首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
One specific hypothesis explaining the evolution of extra-pair reproduction (EPR) by socially monogamous females is that EPR is under indirect selection because extra-pair offspring (EPO) sired by extra-pair males have higher additive genetic value for fitness than the within-pair offspring (WPO) a female would have produced had she solely mated with her socially paired male. This hypothesis has not been explicitly tested by comparing additive genetic value between EPO and the WPO they replaced. We show that the difference in additive genetic breeding value (BV) between EPO and the WPO they replaced is proportional to the genetic covariance between offspring fitness and male net paternity gain through EPR, and estimate this covariance with respect to offspring recruitment in free-living song sparrows (Melospiza melodia). Recruitment and net paternity gain showed non-zero additive genetic variance and heritability, and negative genetic covariance. Opposite to prediction, EPO therefore had lower BV for recruitment than the WPO they replaced. We thereby demonstrate an explicit quantitative genetic approach to testing the hypothesis that EPR allows polyandrous females to increase offspring additive genetic value, and suggest that there may be weak indirect selection against female EPR through reduced additive genetic value for recruitment of EPO versus WPO in song sparrows.  相似文献   

2.
Female extra‐pair reproduction in socially monogamous systems is predicted to cause cuckolded socially‐paired males to conditionally reduce paternal care, causing selection against extra‐pair reproduction and underlying polyandry. However, existing models and empirical studies have not explicitly considered that cuckolded males might be related to their socially‐paired female and/or to her extra‐pair mate, and therefore be related to extra‐pair offspring that they did not sire but could rear. Selection against paternal care, and hence against extra‐pair reproduction, might then be weakened. We derive metrics that quantify allele‐sharing between within‐pair and extra‐pair offspring and their mother and her socially‐paired male in terms of coefficients of kinship and inbreeding. We use song sparrow (Melospiza melodia) paternity and pedigree data to quantify these metrics, and thereby quantify the joint effects of extra‐pair reproduction and inbreeding on a brood's total allelic value to its socially‐paired parents. Cuckolded male song sparrows were almost always detectably related to extra‐pair offspring they reared. Consequently, although brood allelic value decreased substantially following female extra‐pair reproduction, this decrease was reduced by within‐pair and extra‐pair reproduction among relatives. Such complex variation in kinship within nuclear families should be incorporated into models considering coevolutionary dynamics of extra‐pair reproduction, parental care, and inbreeding.  相似文献   

3.
The hypothesis that female extra-pair reproduction in socially monogamous animals reflects indirect genetic benefits requires that there be additive and/or nonadditive genetic variance in fitness. However, the specific hypotheses that male extra-pair reproductive success (EPRS) shows additive genetic variance (V(A)), heritability (h2), or inbreeding depression, and hence that females could acquire indirect genetic benefits through increased EPRS of sons, have not been explicitly tested. We used comprehensive genetic pedigree data from song sparrows (Melospiza melodia) to estimate V(A), h2, and inbreeding depression in the number of extra-pair offspring a male sired per year and the probability that a male would sire any extra-pair offspring per year. Inbreeding depression was substantial: more inbred males sired fewer extra-pair offspring and were less likely to sire any extra-pair offspring. In contrast, estimates of V(A) and h2 were close to 0, although 95% credible intervals were relatively wide. These data suggest that females could accrue indirect genetic benefits, in terms of increased EPRS of outbred sons, by mating with unrelated social or extra-pair mates. In contrast, any indirect benefit of extra-pair reproduction in terms of producing sons with high additive genetic value for EPRS is most likely to be small.  相似文献   

