首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 80 毫秒
1.
2.
Condensed chromatin and cell inactivation by single-hit kinetics   总被引:4,自引:0,他引:4  
Mammalian cells are extremely sensitive to gamma rays at mitosis, the time at which their chromatin is maximally condensed. The radiation-induced killing of mitotic cells is well described by single-hit inactivation kinetics. To investigate if radiation hypersensitivity by single-hit inactivation correlated with chromatin condensation, Chinese hamster ovary (CHO) K1 (wild-type) and xrs-5 (radiosensitive mutant) cells were synchronized by mitotic shake-off procedures and the densities of their chromatin cross sections and their radiosensitivities were measured immediately and 2 h into G1 phase. The chromatin of G1-phase CHO K1 cells was dispersed uniformly throughout their nuclei, and its average density was at least three times less than in the chromosomes of mitotic CHO K1 cells. The alpha-inactivation co-efficient of mitotic CHO K1 cells was approximately 2.0 Gy(-1) and decreased approximately 10-fold when cells entered G1 phase. The density of chromatin in CHO xrs-5 cell chromosomes at mitosis was greater than in CHO K1 cell chromosomes, and the radiosensitivity of mitotic CHO xrs-5 cells was the greatest with alpha = 5.1 Gy(-1). In G1 phase, CHO xrs-5 cells were slightly more resistant to radiation than when in mitosis, but a significant proportion of their chromatin was found to remain in condensed form adjacent to the nuclear membrane. These studies indicate that in addition to their known defects in DNA repair and V(D)J recombination, CHO xrs-5 cells may also be defective in some process associated with the condensation and/or dispersion of chromatin at mitosis. Their radiation hypersensitivity could result, in part, from their DNA remaining in compacted form during interphase. The condensation status of DNA in other mammalian cells could define their intrinsic radiosensitivity by single-hit inactivation, the mechanism of cell killing which dominates at the dose fraction size (1.8-2.0 Gy) most commonly used in radiotherapy.  相似文献   

3.
Association of BAF53 with mitotic chromosomes   总被引:1,自引:1,他引:0  
The conversion of mitotic chromosome into interphase chromatin consists of at least two separate processes, the decondensation of the mitotic chromosome and the formation of the higher-order structure of interphase chromatin. Previously, we showed that depletion of BAF53 led to the expansion of chromosome territories and decompaction of the chromatin, suggesting that BAF53 plays an essential role in the formation of higher-order chromatin structure. We report here that BAF53 is associated with mitotic chromosomes during mitosis. Immunostaining with two different anti-BAF53 antibodies gave strong signals around the DNA of mitotic preparations of NIH3T3 cells and mouse embryo fibroblasts (MEFs). The immunofluorescent signals were located on the surface of mitotic chromosomes prepared by metaphase spread. BAF53 was also found in the mitotic chromosome fraction of sucrose gradients. Association of BAF53 with mitotic chromosomes would allow its rapid activation on the chromatin upon exit from mitosis.  相似文献   

4.
Chinese hamster V79 cells blocked in mitosis were irradiated with 60Co gamma-rays and incubated for repair in the presence of colcemid. DNA strand breaks were measured using neutral sucrose gradient centrifugation or the alkaline unwinding technique. It was found that mitotic cells repair DNA double-strand breaks (as well as single-strand breaks) efficiently, with a rate similar to exponentially growing asynchronous cells. It is argued that the dense packing of the chromatin in the mitotic chromosome makes a recombinational repair mechanism unlikely.  相似文献   

