首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 234 毫秒
1.
Bulky endogenous oxidative lesions (type II I-compounds) reflect DNA damage associated with oxidative stress. As shown by 32P-postlabeling, their levels are enhanced by pro-oxidant genotoxins and also shortly after normal birth in several rat tissues as a function of time and the maternal diet. In order to elucidate which dietary components contribute to postnatal DNA damage, we have focused, herein, on the possible role of transition metals (iron, copper, and nickel). Pregnant Fischer 344 (F344) rats were fed AIN-93G purified diet containing different amounts of iron, copper, and nickel, or Purina-5001 natural-ingredient diet (which contains relatively high concentrations of these metals). Type II I-compounds were estimated by nuclease P1-enhanced 32P-postlabeling in liver and lung DNA of fetuses and at 24h and day 9 post-partum. Increased postnatal oxidative damage was detected in liver but not lung DNA of neonates exposed to higher amounts of dietary transition metals. There were significant positive linear correlations between maternal transition metal intake and neonatal, but not fetal and maternal type II I-compound levels. The results show that transition metals in the maternal diet affect perinatal oxidative DNA damage, presumably via a Fenton-type reaction. They also provide evidence for optimal levels in the maternal diet of transition metals, which on one hand, are essential for life, but on the other, can cause potentially deleterious DNA alterations in the offspring.  相似文献   

2.
The group IIb metal zinc (Zn) is an essential dietary component that can be found in protein rich foods such as meat, seafood and legumes. Thousands of genes encoding Zn binding proteins were identified, especially after the completion of genome projects, an indication that a great number of biological processes are Zn dependent. Imbalance in Zn homeostasis was found to be associated with several chronic diseases such as asthma, diabetes and Alzheimer's disease. As it is now evident for most nutrients, body Zn status results from the interaction between diet and genotype. Zn ions cross biological membranes with the aid of specialized membrane proteins, belonging to the ZRT/IRT-related Proteins (ZIP) and zinc transporters (ZnT) families. The ZIPs are encoded by the Slc39A gene family and are responsible for uptake of the metal, ZnTs are encoded by the Slc30A genes and are involved in intracellular traffic and/or excretion. Both ZnTs and Zips exhibit unique tissue-specific expression, differential responsiveness to dietary Zn deficiency and excess, as well as to physiological stimuli via hormones and cytokines. Intracellular Zn concentration is buffered by metallothioneins (MTs), a class of cytosolic protein with high affinity for metals. Scattered information is available on the role of proteins responsible for regulating Zn fluxes in the onset and progression of chronic diseases. This paper reviews reports that link Zn transporter genes, their allelic variants and/or expression profiles in the context of specific diseases. Further investigation in this direction is very important, since Zn imbalance can result not only from insufficient dietary intake, but also from impaired activity of proteins that regulate Zn metabolism, thus contributing to multifactorial diseases.  相似文献   

3.
It is likely that most, if not all, of the elements found to be essential in animals will be shown to be so for man, and the clinical picture produced by deficiency of the elements in the human patient will differ little from that seen in the animal, although this has been established for only five elements (I, Fe, Cu, Co and Zn). However, the link between lack of a given element in the soil and a human patient is far less direct and much more complex than that met with in the animal grazing on deficient pastures, except in isolated primitive communitis. Zn is the most protean of the trace elements and has been chosen to illustrate this in human practice. Excesses of essential elements (both trace and major) give rise to toxic effects and the importance of a proper balance especially of the transitional elements in the human diet is discussed with special reference to Cu, Zn and Fe. Certain non-essential trace elements are individual and community hazards: Cd, Pb and Hg are the principal offenders for humans. Mankind is now largely dependent on grassland products, cereals and livestock with increasing dominance of the former in human nutrition. This has reduced the bioavailability of trace elements so that study of trace metals, especially Zn and Cu, in skeletal and dental remains at human burial and occupation sites should prove useful in assessing the consequences of this striking change in dietary habits.  相似文献   

4.
Micronutrient assimilation from artificial diet by larvae of Heliothis virescens during selenium (Se) supplementation was studied. The metal content of pupae and plugs of the artificial diet on which they had developed from hatching was analyzed by inductively coupled plasma-mass spectrometry. Levels of the metals Cr, Co, Fe, Mg, Mn, Ni, Se, Na, and Zn were not bioaccumulated from the diet regardless of the amount of Se added to the diet. Only pupal Cu and Mo bioaccumulation were found to be altered significantly by dietary Se supplementation. Larvae fed Zn, which was found in higher levels in pupae than diet, had a deleterious response to increasing levels of dietary Zn. Larvae fed Cr, found in higher levels in diet than in pupae, were not adversely affected when increasing levels of Cr were added to the diet. Based on this analysis, metals were identified that might well impact the fitness of a given colony of insects in relation to their diet.  相似文献   

5.
Low YL  Tai ES 《Mutation research》2007,622(1-2):7-13
Socioeconomic development has resulted in an epidemiologic transition which has involved an increase in mortality and morbidity from chronic non-communicable diseases. Cardiovascular disease is one such disease. The rapidity with which this transition has occurred suggests that genetic factors are unlikely to be responsible. However, studies in twins suggest significant heritability for cardiovascular disease and its associated risk factors. We present data showing diet-gene interactions involving polymorphisms at the PPARA and PLIN loci. These data support the hypothesis that chronic diseases such as cardiovascular disease are a consequence of a complex interplay of genetic and environmental factors, of which diet plays an important role. They suggest that the effects of diet on chronic disease may be masked by heterogeneity of effect related to genetic variability between individuals and that consideration of diet-gene interactions may contribute to our understanding of the pathogenesis of cardiovascular disease. The identification of diet-gene interactions offers us an opportunity to develop dietary interventions that will obviate the effects of genetic factors on the risk of disease. In this way, we may be able to develop personalized dietary recommendations that optimize the outcome for the individual concerned. Nevertheless, while existing data points to the value of these studies, significant challenges need to be met to ensure that our conclusions are scientifically valid.  相似文献   

