phylogeny and locomotor function, the primate pelvis as a whole is characterized by low levels of overall integration and high levels of evolvability. In addition, the results support the developmental hypothesis of separate ilium and ischiopubis modular units. Finally, all primates, including humans, apparently share a common pattern of integration, modularity, and evolvability in the pelvis.  相似文献   

3.
This study aims to clarify the relationship of primate bony pelvic structure to locomotor habit. As with most of the postcranial skeleton, the pelvic bones of species within the Ceboidea and the Cercopithecoidea are remarkably similar visually except for variations in size. Yet there are substantial differences in locomotor pattern between the species in these taxa. I performed canonical analyses on a sample of 17 pelvic variables describing 22 primate species of the Ceboidea, the Cercopithecoidea, and the Hominoidea to discover which variables were significant in separating them into groups. In both analyses there was good separation of major taxa and additional separation of groups that differed in locomotor habit. The separation of colobine from cercopithecine monkeys was particularly consistent. In the analysis, including all 22 species, the variables given particular weight by the canonical analysis were the same as those traditionally used by anatomists for the same purpose. Specifically, breadth of the ischial tuberosity (reflecting presence or absence of ischial callosities) separated the Old from the New World monkeys. Breadth of the iliac tuberosity, in which man and to some extent other hominoids differ from other primates, and ilium height, in which man differs from other primates, were significant. Sagittal diameter of the pelvis was also substantially weighted. Having established that the technique would select variables of anatomical significance, the same method was applied to a study of monkeys only where the characteristics that differ between groups are not well established. Breadth of the ischial tuberosity was again important in separating the Ceboidea from the Cercopithecoidea. Discrimination of locomotor groups within these large divisions was brought about mainly by ischial length and the sagittal diameter of the pelvis. In studying these variables and their relationship to size in greater detail, it was found that among cercopithecoid monkeys, the colobines showed relatively lower values than did cercopithecines for both these dimensions. Atelines showed low values for ischial length but high values for the sagittal pelvic diameter. Biomechanical explanations of these observations are suggested.  相似文献   

4.
Biomechanical scaling of long bone joint surface areas was investigated in 13 species of anthropoid primates. It was proposed that joint surface areas should scale with positive allometry with respect to body size in order to maintain relatively constant safety factors for joints in small and large animals and that modifications from the overall pattern of scaling may be expected in the limb joints of species exhibiting specialized locomotor behaviours that radically alter limb loading. Within anthropoids, the brachiating primates, white-handed gibbons ( Hylobates lar ) and black-handed spider monkeys ( Ateles geoffroyi ), were used to test this hypothesis. Total joint surface areas were found to scale with significant positive allometry in 11 of 12 limb joints. The observed pattern of interspecific allometry supports the hypothesis that weight bearing is a major constraint on the design of joints. This positive interspecific allometry is reflected at the intraspecific level as well, with larger joints of larger species showing significant intraspecific scaling. Suspensory species showed no significant deviations from the overall anthropoid pattern, despite their reduced compressive loading of the limb joints, even after controlling for joint mobility. These results suggest that, while evolutionary changes in locomotor behaviour that produce significant increases in loading of a joint may be accompanied by selection for increased joint surface areas, adoption of locomotor repertoires that reduce limb loading may have no selective effect on joint morphology, and joint design in these cases will reflect the biomechanics of the ancestral locomotor condition.  相似文献   

