首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Introduction

Glioblastoma is the most common primary malignant brain tumor, and is refractory to surgical resection, radiation, and chemotherapy. Human mesenchymal stem cells (hMSC) may be harvested from bone marrow (BMSC) and adipose (AMSC) tissue. These cells are a promising avenue of investigation for the delivery of adjuvant therapies. Despite extensive research into putative mechanisms for the tumor tropism of MSCs, there remains no direct comparison of the efficacy and specificity of AMSC and BMSC tropism towards glioma.

Methods

Under an IRB-approved protocol, intraoperative human Adipose MSCs (hAMSCs) were established and characterized for cell surface markers of mesenchymal stem cell origin in conjunction with the potential for tri-lineage differentiation (adipogenic, chondrogenic, and osteogenic). Validated experimental hAMSCs were compared to commercially derived hBMSCs (Lonza) and hAMSCs (Invitrogen) for growth responsiveness and glioma tropism in response to glioma conditioned media obtained from primary glioma neurosphere cultures.

Results

Commercial and primary culture AMSCs and commercial BMSCs demonstrated no statistically significant difference in their migration towards glioma conditioned media in vitro. There was statistically significant difference in the proliferation rate of both commercial AMSCs and BMSCs as compared to primary culture AMSCs, suggesting primary cultures have a slower growth rate than commercially available cell lines.

Conclusions

Adipose- and bone marrow-derived mesenchymal stem cells have similar in vitro glioma tropism. Given the well-documented ability to harvest larger numbers of AMSCs under local anesthesia, adipose tissue may provide a more efficient source of MSCs for research and clinical applications, while minimizing patient morbidity during cell harvesting.  相似文献   

2.
脂肪组织几乎遍布于动物体全身,在整个生命过程中有极强的可塑性. 近年研究表明,运用相似的分离方法,可从人、小鼠、大鼠、兔和猪等物种脂肪组织中分离获得脂肪间充质干细胞. 与骨髓来源的间充质干细胞相比,它具有相似的表面标记和分化潜能;在合适的诱导条件下,这种细胞能分别向3个胚层的细胞分化,如成肌细胞、心肌细胞、软骨细胞、成骨细胞、脂肪细胞、神经细胞、血管内皮细胞和肝细胞等;脂肪间充质干细胞具有来源丰富,取材安全方便和扩增速率高的特点,使其在细胞治疗和组织工程方面具有更广阔的应用前景.  相似文献   

3.
Bone tissue engineering(BTE) is now a promising re-search issue to improve the drawbacks from traditional bone grafting procedure such as limited donor sources and possible complications. Stem cells are one of the major factors in BTE due to the capability of self re-newal and multi-lineage differentiation. Unlike embry-onic stem cells, which are more controversial in ethical problem, adult mesenchymal stem cells are considered to be a more appropriate cell source for BTE. Bone marrow mesenchymal stem cells(BMSCs) are the ear-liest-discovered and well-known stem cell source using in BTE. However, the low stem cell yield requiring long expansion time in vitro, pain and possible morbidities during bone marrow aspiration and poor proliferation and osteogenic ability at old age impede its' clinical ap-plication. Afterwards, a new stem cell source coming from adipose tissue, so-called adipose-derived stemcells(ASCs), is found to be more suitable in clinical ap-plication because of high stem cells yield from lipoaspi-rates, faster cell proliferation and less discomfort and morbidities during harvesting procedure. However, the osteogenic capacity of ASCs is now still debated be-cause most papers described the inferior osteogenesis of ASCs than BMSCs. A better understanding of the osteogenic differences between ASCs and BMSCs is crucial for future selection of cells in clinical application for BTE. In this review, we describe the commonality and difference between BMSCs and ASCs by cell yield, cell surface markers and multiple-differentiation poten-tial. Then we compare the osteogenic capacity in vitro and bone regeneration ability in vivo between BMSCs and ASCs based on the literatures which utilized both BMSCs and ASCs simultaneously in their articles. The outcome indicated both BMSCs and ASCs exhibited the osteogenic ability to a certain extent both in-vitro and in-vivo. However, most in-vitro study papers verified the inferior osteogenesis of ASCs; conversely, in-vivo research reviews revealed more controversies in this issue. We expect the new researchers can have a quick understanding of the progress in this filed and design a more comprehensive research based on this review.  相似文献   