4.
Inbreeding avoidance among interacting females and males is not always observed despite inbreeding depression in offspring fitness, creating an apparent “inbreeding paradox.” This paradox could be resolved if selection against inbreeding was in fact weak, despite inbreeding depression. However, the net magnitude and direction of selection on the degree to which females and males inbreed by pairing with relatives has not been explicitly estimated. We used long‐term pedigree data to estimate phenotypic selection gradients on the degree of inbreeding that female and male song sparrows (Melospiza melodia) expressed by forming socially persistent breeding pairs with relatives. Fitness was measured as the total numbers of offspring and grand offspring contributed to the population, and as corresponding expected numbers of identical‐by‐descent allele copies, thereby accounting for variation in offspring survival, reproduction, and relatedness associated with variation in parental inbreeding. Estimated selection gradients on the degree to which individuals paired with relatives were weakly positive in females, but negative in males that formed at least one socially persistent pairing. However, males that paired had higher mean fitness than males that remained socially unpaired. These analyses suggest that net selection against inbreeding may be weak in both sexes despite strong inbreeding depression, thereby resolving the “inbreeding paradox.”  相似文献   

5.
The forces driving extra-pair reproduction by socially monogamous females, and the resulting genetic polyandry, remain unclear. A testable prediction of the hypothesis that extra-pair reproduction partly reflects indirect selection on females is that extra-pair young (EPY) will be fitter than their within-pair young (WPY) maternal half-siblings. This prediction has not been comprehensively tested in a wild population, requiring data on the lifetime reproductive success (LRS) of maternal half-sib EPY and WPY. We used 17 years of genetic parentage data from song sparrows, Melospiza melodia, to compare the LRS of hatched EPY and WPY maternal half-siblings measured as their lifetime number of hatched offspring, recruited offspring, and hatched grandoffspring. EPY hatchlings were not significantly fitter than WPY hatchlings for any of three measures of LRS. Furthermore, opposite to prediction, EPY hatchlings tended to have lower LRS than their maternal half-sibling WPY hatchlings on average. EPY also tended to be less likely to survive to hatch than their maternal half-sibling WPY. Taken together, these results fail to support one key hypothesis explaining the evolution of genetic polyandry by socially monogamous females and suggest there may be weak indirect selection against female extra-pair reproduction in song sparrows.  相似文献   

6.
Avoiding inbreeding, and therefore avoiding inbreeding depression in offspring fitness, is widely assumed to be adaptive in systems with biparental reproduction. However, inbreeding can also confer an inclusive fitness benefit stemming from increased relatedness between parents and inbred offspring. Whether or not inbreeding or avoiding inbreeding is adaptive therefore depends on a balance between inbreeding depression and increased parent-offspring relatedness. Existing models of biparental inbreeding predict threshold values of inbreeding depression above which males and females should avoid inbreeding, and predict sexual conflict over inbreeding because these thresholds diverge. However, these models implicitly assume that if a focal individual avoids inbreeding, then both it and its rejected relative will subsequently outbreed. We show that relaxing this assumption of reciprocal outbreeding, and the assumption that focal individuals are themselves outbred, can substantially alter the predicted thresholds for inbreeding avoidance for focal males. Specifically, the magnitude of inbreeding depression below which inbreeding increases a focal male’s inclusive fitness increases with increasing depression in the offspring of a focal female and her alternative mate, and it decreases with increasing relatedness between a focal male and a focal female’s alternative mate, thereby altering the predicted zone of sexual conflict. Furthermore, a focal male’s inclusive fitness gain from avoiding inbreeding is reduced by indirect opportunity costs if his rejected relative breeds with another relative of his. By demonstrating that variation in relatedness and inbreeding can affect intra- and inter-sexual conflict over inbreeding, our models lead to novel predictions for family dynamics. Specifically, parent-offspring conflict over inbreeding might depend on the alternative mates of rejected relatives, and male-male competition over inbreeding might lead to mixed inbreeding strategies. Making testable quantitative predictions regarding inbreeding strategies occurring in nature will therefore require new models that explicitly capture variation in relatedness and inbreeding among interacting population members.  相似文献   