5.
To examine the evolutionary differences between hominoid locomotor systems, a number of observations concerning the growth of the pelvis among the great apes as compared to modern and fossil hominids are reported. We are interested in the size and shape of the coxal bones at different developmental stages across species that may elucidate the relationship between ontogeny and phylogeny (i.e., heterochrony) in the hominoid pelvis. Our hypotheses are: (1) do rates of absolute growth differ?, (2) do rates of relative growth differ?, and (3) does heterochrony explain these differences? Bivariate and multivariate analyses of pelvic dimensions demonstrate both the diversity of species-specific ontogenetic patterns among hominoids, and an unequivocal separation of hominids and the great apes. Heterochrony alone fails to account for the ontogenetic differences between hominids and the great apes. Compared to recent Homo,Australopithecus can be described as 'hyper-human' from the relative size of the ischium, and short but broad ilium. Australopithecus afarensis differs from Australopithecus africanus by its relatively long pubis. In multivariate analyses of ilium shape, the most complete coxal bone attributed to Homo erectus, KNM-ER 3228, falls within the range of juvenile and adult Australopithecus, whereas Broken Hill falls within the range of modern Homo, suggesting that the modern human ilium shape arose rather recently. Among the great apes, patterns of pelvic ontogeny do not exclusively separate the African apes from Pongo.  相似文献   

6.
Multivariate analysis as a technique for investigating locomotor differentiation among primates has proven its power and usefulness in many studies on various skeletal dimensions. In these analyses primate genera were distributed and sometimes clustered in a manner that was interpretable based on current knowledge of gross locomotor differences. In an effort to advance our understanding of arboreality and terrestriality in primates, the present research involves a careful look for the most subtle morphological differences in locomotor behavior. It is believed that by looking at such subtle shape differences an understanding of what it means morphologically for a primate to be either more or less arboreal may be achieved. The species within the primate genus Cercopithecus were analyzed. This genus includes species which may be placed along a habitat (ground-living to tree-dwelling) or activity spectrum. The different habitats or activity patterns clearly require slight variations in patterns of movement, which in turn may require subtle structural adaptations. Multivariate analyses of 67 postcranial variables on seven species within the genus allowed detection of slight degrees of morphological variation. However, when morphological differences are small, size variance among specimens may take on an inflated importance. A substantial amount of work was devoted to finding the least biased method of removing size variance from the variables while incorporating a discrete size variable into the study. Using these transformed skeletal variables, interspecific groupings were discovered. Much of this infrastructure is then related to differing locomotor behavior and provides an insight into the fine structure of primate locomotor adaptation in an arboreal habitat.  相似文献   

7.
Most analyses on allometry of long bones in terrestrial mammals have focused on dimensional allometry, relating external bone measurements either to each other or to body mass. In this article, an analysis of long bone mass to body mass in 64 different species of mammals, spanning three orders of magnitude in body mass, is presented. As previously reported from analyses on total skeletal mass to body mass in terrestrial vertebrates, the masses of most appendicular bones scale with significant positive allometry. These include the pectoral and pelvic girdles, humerus, radius+ulna, and forelimb. Total hindlimb mass and the masses of individual hindlimb bones (femur, tibia, and metatarsus) scale isometrically. Metapodial mass correlates more poorly with body mass than the girdles or any of the long bones. Metapodial mass probably reflects locomotor behavior to a greater extent than do the long bones. Long bone mass in small mammals (<50 kg) scales with significantly greater positive allometry than bone mass in large (>50 kg) mammals, probably because of the proportionally shorter long bones of large mammals as a means of preserving resistance to bending forces at large body sizes. The positive allometric scaling of the skeleton in terrestrial animals has implications for the maximal size attainable, and it is possible that the largest sauropod dinosaurs approached this limit.  相似文献   

8.
Measures of reproductive output in turtles are generally positively correlated with female body size. However, a full understanding of reproductive allometry in turtles requires logarithmic transformation of reproductive and body size variables prior to regression analyses. This allows for slope comparisons with expected linear or cubic relationships for linear to linear and linear to volumetric variables, respectively. We compiled scaling data using this approach from published and unpublished turtle studies (46 populations of 25 species from eight families) to quantify patterns among taxa. Our results suggest that for log–log comparisons of clutch size, egg width, egg mass, clutch mass, and pelvic aperture width to shell length, all scale hypoallometrically despite theoretical predictions of isometry. Clutch size generally scaled at ~1.7 to 2.0 (compared to an isometric expectation of 3.0), egg width at ~0.5 (compared to an expectation of 1.0), egg mass at ~1.1 to 1.3 (3.0), clutch mass at ~2.5 to 2.8 (3.0), and pelvic aperture width at 0.8–0.9 (1.0). We also found preliminary evidence that scaling may differ across years and clutches even in the same population, as well as across populations of the same species. Future investigators should aspire to collect data on all these reproductive parameters and to report log–log allometric analyses to test our preliminary conclusions regarding reproductive allometry in turtles.  相似文献   