4.
MSCs (mesenchymal stem cells) have attracted attention as a promising tool for regenerative medicine and transplantation therapy. MSCs exert neuroprotective effects by secreting a number of factors in vitro and in vivo. Similar characteristics are found in ADSCs (adipose‐derived stem cells) and BMSCs (bone marrow stromal cells). Multipotent capability, easy accessibility and rapid proliferation of ADSCs have been established. Our main objective was to compare cell viability, growth rate, expression of neurotrophic factors and nestin genes in ADSCs and BMSCs. Cell doubling time and proliferation rate indicate that ADSCs has a higher proliferation rate than BMSCs. ADSCs and BMSCs express a similar pattern of CD71 and CD90 markers. Nestin immunostaining showed that ADSCs and BMSCs are immunopositive. The expression of neurotrophic factors genes in ADSCs proved similar to that of BMSCs genes. Thus adipose tissue stem cells with a high proliferation rate can express nestin and neurotrophic factor genes. Therefore ADSCs may be useful in future cell replacement therapies and help improve neurodegenerative diseases.  相似文献   

5.
Presently, bone marrow is considered as a prime source of mesenchymal stem cells; however, there are some drawbacks and limitations. Compared with other mesenchymal stem cell (MSC) sources, gingiva‐derived mesenchymal stem cells (GMSCs) are abundant and easy to obtain through minimally invasive cell isolation techniques. In this study, MSCs derived from gingiva and bone marrow were isolated and cultured from mice. GMSCs were characterized by osteogenic, adipogenic and chondrogenic differentiation, and flow cytometry. Compared with bone marrow MSCs (BMSCs), the proliferation capacity was judged by CCK‐8 proliferation assay. Osteogenic differentiation was assessed by ALP staining, ALP assay and Alizarin red staining. RT‐qPCR was performed for ALP, OCN, OSX and Runx2. The results indicated that GMSCs showed higher proliferative capacity than BMSCs. GMSCs turned more positive for ALP and formed a more number of mineralized nodules than BMSCs after osteogenic induction. RT‐qPCR revealed that the expression of ALP, OCN, OSX and Runx2 was significantly increased in the GMSCs compared with that in BMSCs. Moreover, it was found that the number of CD90‐positive cells in GMSCs elevated more than that of BMSCs during osteogenic induction. Taking these results together, it was indicated that GMSCs might be a promising source in the future bone tissue engineering.  相似文献   

6.
The objective of this study is to investigate the negative immunomodulatory capacity of human amniotic mesenchymal cells (AMSCs) and their possible intrinsic mechanism, by which we can confirm that they modulate microglial activation of central nervous system from multiple perspectives at the molecular level. The identification of the immune phenotype of AMSCs and microglial cells was executed by immunohistochemical methods and flow cytometry. Meanwhile, the influence and mechanism of amniotic mesenchymal cells in vitro on proliferation, cell cycle, and cytokine release of activated microglia (MI) would be detected by ELISA, β-liquid scintillation counting method, and flow cytometry. Human amnion mesenchymal cells highly expressed negative co-stimulatory molecules PD-L1, while its ligand PD1 was expressed with high level by activated MI. When adding the PD-L1mAb to the mixed culture system composed of AMSCs and activated MI, the proliferation inhibitory effect and the cycle-blocking effect produced by the former on the latter would be partially reversed; at the same time, the impact of the latter cytokine secretion would be adjusted. As a conclusion, AMSCs play inhibitory effects on microglial activation, proliferation, and immune effects partially through the PD-L1–PD1 signaling pathways.  相似文献   

7.
Aging has less effect on adipose-derived mesenchymal stem cells (ADSCs) than on bone marrow-derived mesenchymal stem cells (BMSCs), but whether the fact holds true in stem cells from elderly patients with osteoporotic fractures is unknown. In this study, ADSCs and BMSCs of the same donor were harvested and divided into two age groups. Group A consisted of 14 young patients (36.4 ± 11.8 years old), and group B consisted of eight elderly patients (71.4 ± 3.6 years old) with osteoporotic fractures. We found that the doubling time of ADSCs from both age groups was maintained below 70 hrs, while that of BMSCs increased significantly with the number of passage. When ADSCs and BMSCs from the same patient were compared, there was a significant increase in the doubling time of BMSCs in each individual from passages 3 to 6. On osteogenic induction, the level of matrix mineralization of ADSCs from group B was comparable to that of ADSCs from group A, whereas BMSCs from group B produced least amount of mineral deposits and had a lower expression level of osteogenic genes. The p21 gene expression and senescence-associated β-galactosidase activity were lower in ADSCs compared to BMSCs, which may be partly responsible for the greater proliferation and differentiation potential of ADSCs. It is concluded that the proliferation and osteogenic differentiation of ADSCs were less affected by age and multiple passage than BMSCs, suggesting that ADSCs may become a potentially effective therapeutic option for cell-based therapy, especially in elderly patients with osteoporosis.  相似文献   