7.
Wang C  Lu X 《Molecular ecology》2011,20(13):2851-2863
Socially monogamous female birds routinely mate with males outside the pair bond. Three alternative hypotheses consider genetic benefits as the major driver behind the female strategy. The inbreeding avoidance hypothesis predicts that females paired with closely related males should seek copulations with distantly related extra-pair partners to avoid fitness loss from inbreeding depression; the outbreeding avoidance hypothesis predicts the opposite; the kin-selection hypothesis suggests that regardless of social mate relatedness, females should give related males extra-pair fertilization opportunities to gain inclusive fitness if the costs from inbreeding are minor. We test these hypotheses with a facultative cooperative breeder, the ground tit (Parus humilis). Social pairs of ground tits formed randomly with respect to genetic relatedness. In both bi-parental and cooperative groups, a female's engaging in extra-pair mating was independent of relatedness to her social mate; however, females preferred extra-pair sires to which they were more related than to their social mates. Moreover, females had higher relatedness with either their extra-group extra-pair sires in both bi-parental and cooperative groups, or within-group helper sires in cooperative groups, than expected by chance. When more than one potential extra-pair partner was available around a female's nest, she tended to select a relative. There was no indication of fitness reduction from extra-pair mating, which occurred at an intermediate level of inbreeding. These data support the kin-selection hypothesis, although there might be alternative nongenetic reasons associated with the extra-pair mating preference. Our finding offers a new explanation for why female birds pursue extra-pair mating. It also may broaden our understanding of the role of kin-selection in the evolution of cooperative society.  相似文献   

8.
Oh KP 《Molecular ecology》2011,20(13):2657-2659
Social monogamy is nearly ubiquitous across avian taxa,but evidence from a proliferation of studies utilizing molecular paternity analysis suggests that sexual monogamy is the rare exception rather than the rule (Griffith et al. 2002). Efforts to explain the prevalence of extra-pair paternity (EPP) have largely focused on the potential fitness benefits for offspring genetic quality, as females are less likely to benefit directly from seeking extra-pair mates. In particular, there has been considerable interest in the degree to which EPP may represent an adaptive female strategy to avoid inbreeding (or outbreeding)depression when paired with a highly related (or unrelated)social mate (Kempenaers 2007). Others have argued that, because relatives share many genes identical by descent,females might increase their own inclusive fitness by providing additional breeding opportunities to genetically related males (Waser et al. 1986; Kokko & Ots 2006). Thus, in the absence of significant inbreeding depression, pursuing EPP with relatives should be favoured by kin selection, although there exist few unambiguous empirical examples of such preferences in the literature. In this issue of Molecular Ecology, Wang &Lu (2011) present an analysis of mating patterns with respect to genetic relatedness of social and extra-pair partners in the ground tit (Parus humilis), a facultative cooperative breeder in which socially monogamous pairs occasionally form cooperative groups with unpaired helper males (Fig. 1). Consistent with the predictions of the kin-selection hypothesis, females in both bi-parental and cooperative groups preferentially engaged in extra-pair matings with relatives, irrespective of relatedness to their social mates, and while suffering no apparent costs of inbreeding depression in their progeny. These finding shave several exciting implications for our understanding of avian mating system diversity and the evolution of cooperative breeding.  相似文献   

9.
JON SLATE 《Molecular ecology》2009,18(9):1815-1817
A key question for molecular and behavioural ecologists who study mating systems is to understand why, in many species, females choose to mate with extra-pair males. Recently a possible explanation, 'genetic compatibility', has gained increasing empirical support (for a comprehensive review, see Kempenaers 2007 ). Genetic compatibility hypotheses assume that females seek extra-pair mates with alleles that complement their own. Typically, this will be achieved by mating with a male of a different genotype than her own, in order to maximise the heterozygosity of her offspring. Because numerous studies have indicated positive associations between heterozygosity and fitness (see Coltman & Slate 2003 ), it follows that mating with 'compatible' males will result in heterozygous, and therefore fit, offspring. Most empirical support for genetic compatibility has been obtained with microsatellite markers that have first been used to assess parentage and then to estimate relatedness and/or individual heterozygosity. A problem with this approach is a possible bias that favours the detection of extra-pair paternity when the extra-pair male has a genotype different from that of the female and her social mate. This in turn could lead to the erroneous conclusion that extra-pair males are less related to the female than within-pair males. In this issue of Molecular Ecology , Wetzel & Westneat 2009 (hereafter W&W), use simulation studies to assess the extent of this bias, using parameter estimates obtained from recent empirical data. They identify two forms of bias that may affect tests of the genetic compatibility hypothesis, and provide guidelines on how these biases may be avoided.  相似文献   