9.
The primate distal humerus has been used both in phylogenetic reconstruction and in assessing locomotor and postural adaptations. This study uses an allometric approach to predict locomotor patterns of extant primates regardless of phylogenetic position. By showing the relationship between form and function in living primate taxa it will be possible to use this data set to predict locomotor behavior of extinct primates. Several linear measurements were taken from the distal humerus of 71 extant primate species (anthropoids and prosimians). Allometric regressions of each measurement were performed with mandibular M2 area as a surrogate for body size. These measurements were used to determine if significant differences in distal humerus morphology exist among locomotor groups. The results were then used to test several hypotheses about the relationship between humeral form and function. For example, the hypothesis that suspensory primates have a large medial epicondyle is confirmed; the hypothesis that terrestrial quadrupeds have a deep olecranon fossa could not be confirmed with quantitative data. In addition to this hypothesis testing, the residuals from the allometric regressions of the humeral measurements were used in a discriminant functions analysis to estimate locomotor behavior from distal humerus morphology. The discriminant functions analysis correctly reclassified 64/71 (90%) species.  相似文献   

10.
Allometry of behavior   总被引:1,自引:0,他引:1  
The study of allometric and size scaling relationships is well developed in most biological fields, but lags behind in the area of animal behavior. Part of the reason for this deficit is that scaling relationships of behaviors tend to be inherently more 'noisy' than other biological scaling relationships. However, body size has a pervasive influence on the performance of animals in their environments. For example, the frequently strong relationship between power-to-mass ratios and locomotor performance means that smaller species and individuals enjoy superior locomotor performance (burst acceleration and maneuverability) than larger species, particularly within a clade. We suggest that these size-related functional influences on performance profoundly influence many aspects of animal behavior, such as how animals forage, fight, flee, perceive danger, respond to risk and interact with other individuals. We outline exciting avenues for research on the allometry of behavior by integrating scaling and functional perspectives.  相似文献   

11.
Based on correlations between the cranial base angle (CBA) and the index of relative encephalization (IRE, calculated as the cubed root of brain volume divided by basicranial length), several recent studies have identified relative brain size as the factor most responsible for determining basicranial flexion in primates. IRE, however, scales with positive allometry relative to body mass, unlike the negatively allometric relationship between brain volume and body mass. This poses new questions concerning the factors underlying the correlation between IRE and CBA. Specifically, if basicranial flexion represents a spatial solution to the problem of housing a large brain within a neurocranium of limited size, then why is it that the problem is greatest in those species whose brains are smallest relative to body mass? To address this question, the scaling relationships of IRE and the measurements used to calculate it were examined in 87 primate species. It was found that the positive allometry of IRE is due to the fact that its denominator, basicranial length (BL), scales with very strong negative allometry relative to body mass. The scaling relationship of BL may reflect the fact that the noncortical components of the brain (i.e., diencephalon, mesencephalon, medulla) also scale with strong negative allometry relative to body mass, perhaps because of energetic constraints. Importantly, BL and these three brain components scale isometrically against each other. Thus, although cranial base flexion may be an adaptation to accommodate the size of the brain relative to basicranial length, the reason why that adaptation is necessary is not the evolution of a large brain, but rather the evolution of a short cranial base. In so far as basicranial length is affected by the strong negative allometry of the diencephalon, mesencephalon and medulla, the scaling relationships of these brain components are therefore indirectly responsible for the evolution of basicranial flexion.  相似文献   