8.
Amnion, which is usually discarded as medical waste, is considered as abundant sources for mesenchymal stem cells. In human and veterinary medicine, the multipotency of mesenchymal stem cells derived from amnion (AMSCs) together with their plasticity, self-renewal, low immunogenicity and nontumorigenicity characteristics make AMSCs a promising candidate cell for cell-based therapies and tissue engineering. However, up till now, the multipotential characteristics and therapeutic potential of AMSCs on preclinical studies remain uncertain. In this work, we successfully obtained AMSCs from Beijing duck embryos in vitro, and also attempted to detect their biological characteristics. The isolated AMSCs were phenotypically identified, the growth kinetics and karyotype were tested. Also, the cells were positive for MSCs-related markers (CD29, CD71, CD105, CD166, Vimentin and Fibronection), while the expression of CD34 and CD45 were undetectable. Additionally, AMSCs also expressed the pluripotent marker gene OCT4. Particularly, when appropriately induced, AMSCs could be induced to trans-differentiate into adipocytes, osteoblasts, chondrocytes and neurocytes in vitro. Together, these results demonstrated that the isolated AMSCs maintained their stemness and proliferation in vitro, which may be useful for future cell therapy in regenerative medicine.  相似文献   

9.
Mesenchymal stem cells (MSC) are adult multipotential progenitors which have a high potential in regenerative medicine. They can be isolated from different tissues throughout the body and their homogeneity in terms of phenotype and differentiation capacities is a real concern. To address this issue, we conducted a 2‐DE gel analysis of mesenchymal stem cells isolated from bone marrow (BM), adipose tissue, synovial membrane and umbilical vein wall. We confirmed that BM and adipose tissue derived cells were very similar, which argue for their interchangeable use for cell therapy. We also compared human mesenchymal to embryonic stem cells and showed that umbilical vein wall stem cells, a neo‐natal cell type, were closer to BM cells than to embryonic stem cells. Based on these proteomic data, we could propose a panel of proteins which were the basis for the definition of a mesenchymal stem cell proteomic signature.  相似文献   

10.
BMSCs (bone‐marrow‐derived mesenchymal stem cells) and ADSCs (adipose tissue‐derived mesenchymal stem cells) are virtually identical in cell surface marker profile and differentiation potential. These cell populations have promising characteristics for clinical application. We have investigated the sensitivity of these cell populations to various chemotherapeutic agents by testing the inhibition of cell proliferation, low molecular DNA bands formation, in situ apoptosis, apoptosis‐related gene expression and cell senescence after treatment. BU (busulfan), methotrexate and doxorubicin treatment led to a marked and dose‐dependent reduction in cell viability compared with 5‐FU (5‐fluorouracil) treatment. Different expression patterns of apoptosis‐related genes were found in the BMSCs and ADSCs following treatment with the agents, but no low molecular mass DNA bands were detected. BMSCs had a higher percentage of apoptotic and senescent cells following treatment with chemotherapeutic agents compared with ADSCs. These findings suggest that these two cell populations respond differently to chemotherapy treatment. ADSCs are more resistant than BMSCs to chemotherapy‐induced senescence and apoptosis, indicating that they might be more advantageous to use in the clinic than BMSCs.  相似文献   

11.
户小伟  劳山 《蛇志》2012,24(2):108-110
目的研究Wnt/β-catenin通路激活剂氯化锂(LiCl)对兔骨髓间充质干细胞(bone marrowmesen-chymal stem cells,BMSCs)增殖的影响。方法体外纯化培养兔BMSCs,流式细胞仪检测细胞表面抗体,以不同浓度的LiCl作用兔骨髓间充质干细胞24h后,采用Cell Counting Kit-8(CCK-8)检测各组细胞的增殖活性。结果低浓度LiCl促进兔BMSCs增殖,高浓度LiCl抑制兔BMSCs增殖。结论低浓度LiCl抑制GSK3β,模拟激活Wnt/β-catenin信号途径,从而促进细胞增殖,而高浓度LiCl增加了对细胞的毒性而抑制其增殖。  相似文献   