6.
Manganese is an essential dietary nutrient and trace element with important roles in mammalian development, metabolism, and antioxidant defense. In healthy individuals, gastrointestinal absorption and hepatobiliary excretion are tightly regulated to maintain systemic manganese concentrations at physiologic levels. Interactions of manganese with other essential metals following high dose ingestion are incompletely understood. We previously reported that gavage manganese exposure in rats resulted in higher tissue manganese concentrations when compared with equivalent dietary or drinking water manganese exposures. In this study, we performed follow-up evaluations to determine whether oral manganese exposure perturbs iron, copper, or zinc tissue concentrations. Rats were exposed to a control diet with 10 ppm manganese or dietary, drinking water, or gavage exposure to approximately 11.1?mg manganese/kg body weight/day for 7 or 61 exposure days. While manganese exposure affected levels of all metals, particularly in the frontal cortex and liver, copper levels were most prominently affected. This result suggests an under-appreciated effect of manganese exposure on copper homeostasis which may contribute to our understanding of the pathophysiology of manganese toxicity.  相似文献   

7.
Ageing is a challenge for any living organism and human longevity is a complex phenotype. With increasing life expectancy, maintaining long-term health, functionality and well-being during ageing has become an essential goal. To increase our understanding of how ageing works, it may be advantageous to analyze the phenotype of centenarians, perhaps one of the best examples of successful ageing. Healthy ageing involves the interaction between genes, the environment, and lifestyle factors, particularly diet. Besides evaluating specific gene-environment interactions in relation to exceptional longevity, it is important to focus attention on modifiable lifestyle factors such as diet and nutrition to achieve extension of health span. Furthermore, a better understanding of human longevity may assist in the design of strategies to extend the duration of optimal human health. In this article we briefly discuss relevant topics on ageing and longevity with particular focus on dietary patterns of centenarians and nutrient-sensing pathways that have a pivotal role in the regulation of life span. Finally, we also discuss the potential role of Nrf2 system in the pro-ageing signaling emphasizing its phytohormetic activation.  相似文献   

8.
We have previously demonstrated that feeding a diet with a high amino acid (60% AA diet) content, as a mixture simulating casein, induced pancreatic growth and pancreatic protease production in rats. In the present study, we examined the effects of an increasing dietary content of essential amino acids (EAA, x1 - x3 in exp. 1 and x1 - x3.3 in exp. 2) and non-essential amino acids (NEAA, x1 - x3 in exp. 1 and x1 - x5.2 in exp. 2) on pancreatic growth, amylase and protease adaptation using casein-type amino acid mixtures (exp. 1, basal diet; 20% AA diet) and egg white-type amino acid mixtures (exp. 2, basal diet; 12% AA diet). Pancreatic growth and trypsin activity were induced as the dietary content of NEAA was increased in experiments 1 and 2. Amylase activity in the pancreas was also induced as the dietary content of NEAA was increased, even with the decrease in dietary carbohydrate in experiment 2. The values of all pancreatic variables decreased with the increase in dietary EAA (x2 and x3) without an increase in NEAA. The changes in the pancreas were coincident with increases in plasma arginine and lysine concentrations and a decrease in the plasma alanine concentration. In rats fed a 60% AA diet (EAA and NEAA x3), in the case of which the EAA content was balanced with the NEAA content, pancreatic growth and protease production increased and reached maximum levels as the plasma amino acid concentrations decreased, except for alanine. These results show that NEAA, not EAA, are associated with induction of pancreatic growth and protease production upon feeding a diet with a high AA content, and that some metabolites may be involved in the induction process. The suppression of pancreatic growth and protease production in rats fed the high EAA diets without balanced NEAA may be associated with impairment of amino acid metabolism rather than the increments in the concentration of one or more essential amino acids. Our results also suggest that there is an unknown mechanism or unknown factors involved in regulating pancreatic amylase.  相似文献   

9.
Novel omics technologies in nutrition research   总被引:1,自引:0,他引:1  
  相似文献   

10.
The application of high‐throughput sequencing‐based approaches to DNA extracted from environmental samples such as gut contents and faeces has become a popular tool for studying dietary habits of animals. Due to the high resolution and prey detection capacity they provide, both metabarcoding and shotgun sequencing are increasingly used to address ecological questions grounded in dietary relationships. Despite their great promise in this context, recent research has unveiled how a wealth of biological (related to the study system) and technical (related to the methodology) factors can distort the signal of taxonomic composition and diversity. Here, we review these studies in the light of high‐throughput sequencing‐based assessment of trophic interactions. We address how the study design can account for distortion factors, and how acknowledging limitations and biases inherent to sequencing‐based diet analyses are essential for obtaining reliable results, thus drawing appropriate conclusions. Furthermore, we suggest strategies to minimize the effect of distortion factors, measures to increase reproducibility, replicability and comparability of studies, and options to scale up DNA sequencing‐based diet analyses. In doing so, we aim to aid end‐users in designing reliable diet studies by informing them about the complexity and limitations of DNA sequencing‐based diet analyses, and encourage researchers to create and improve tools that will eventually drive this field to its maturity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号