5.
6.
7.
Posttranslational modifications of core histones contribute to driving changes in chromatin conformation and compaction. Herein, we investigated the role of histone deacetylation on the mitotic process by inhibiting histone deacetylases shortly before mitosis in human primary fibroblasts. Cells entering mitosis with hyperacetylated histones displayed altered chromatin conformation associated with decreased reactivity to the anti-Ser 10 phospho H3 antibody, increased recruitment of protein phosphatase 1-delta on mitotic chromosomes, and depletion of heterochromatin protein 1 from the centromeric heterochromatin. Inhibition of histone deacetylation before mitosis produced defective chromosome condensation and impaired mitotic progression in living cells, suggesting that improper chromosome condensation may induce mitotic checkpoint activation. In situ hybridization analysis on anaphase cells demonstrated the presence of chromatin bridges, which were caused by persisting cohesion along sister chromatid arms after centromere separation. Thus, the presence of hyperacetylated chromatin during mitosis impairs proper chromosome condensation during the pre-anaphase stages, resulting in poor sister chromatid resolution. Lagging chromosomes consisting of single or paired sisters were also induced by the presence of hyperacetylated histones, indicating that the less constrained centromeric organization associated with heterochromatin protein 1 depletion may promote the attachment of kinetochores to microtubules coming from both poles.  相似文献   

8.
In response to genotoxic stress, cells protect their genome integrity by activation of a conserved DNA damage response (DDR) pathway that coordinates DNA repair and progression through the cell cycle. Extensive modification of the chromatin flanking the DNA lesion by ATM kinase and RNF8/RNF168 ubiquitin ligases enables recruitment of various repair factors. Among them BRCA1 and 53BP1 are required for homologous recombination and non-homologous end joining, respectively. Whereas mechanisms of DDR are relatively well understood in interphase cells, comparatively less is known about organization of DDR during mitosis. Although ATM can be activated in mitotic cells, 53BP1 is not recruited to the chromatin until cells exit mitosis. Here we report mitotic phosphorylation of 53BP1 by Plk1 and Cdk1 that impairs the ability of 53BP1 to bind the ubiquitinated H2A and to properly localize to the sites of DNA damage. Phosphorylation of 53BP1 at S1618 occurs at kinetochores and in cytosol and is restricted to mitotic cells. Interaction between 53BP1 and Plk1 depends on the activity of Cdk1. We propose that activity of Cdk1 and Plk1 allows spatiotemporally controlled suppression of 53BP1 function during mitosis.  相似文献   

9.
In response to genotoxic stress, cells protect their genome integrity by activation of a conserved DNA damage response (DDR) pathway that coordinates DNA repair and progression through the cell cycle. Extensive modification of the chromatin flanking the DNA lesion by ATM kinase and RNF8/RNF168 ubiquitin ligases enables recruitment of various repair factors. Among them BRCA1 and 53BP1 are required for homologous recombination and non-homologous end joining, respectively. Whereas mechanisms of DDR are relatively well understood in interphase cells, comparatively less is known about organization of DDR during mitosis. Although ATM can be activated in mitotic cells, 53BP1 is not recruited to the chromatin until cells exit mitosis. Here we report mitotic phosphorylation of 53BP1 by Plk1 and Cdk1 that impairs the ability of 53BP1 to bind the ubiquitinated H2A and to properly localize to the sites of DNA damage. Phosphorylation of 53BP1 at S1618 occurs at kinetochores and in cytosol and is restricted to mitotic cells. Interaction between 53BP1 and Plk1 depends on the activity of Cdk1. We propose that activity of Cdk1 and Plk1 allows spatiotemporally controlled suppression of 53BP1 function during mitosis.  相似文献   

10.
11.
The effect of mitotic inhibitors on formation and repair of DNA breaks was studied in cultured fibroblasts from patients with Down syndrome in order to investigate the hypothesis that the karyotyping procedure itself may play a role in the increased chromosome breakage seen in these cells after gamma radiation exposure. Using the nondenaturing elution and alkaline elution techniques to examine fibroblasts from Down syndrome patients and from controls, no specific abnormalities in Down syndrome cells could be detected after exposure to mitotic inhibitors, including rate and extent of elution of DNA from filters as well as repair of radiation-induced DNA breaks. In both normal and Down syndrome cell strains, however, exposure to mitotic inhibitors was associated with a decrease in cellular DNA strand size, suggesting the presence of drug-induced DNA strand breaks. The mechanism of increased chromosome sensitivity of Down syndrome cells to gamma radiation remains unknown.  相似文献   