12.
In this study, we aimed to explore the role of liver kinase b1 (Lkb1) in the biological characteristics and immune regulation of amniotic mesenchymal stem cells (AMSCs). AMSCs were identified via the cell surface markers using flow cytometry. We knocked down the expression of Lkb1 in AMSCs using lentivirus-mediated Lkb1-specific shRNA. The efficiency of the knockdown was detected by flow cytometry, RT-qPCR, and western blot. The AMSC-related phenotype was determined by flow cytometric analysis via staining surface markers. Fibroblast colony-forming cells (CFU-F) assay and Ki-67 intracellular staining assay were used to determine the proliferative capacity. The differentiated and immunosuppressive capabilities were determined by conditional induction of differentiation and co-culture experiments. We observed that AMSCs along with Lkb1 knockdown (AMSCs-Lkb1) displayed similar cellular morphology and surface antigen expression patterns as those observed in AMSCs. However, AMSCs-Lkb1 exhibited an enhanced differentiation capacity towards osteogenesis and chondrogenesis while it showed defective proliferation and increased apoptosis. Furthermore, AMSCs-Lkb1 showed an enhanced immunosuppressive capacity by directly inhibiting conventional T cells and indirectly inducing production of regulatory T cells (Treg). Interestingly, Treg produced by AMSCs-Lkb1 displayed stronger proliferative capacity as compared to those produced by AMSCs. Our results indicate that Lkb1 plays a vital role in maintaining self-renewal of AMSCs and regulating immune equivalence, and may hold potential for the clinical management of diseases such as GVHD.  相似文献   

13.
14.
Mesenchymal stem cells present in the bone marrow and some other organs are primitive pluripotent precursors of osseous, cartilaginous, adipose, and other mesenchymal tissues. The recently revealed capacity of these cells for differentiation into nonmesenchymal derivatives is of considerable theoretical and practical interest. However, many aspects of the biology of these cells remain obscure despite active research. This review considers possible sources and methods for the isolation of mesenchymal stem cells, their potential for proliferation and differentiation in different directions, and outlooks of their therapeutic application. A model of parent-progeny relationships of stromal cells is proposed, and the problems of regulation of proliferation and differentiation of mesenchymal precursors as well as their role in the maintenance of regeneration and tissue functioning are discussed.  相似文献   

15.
阿司匹林是缺血性脑卒中患者急性期治疗药物及卒中再发的二级预防常用药物,骨髓间充质干细胞(BMSCs)移植是治疗缺血性脑血管疾病的新的新兴技术。已证实阿司匹林可抑制骨髓间充质干细胞的增殖及影响骨髓间充质干细胞的分化。本文就阿司匹林对骨髓间充质干细胞移植治疗缺血性脑卒中的影响等进行综述。  相似文献   

16.
本研究主要目的是明确M-CSF诱导骨髓间充质干细胞分化为肝样细胞的分子机制,为临床中的肝移植和治疗肝病提供新思路。对取自于本院骨科治疗的患者的股骨骨髓间充质干细胞进行提取、分离、传代培养及鉴定。流式细胞仪检测BMSCs的表面表型。为了诱导BMSCs的肝分化,本研究将BMSCs加入到培养基中。骨髓间充质干细胞诱导21 d后,BMSCs表达了肝细胞特异性标志物a-蛋白(AFP)和细胞角蛋白18(CK18),通过免疫荧光染色证实了分化与为分化的BMSCs表达的差异性。分化的BMSCs还显示了肝细胞的体外功能特征,包括白蛋白产生、尿素分泌和糖原储存。本研究结果表明,BMSCs在M-CSF诱导下可分化为功能性肝细胞样细胞,可作为肝病治疗的细胞来源。  相似文献   

17.
Human, rat, and mouse studies have demonstrated the existence of a population of adipose mesenchymal stem cells (AMSCs) that can undergo multilineage differentiation in vitro. Understanding the clinical potential of AMSCs may require their use in preclinical large-animal models such as pigs. Thus, the objectives of this study were to establish a protocol for the isolation of porcine AMSCs from adipose tissue and to examine their ex vivo differentiation potential to adipocytes and osteoblast. The porcine AMSCs from passage 4 were selected for differentiation analysis. The adipocytes were identified morphologically by staining with Oil Red O, and the adipogenic marker genes were examined by RT-PCR technique. Osteogenic lineage was documented by deposition of calcium stained with Alzarin Red S, visualization of alkaline phosphatase activity, and expression of marker gene. Our result indicates that porcine AMSCs have been successfully isolated and induced differentiation into adipocytes and osteoblasts. This study suggested that porcine AMSCs are also a valuable model system for the study on the mesenchymal lineages for basic research and tissue engineering.  相似文献   