12.
Feeding systems and behaviors must evolve to satisfy the metabolic needs of organisms. This includes modifications to feeding systems as body size and metabolic needs change. Using our own data and data from the literature, we examine how size-related changes in metabolic needs are met by size-related changes in daily feeding time, chew cycle duration, volume of food processed per chew, and daily food volume intake in primates. Increases in chew cycle duration with body mass in haplorhine primates are described by a simple power function (cycle time α body mass0.181). Daily feeding time increases with body mass when analyzed using raw data from the “tips” of the primate phylogenetic tree, but not when using phylogenetically independent contrasts. Whether or not daily feeding time remains constant or increases with body mass, isometry of ingested bite size and the slow rate of increase in chew cycle time with body size combine to allow daily ingested food volume to scale faster than predicted by metabolic rate. This positive allometry of daily ingested food volume may compensate for negative allometry of nutrient concentration in primate foods. Food material properties such as toughness and hardness have little impact on scaling of chew cycle durations, sequence durations, or numbers of chews in a sequence. Size-related changes in food processing abilities appear to accommodate size-related changes in food material properties, and primates may alter ingested bite sizes in order to minimize the impacts of food material properties on temporal variables such as chew cycle duration and chew sequence duration.  相似文献   

13.
Recent survey of the fossiliferous variegated mudstones of the PK1 locality (Sabapondaung) in the late middle Eocene Pondaung Formation (central Myanmar) has led to the recovery of a partial right innominate of a relatively large-bodied primate. Given its size and provenance, this bone probably belongs to the same individual represented by the NMMP 20 primate partial skeleton described previously from the same locality. The new fossil, which preserves the region around the acetabulum and the adjacent part of the ilium, clearly exhibits strepsirrhine rather than anthropoid affinities. This addition to our knowledge of the NMMP 20 partial skeleton allows us to reassess the different locomotor interpretations that have been proposed for this specimen. Aspects of pelvic morphology suggest that the NMMP 20 partial skeleton documents a primate that probably engaged in active arboreal quadrupedalism similar to that practiced by medium-sized Malagasy lemurids rather than lorislike slow moving and climbing. Given the conflicting phylogenetic signals provided by NMMP 39 (a talus showing anthropoid affinities) and NMMP 20 (a partial skeleton bearing adapiform affinities), it appears that two higher-level taxonomic groups of relatively large-bodied primates are documented in the Pondaung Formation. The recent discovery of two taxa of sivaladapid adapiforms from the Pondaung Formation indicates that the assumption that the NMMP 20 partial skeleton belongs to an amphipithecid can no longer be sustained. Instead, this specimen apparently documents a third large-bodied sivaladapid species in the Pondaung Formation.  相似文献   

14.
Five measurements were taken on the ossa coxae of 454 adult primates representing Ceboidea, Cercopithecoidea and Hominoidea. Sex differences in these variables and their relationships to overall body size and sexual dimorphism were tested by means of Student's t-test and regression analysis. The study attempts to clarify the nature of primate pelvic sexual dimorphism, including allometric effects, and more specifically, test the assertion made by Mobb and Wood (1977) that sexual dimorphism in body size in not an important determinant in pelvic sex differences. Variables that contribute to the size of the birth canal tend to be larger in females than males in all taxa studied except two. In these, Hylobates and Alouatta, there were no significant differences between the sexes for any of the five variables. In general, sexual dimorphism in variables contributing to the size of the birth canal was correlated (r ? 0.8) with sexual dimorphism in body size. Furthermore, the coefficients of allometry underlying pelvic sex differences were shown to be moderately correlated (r ? 0.5) with sexual dimorphism in size. The influence of other adaptive factors on primate pelvic sexual dimorphism are also briefly discussed.  相似文献   