10.
Inbreeding load, a key parameter in evolutionary ecology, is frequently estimated by regressing fitness (or related traits) on inbreeding coefficient across population members. This approach assumes that inbreeding occurs randomly with respect to an individual's intrinsic ability to produce fit offspring; estimated loads might otherwise be biased by covariation between inbreeding and individual quality. This assumption, however, is rarely validated. We tested whether, in free-living song sparrows Melospiza melodia, an individual's observed kinship with its social mate (and hence the degree of inbreeding in which an individual participated) was correlated with specific phenotypic traits that are likely to indicate individual quality. Males (and to some extent females) that hatched earlier within their cohort, had shorter tarsi, bred earlier during their first year, or survived fewer years paired with more closely related mates and therefore produced relatively inbred offspring. These correlations arose because males with specific phenotypes were more closely related to the female population (and therefore more likely to pair with closer relatives under random pairing), and because males with specific phenotypes paired with closer relatives than expected. Such correlations could bias estimated inbreeding loads, and should be considered in quantitative genetic analyses of phenotypic variance in populations in which inbreeding occurs.  相似文献   

11.
The good genes hypothesis and the genetic compatibility hypothesis are the two main hypotheses that focus on the genetic benefit that a female can gain through her choice of a mate. We tested the two hypotheses on extra-pair mating in the great tit, Parus major. We found that female great tits choose males on the basis of breast stripe width, which is in accordance with the good genes hypothesis. Although females chose less related extra-pair males, the evidence for female choice for compatible males was overall weak. However, our data suggest a post-copulatory mechanism of inbreeding avoidance. The observed individual inbreeding coefficient, F, was similar for within-pair offspring (WPO) and extra-pair offspring (EPO). The observed individual F of WPO was lower than the expected individual F, whereas the observed F of EPO was similar to what was expected. These results highlight the importance of processes after copulation for the outcome of female mate choice. Our study shows that in a system with apparent pre-copulatory female choice for good genes, a post-copulatory mechanism may still promote the production of offspring that carry compatible genes.  相似文献   

12.
Individuals are generally predicted to avoid inbreeding because of detrimental fitness effects. However, several recent studies have shown that limited inbreeding is tolerated by some vertebrate species. Here, we examine the costs and benefits of inbreeding in a largely polygynous rodent, the yellow-bellied marmot (Marmota flaviventris). We use a pedigree constructed from 8 years of genetic data to determine the relatedness of all marmots in our study population and examine offspring survival, annual male reproductive success, relatedness between breeding pairs and the effects of group composition on likelihood of male reproduction to assess inbreeding in this species. We found decreased survival in inbred offspring, but equal net reproductive success among males that inbred and those that avoided it. Relatedness between breeding pairs was greater than that expected by chance, indicating that marmots do not appear to avoid breeding with relatives. Further, male marmots do not avoid inbreeding: males mate with equal frequency in groups composed of both related and unrelated females and in groups composed of only female relatives. Our results demonstrate that inbreeding can be tolerated in a polygynous species if the reproductive costs of inbreeding are low and individuals that mate indiscriminately do not suffer decreased reproductive success.  相似文献   

13.
The hypothesis that females of socially monogamous species obtain indirect benefits (good or compatible genes) from extra-pair mating behaviour has received enormous attention but much less generally accepted support. Here we ask whether selection for adult survival and fecundity or sexual selection contribute to indirect selection of the extra-pair mating behaviour in socially monogamous coal tits (Periparus ater). We tracked locally recruited individuals with known paternity status through their lives predicting that the extra-pair offspring (EPO) would outperform the within-pair offspring (WPO). No differences between the WPO and EPO recruits were detected in lifespan or age of first reproduction. However, the male WPO had a higher lifetime number of broods and higher lifetime number of social offspring compared with male EPO recruits, while no such differences were evident for female recruits. Male EPO recruits did not compensate for their lower social reproductive success by higher fertilization success within their social pair bonds. Thus, our results do not support the idea that enhanced adult survival, fecundity or within-pair fertilization success are manifestations of the genetic benefits of extra-pair matings. But we emphasize that a crucial fitness component, the extra-pair fertilization success of male recruits, has yet  相似文献   