12.
13.
Transformed fibroblasts in interphase and normal fibroblasts in mitosis were agglutinated by Con A and the lectin from wheat germ, whereas normal fibroblasts in interphase and transformed fibroblasts in mitosis were not agglutinated by these lectins. The percentage of fluorescent cells at non-saturation concentrations of fluorescent ConA was also higher with transformed interphase and normal mitotic cells, than with normal interphase and transformed mitotic cells. Under the same conditions, a similar number of radioactively labeled ConA molecules were bound to normal and transformed cells in interphase and mitosis. Our results indicate different cyclic changes in the surface membrane of normal and transformed fibroblasts, so that regarding interaction with these lectins, normal mitotic cells resemble transformed interphase cells and transformed mitotic resemble normal interphase cells. The data suggest that there is a reversed cyclic change in the mobility of specific surface membrane sites in normal and transformed cells.  相似文献   

14.
Proper chromatin compaction in mitosis (condensation) is required for equal chromosome distribution and precise genetic information inheritance. Protein complex named condensin is responsible for the mitotic condensation, it also individualizes chromosomes, and ensures chromatin separation between sister chromatids in mitosis as well as proper mitotic spindle tension. Mitotic condensin function depends on recognition of the specific binding sites on the chromosome. Mechanism of condensin binding on the individual sites of the mitotic chromosomes, as well as molecular anatomy of these sites remains to be unclear. Even less known is how condensin binding on the individual sites helps separating chromosomes in anaphase. In current paper using minichromosome test, we analyze seven individual condensin binding sites in Saccharomyces cerevisiae found in previous all-genome CHIP on CHIP screening in our lab. This approach allowed us to find out what was the individual contribution of condensin binding sites in securing mitotic stability of the minichromosomes.  相似文献   

15.
Under normal conditions, mammalian cells will not initiate mitosis in the presence of either unreplicated or damaged DNA. We report here that staurosporine, a tumor promoter and potent protein kinase inhibitor, can uncouple mitosis from the completion of DNA replication and override DNA damage-induced G2 delay. Syrian hamster (BHK) fibroblasts that were arrested in S phase underwent premature mitosis at concentrations as low as 1 ng/ml, with maximum activity seen at 50 ng/ml. Histone H1 kinase activity was increased to approximately one-half the level found in normal mitotic cells. Inhibition of protein synthesis during staurosporine treatment blocked premature mitosis and suppressed the increase in histone H1 kinase activity. In asynchronously growing cells, staurosporine transiently increased the mitotic index and histone H1 kinase activity but did not induce S phase cells to undergo premature mitosis, indicating a requirement for S phase arrest. Staurosporine also bypassed the cell cycle checkpoint that prevents the onset of mitosis in the presence of damaged DNA. The delay in mitotic onset resulting from gamma radiation was reduced when irradiation was followed immediately by exposure to 50 ng/ml of staurosporine. These findings indicate that inhibition of protein phosphorylation by staurosporine can override two important checkpoints for the initiation of mitosis in BHK cells.  相似文献   

16.
The macronucleus of the binucleate ciliate Tetrahymena thermophila contains fragmented and amplified chromosomes that do not have centromeres, eliminating the possibility of mitotic nuclear division. Instead, the macronucleus divides by amitosis with random segregation of these chromosomes without detectable chromatin condensation. This amitotic division provides a special opportunity for studying the roles of mitotic proteins in segregating acentric chromatin. The Smc4 protein is a core component of the condensin complex that plays a role in chromatin condensation and has also been associated with nucleolar segregation, DNA repair, and maintenance of the chromatin scaffold. Mutants of Tetrahymena SMC4 have remarkable characteristics during amitosis. They do not form microtubules inside the macronucleus as normal cells do, and there is little or no bulk DNA segregation during cell division. Nevertheless, segregation of nucleoli to daughter cells still occurs, indicating the independence of this process and bulk DNA segregation in ciliate amitosis.  相似文献   