15.
The importance of allometry as an analytic tool is well recognized in the literature of primate morphology. However, a number of recent studies have illustrated how interpretive difficulties can arise when researchers confound different types of allometric data. Such confusion is due less to carelessness than to uncertainty about how different types of allometry are related. The present study examines the relationship between two types—ontogenetic and interspecific allometry–in the case of organ weight scaling in six species of Old World monkeys. Accepting the interpretation of interspecific allometry as a reflection of functional scaling constraints, the results of this analysis indicate how ontogenetic patterns have been modified in different-sized species to maintain compliance with these constraints. Specifically, for the heart and lungs it appears that vertical transpositions of individual species' ontogenies are dictated by isometric interspecific allometry, while in the case of the kidneys and liver, the relation of negative allometry across species entails alteration of the relative growth coefficients of the individual species. While these conclusions can at present only be applied to organ weight scaling, the approach of examining interspecific patterns in light of developmental differences between species should prove very helpful in our efforts to understand the phenomena of size and scaling.  相似文献   

16.
The "Kleiber relationship" describes the interspecific allometry between body size and metabolism. Like other allometric relationships, the Kleiber relationship not only summarizes scaling effects across species but also provides a standard by which species can be compared. One well-noted deviation from the Kleiber relationship is "hypometabolism": metabolic rates below that expected for a given size. It has been suggested in the literature that hypometabolism may be a primitive mammalian trait, a thermoregulatory adaptation, an adaptation to arboreal folivory, or an adaptation to a diet that is deviant for body size. Data on primate physiology and behavior are used to evaluate these hypotheses. Only the deviant-diet hypothesis is supported by the data on nonhuman primates. Indeed, the Jarman-Bell relationship, which is the basis for this hypothesis, provides a more coherent explanation of correlated features of animal physiology and behavior than do the alternative models. Hypometabolism may be an energy-conserving adaptation to a variety of nutritional stresses. The present analysis underscores the point that metabolic rate, like foraging behavior, should be thought of as evolutionarily labile.  相似文献   

17.
Primate locomotor adaptation and evolution is a principal and thriving area of research by biological anthropologists. Research in this field generally targets hypotheses regarding locomotor kinetics and kinematics, form–function associations in both the soft and hard tissue components of the musculoskeletal system, and reconstructing locomotor behavior in fossil primates. A wide array of methodological approaches is used to address adaptive hypotheses in all of these realms. Recent advances in three-dimensional shape capture, musculoskeletal physiological measurements, and analytical processing technologies (e.g., laser and CT-scans, 3D motion analysis systems, finite element analysis) have facilitated the collection and analysis of larger and more complex locomotor datasets than previously possible. With these advances in technology, new methods of form–function analyses can be developed to produce a more thorough understanding of how form reflects an organism's mechanical requirements, how shape is influenced by external environmental factors, and how these investigations of living taxa can inform questions of primate paleobiology. The papers in this special section of the American Journal of Physical Anthropology present research that builds on that foundation, by combining new data on living primates and new methodologies and approaches to answer a range of questions on extant and extinct primates. Am J Phys Anthropol 156:495–497, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