14.
Inbreeding avoidance is predicted to induce sex biases in dispersal. But which sex should disperse? In polygynous species, females pay higher costs to inbreeding and thus might be expected to disperse more, but empirical evidence consistently reveals male biases. Here, we show that theoretical expectations change drastically if females are allowed to avoid inbreeding via kin recognition. At high inbreeding loads, females should prefer immigrants over residents, thereby boosting male dispersal. At lower inbreeding loads, by contrast, inclusive fitness benefits should induce females to prefer relatives, thereby promoting male philopatry. This result points to disruptive effects of sexual selection. The inbreeding load that females are ready to accept is surprisingly high. In absence of search costs, females should prefer related partners as long as delta相似文献   

15.
Sex-allocation theory predicts that females should preferentially produce offspring of the sex with greater fitness potential. In socially monogamous animal species, extra-pair mating often increases the variance in fitness of sons relative to daughters. Thus, in situations where offspring sired by a female''s extra-pair mate(s) will typically have greater fitness potential than offspring sired by the within-pair mate, sex-allocation theory predicts that females will bias the sex of offspring sired by extra-pair mates towards male. We examined the relationship between offspring sex and paternity over six breeding seasons in an Illinois population of the house wren (Troglodytes aedon), a cavity-nesting songbird. Out of the 2345 nestlings that had both sex and paternity assigned, 350 (15%) were sired by extra-pair males. The sex ratio of extra-pair offspring, 0.534, was significantly greater than the sex ratio of within-pair offspring, 0.492, representing an increase of 8.5 per cent in the proportion of sons produced. To our knowledge, this is the first confirmed report of female birds increasing their production of sons in association with extra-pair fertilization. Our results are consistent with the oft-mentioned hypothesis that females engage in extra-pair mating to increase offspring quality.  相似文献   

16.
A large body of theories on extra-pair paternity (EPP) in birds has proposed four main "genetic" hypotheses to explain this behaviour: the "good genes" hypothesis, the genetic diversity hypothesis, the genetic compatibility hypothesis and the fertility insurance hypothesis. Empirical tests have been scarce, mainly because high sample sizes are difficult to collect. We have tested these hypotheses in three Mediterranean populations of blue tits Parus caeruleus in which 50–68% of the broods contained extra-pair young. Results showed that the distribution of extra-pair young among broods was not random, and that survival to fledging of extra-pair young was higher than that of their within-pair sibs. These results support the idea of genetic effects benefiting extra-pair young. However, comparison of cuckolded and cuckolding males showed no significant difference in their body size, age, survival or relatedness with their paired females, and offspring morphometrics did not differ between extra-pair and within-pair young. We conclude that none of the genetic hypotheses can explain fully the high level of extra-pair paternity, at least in our populations of Mediterranean blue tits. We suggest that direct ecological benefits of EPP for females should be tested more often in correlative as well as experimental approaches.  相似文献   

17.
Females in socially monogamous species may select extra-pair (EP) mates to increase the heterozygosity, and hence fitness, of their offspring. We tested this hypothesis in the house wren (Troglodytes aedon), a largely monogamous songbird in which EP young are common. We typed paired males and females, nestlings, and males on neighbouring territories, at five to seven microsatellite loci over 2 years in a Wyoming, USA, population. We identified EP sires at 20 nests with EP young. In pairwise comparisons, we found no significant differences between cuckolded within-pair (WP) males and EP sires in three measures of heterozygosity (mean d2, standardized heterozygosity and internal relatedness). However, EP sires had fewer alleles that were common within the population than did the WP males they cuckolded. Nearby males who were EP sires also had fewer common alleles than did nearby males who did not sire EP young. Females in our population may be more prone to accept copulations from males with rare genotypes than from males with common genotypes. Alternatively, selection of rare-male sperm may occur within the female reproductive tract. Because mating with rare males is likely to increase offspring heterozygosity, our data suggest that EP mating may provide genetic benefits to females.  相似文献   