18.
Background: Mesenchymal stem cells are able to undergo adipogenic differentiation and present a possible alternative cell source for regeneration and replacement of adipose tissue. The human infrapatellar fat pad is a promising source of mesenchymal stem cells with many source advantages over from bone marrow. It is important to determine whether a potential mesenchymal stem‐cell exhibits tri‐lineage differentiation potential and is able to maintain its proliferation potential and cell‐surface characterization on expansion in tissue culture. We have previously shown that mesenchymal stem cells derived from the fat pad can undergo chondrogenic and osteogenic differentiation, and we characterized these cells at early passage. In the study described here, proliferation potential and characterization of fat pad‐derived mesenchymal stem cells were assessed at higher passages, and cells were allowed to undergo adipogenic differentiation. Materials and methods: Infrapatellar fat pad tissue was obtained from six patients undergoing total knee replacement. Cells isolated were expanded to passage 18 and proliferation rates were measured. Passage 10 and 18 cells were characterized for cell‐surface epitopes using a range of markers. Passage 2 cells were allowed to undergo differentiation in adipogenic medium. Results: The cells maintained their population doubling rates up to passage 18. Cells at passage 10 and passage 18 had cell‐surface epitope expression similar to other mesenchymal stem cells previously described. By staining it was revealed that they highly expressed CD13, CD29, CD44, CD90 and CD105, and did not express CD34 or CD56, they were also negative for LNGFR and STRO1. 3G5 positive cells were noted in cells from both passages. These fat pad‐derived cells had adipogenic differentiation when assessed using gene expression for peroxisome proliferator‐activated receptor γ2 and lipoprotein lipase, and oil red O staining. Discussion: These results indicate that the cells maintained their proliferation rate, and continued expressing mesenchymal stem‐cell markers and pericyte marker 3G5 at late passages. These results also show that the cells were capable of adipogenic differentiation and thus could be a promising source for regeneration and replacement of adipose tissue in reconstructive surgery.  相似文献   

19.
The biologic characteristics of mesenchymal stem cells (MSCs) isolated from two distinct tissues, bone marrow and adipose tissue were evaluated in these studies. MSCs derived from human and non-human primate (rhesus monkey) tissue sources were compared. The data indicate that MSCs isolated from rhesus bone marrow (rBMSCs) and human adipose tissue (hASCs) had more similar biologic properties than MSCs of rhesus adipose tissue (rASCs) and human bone marrow MSCs (hBMSCs). Analyses of in vitro growth kinetics revealed shorter doubling time for rBMSCs and hASCs. rBMSCs and hASCs underwent significantly more population doublings than the other MSCs. MSCs from all sources showed a marked decrease in telomerase activity over extended culture; however, they maintained their mean telomere length. All of the MSCs expressed embryonic stem cell markers, Oct-4, Rex-1, and Sox-2 for at least 10 passages. Early populations of MSCs types showed similar multilineage differentiation capability. However, only the rBMSCs and hASCs retain greater differentiation efficiency at higher passages. Overall in vitro characterization of MSCs from these two species and tissue sources revealed a high level of common biologic properties. However, the results demonstrate clear biologic distinctions, as well.  相似文献   

20.
With the continuous discovery of new alternative sources containing mesenchymal stem cells (MSCs), regenerative medicine therapies may find tailored applications in the clinics. Although these cells have been demonstrated to express specific mesenchymal markers and are able to differentiate into mesenchymal lineages in ad hoc culture conditions, it is still critical to determine the yield and differentiation potential of these cells in comparative studies under the same standardized culture environment. Moreover, the opportunity to use MSCs from bone marrow (BM) of multiorgan donors for cell banking is of relevant importance. In the attempt to establish the relative potential of alternative MSCs sources, we analyzed and compared the yield and differentiation potential of human MSCs from adipose and BM tissues of cadaveric origins, and from fetal annexes (placenta and umbilical cord) after delivery using standardized isolation and culture protocols. BM contained a significantly higher amount of mononuclear cells (MNCs) compared to the other tissue sources. Nonetheless, a higher cell seeding density was needed for these cells to successfully isolate MSCs. The MNCs populations were highly heterogeneous and expressed variable MSCs markers with a large variation from donor to donor. After MSCs selection through tissue culture plastic adhesion, cells displayed a comparable proliferation capacity with distinct colony morphologies and were positive for a pool of typical MSCs markers. In vitro differentiation assays showed a higher osteogenic differentiation capacity of adipose tissue and BM MSCs, and a higher chondrogenic differentiation capacity of BM MSCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号