17.
DNA-repair endonuclease activity in response to UV-induced DNA damage was quantified in diploid human fibroblasts after synchronizing cell cultures to selected stages of the cell cycle. Incubation of irradiated cells with aphidicolin, an inhibitor of DNA polymerases alpha and delta, delayed the sealing of repair patches and allowed estimation of rates of strand incision by the repair endonuclease. The apparent Vmax for endonucleolytic incision and Km for substrate utilization were determined by Lineweaver-Burk and Eadie-Hofstee analyses. For cells passing through G1, S or G2, Vmax for reparative incision was, respectively, 7.6, 8.4 and 8.4 breaks/10(10) Da per min, suggesting that there was little variation in incision activity during these cell-cycle phases. The Km values of 2.4-3.1 J/m2 for these cells indicate that the nucleotidyl DNA excision-repair pathway operates with maximal effectiveness after low fluences of UV that are in the shoulder region of survival curves. Fibroblasts in mitosis demonstrated a severe attenuation of reparative incision. Rates of incision were 11% of those seen in G2 cells. Disruption of nuclear structure during mitosis may reduce the effective concentration of endonuclease in the vicinity of damaged chromatin. The extreme condensation of chromatin during mitosis also may restrict the accessibility of reparative endonuclease to sites of DNA damage. Confluence-arrested fibroblasts in G0 expressed endonuclease activity with Vmax of 5.5 breaks/10(10) Da per min and a Km of 5.5 J/m2. The greater condensation of chromatin in quiescent cells may restrict the accessibility of endonuclease to dimers and so explain the elevated Km. When fibroblasts were synchronized by serum-deprivation, little variation in reparative endonuclease activity was discerned as released cells transited from early G1 through late G1 and early S. Proliferating fibroblasts in G1 were shown to express comparatively high numbers of reparative incision events in the absence of aphidicolin which was normally used to inhibit DNA polymerases and hold repair patches open. It was calculated that in G0, S and G2 phase cells, single-strand breaks at sites of repair remained open for 30, 19 and 14 sec, respectively. In G1 phase cells, repair sites remained open for 126 sec. Addition of deoxyribonucleosides to G1 cells reduced this time to 42 sec suggesting that the slower rate of synthesis and ligation of repair patches in G1 was due to a relative deficiency of deoxyribonucleotidyl precursors for DNA polymerase.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
19.
Bendamustine (BDM) is an active chemotherapeutic agent approved in the U. S. for treating chronic lymphocytic leukemia and non-Hodgkin lymphoma. Its chemical structure suggests it may have alkylator and anti-metabolite activities; however the precise mechanism of action is not well understood. Here we report the concentration-dependent effects of BDM on cell cycle, DNA damage, checkpoint response and cell death in HeLa cells. Low concentrations of BDM transiently arrested cells in G2, while a 4-fold higher concentration arrested cells in S phase. DNA damage at 50, but not 200 μM, was efficiently repaired after 48 h treatment, suggesting a difference in DNA repair efficiency at the two concentrations. Indeed, perturbing base-excision repair sensitized cells to lower concentrations of BDM. Timelapse studies of the checkpoint response to BDM showed that inhibiting Chk1 caused both the S- and G2-arrested cells to prematurely enter mitosis. However, whereas the cells arrested in G2 (low dose BDM) entered mitosis, segregated their chromosomes and divided normally, the S-phase arrested cells (high dose BDM) exhibited a highly aberrant mitosis, whereby EM images showed highly fragmented chromosomes. The vast majority of these cells died without ever exiting mitosis. Inhibiting the Chk1-dependent DNA damage checkpoint accelerated the time of killing by BDM. Our studies suggest that BDM may affect different biological processes depending on drug concentration. Sensitizing cells to killing by BDM can be achieved by inhibiting base-excision repair or disrupting the DNA damage checkpoint pathway.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号