18.
Genetic parentage studies of socially monogamous birds reveal a widespread prevalence of extra-pair paternity. Variation in extra-pair paternity among individuals may depend on how different individuals benefit from extra-pair fertilisations and on the opportunity to pursue extra-pair copulations. A long-term study of sand martins (Riparia riparia) in Hungary allowed us to examine patterns of extra-pair fertilisations in a large colony of over 3,000 breeding pairs with many known age individuals. We used multi-locus DNA fingerprinting to determine whether extra-pair fertilisations occur when females are paired to (1) presumably low quality mates, or (2) genetically similar or dissimilar mates, and whether extra-pair fertilisations result in offspring of higher quality. Extra-paternal young were found in 38% of 47 broods and comprised 19% of 190 offspring. Males that lost paternity did not differ significantly from others in age or body condition. Social mates of broods containing extra-pair offspring did not differ in genetic similarity from pairs without extra-pair offspring. Furthermore, there was no significant difference in body condition between extra-pair young and their maternal half-siblings. We were unable to assign paternity and therefore cannot exclude the possibility that extra-pair males differed from the within-pair males they cuckolded, in age, body condition or genetic similarity with the female. We found a positive relationship between paternity losses and breeding density, suggesting that low breeding density may constrain opportunities for seeking extra-pair copulations.  相似文献   

19.
In cooperative breeders, the tension between the opposing forces of kin selection and kin competition is at its most severe. Although philopatry facilitates kin selection, it also increases the risk of inbreeding. When dispersal is limited, extra-pair paternity might be an important mechanism to avoid inbreeding, but evidence for this is equivocal. The red-winged fairy-wren is part of a genus of cooperative breeders with extreme levels of promiscuity and male philopatry, but is unique in that females are also strongly philopatric. Here, we test the hypothesis that promiscuity is an important inbreeding avoidance mechanism when both sexes are philopatric. Levels of extra-pair paternity were substantial (70% of broods), but did not arise through females mating with their helpers, but via extra-group mating. Offspring were more likely to be sired by extra-pair males when the social pair was closely related, and these extra-pair males were genetically less similar to the female than the social male and thus, inbreeding is avoided through extra-pair mating. Females were consistent in their choice of the extra-pair sire over time and preferred early moulting males. Despite neighbouring males often being close kin, they sired 37% of extra-pair offspring. However, females that gained paternity from neighbours were typically less related to them than females that gained paternity further away. Our study is the first to suggest that mating with both closely related social partners and neighbours is avoided. Such sophistication in inbreeding avoidance strategies is remarkable, as the extreme levels of promiscuity imply that social context may provide little cue to relatedness.  相似文献   

20.
Inbreeding depression, as commonly found in natural populations, should favour the evolution of inbreeding avoidance mechanisms. If natal dispersal, the first and probably most effective mechanism, does not lead to a complete separation of males and females from a common origin, a small-scale genetic population structure may result and other mechanisms to avoid inbreeding may exist. We studied the genetic population structure and individual mating patterns in blue tits (Parus caeruleus). The population showed a local genetic structure in two out of four years: genetic relatedness between individuals (estimated from microsatellite markers) decreased with distance. This pattern was mainly caused by immigrants to the study area; these, if paired with fellow immigrants, were more related than expected by chance. Since blue tits did not avoid inbreeding with their social partner, we examined if individuals preferred less related partners at later stages of the mate choice process. We found no evidence that females or males avoided inbreeding through extra-pair copulations or through mate desertion and postbreeding dispersal. Although the small-scale genetic population structure suggests that blue tits could use a simple rule of thumb to select less related mates, females did not generally prefer more distantly breeding extra-pair partners. However, the proportion of young fathered by an extra-pair male in mixed paternity broods depended on the genetic relatedness with the female. This suggests that there is a fertilization bias towards less related copulation partners and that blue tits are able to reduce the costs of inbreeding through a postcopulatory process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号