18.
The hands and feet of primates fulfill a variety of biological roles linked with food acquisition and positional behavior. Current explanations of shape differences in cheiridial morphology among prosimians are closely tied to body size differences. Although numerous studies have examined the relationships between body mass and limb morphology in prosimians, no scaling analysis has specifically considered hand and foot dimensions and intrinsic proportions. In this study, we present such an analysis for a sample of 270 skeletal specimens distributed over eight prosimian families. The degree of association between size and shape was assessed using nonparametric correlational techniques, while the relationship between each ray element length and body mass (from published data and a body mass surrogate) was tested for allometric scaling. Since tarsiers and strepsirrhines encompass many taxa of varying degrees of phylogenetic relatedness, effective degrees of freedom were calculated, and comparisons between families were performed to partially address the problem of statistical nonindependence and "phylogenetic inertia." Correlational analyses indicate negative allometry between relative phalangeal length (as reflected by phalangeal indices) and body mass, except for the pollex and hallux. Thus, as size increases, there is a significant decrease in the relative length of the digits when considering all prosimian taxa sampled. Regression analyses show that while the digital portion of the rays scales isometrically with body mass, the palmar/plantar portion of the rays often scales with positive allometry. Some but not all of these broadly interspecific allometric patterns remain statistically significant when effective degrees of freedom are taken into account. As is often the case in interspecific scaling, comparisons within families show different scaling trends in the cheiridia than those seen across families (i.e., lorisids, indriids, and lemurids exhibit rather different allometries). The interspecific pattern of positive allometry that appears to best characterize the metapodials of prosimians, especially those of the foot, parallels differences found in the morphology of the volar skin. Indeed, relatively longer metapodials appear to covary with flatter and more coalesced volar pads, which in turn slightly improve frictional force for animals that are at a comparative disadvantage while climbing because of their larger mass. Despite the essentially isometric relationship found between digit length and body mass across prosimians, examination of the residual variation reveals that tarsiers and Daubentonia possess, relative to their body sizes, remarkably long fingers. Such marked departures between body size and finger length observed in these particular primates are closely linked with specialized modes of prey acquisition and manipulation involving the hands.  相似文献   

19.
Gobiid fishes possess a distinctive ventral sucker, formed from fusion of the pelvic fins. This sucker is used to adhere to a wide range of substrates including, in some species, the vertical cliffs of waterfalls that are climbed during upstream migrations. Previous studies of waterfall‐climbing goby species have found that pressure differentials and adhesive forces generated by the sucker increase with positive allometry as fish grow in size, despite isometry or negative allometry of sucker area. To produce such scaling patterns for pressure differential and adhesive force, waterfall‐climbing gobies might exhibit allometry for other muscular or skeletal components of the pelvic sucker that contribute to its adhesive function. In this study, we used anatomical dissections and modeling to evaluate the potential for allometric growth in the cross‐sectional area, effective mechanical advantage (EMA), and force generating capacity of major protractor and retractor muscles of the pelvic sucker (m. protractor ischii and m. retractor ischii) that help to expand the sealed volume of the sucker to produce pressure differentials and adhesive force. We compared patterns for three Hawaiian gobiid species: a nonclimber (Stenogobius hawaiiensis), an ontogenetically limited climber (Awaous guamensis), and a proficient climber (Sicyopterus stimpsoni). Scaling patterns were relatively similar for all three species, typically exhibiting isometric or negatively allometric scaling for the muscles and lever systems examined. Although these scaling patterns do not help to explain the positive allometry of pressure differentials and adhesive force as climbing gobies grow, the best climber among the species we compared, S. stimpsoni, does exhibit the highest calculated estimates of EMA, muscular input force, and output force for pelvic sucker retraction at any body size, potentially facilitating its adhesive ability. J. Morphol. 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

20.
Because selection on juvenile life-history stages is likely strong, disproportionately high levels of performance (e.g., sprint speed, endurance, etc.) might be expected. Whereas this phenomenon has been demonstrated with respect to locomotor performance, data for feeding are scarce. Here, we investigate the relationships among body dimensions, head dimensions, and bite force during growth in lizards and turtles. We also investigate whether ontogenetic changes in bite performance are related to changes in diet. Our analyses show that, for turtles, head dimensions generally increase with negative allometry. For lizards, heads scale as expected for geometrically growing systems. Bite force generally increased isometrically with carapace length in turtles but showed significant positive allometry relative to body dimensions in lizards. However, both lizards and turtles display positive allometric scaling of bite force relative to some measures of head size throughout ontogeny, suggesting (1) strong selection for increased relative bite performance with increasing head size and (2) intrinsic changes in the geometry and/or mass of the jaw adductors during growth. Whereas our data generally do not provide strong evidence of compensation for lower absolute levels of performance, they do show strong links among morphology, bite force, and diet during growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号