首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The membrane-anchored serine protease prostasin (CAP1/PRSS8) is part of a cell surface proteolytic cascade that is essential for epithelial barrier formation and homeostasis. Here, we report the surprising finding that prostasin executes these functions independent of its own enzymatic activity. Prostasin null (Prss8−/−) mice lack barrier formation and display fatal postnatal dehydration. In sharp contrast, mice homozygous for a point mutation in the Prss8 gene, which causes the substitution of the active site serine within the catalytic histidine-aspartate-serine triad with alanine and renders prostasin catalytically inactive (Prss8Cat−/Cat− mice), develop barrier function and are healthy when followed for up to 20 weeks. This striking difference could not be explained by genetic modifiers or by maternal effects, as these divergent phenotypes were displayed by Prss8−/− and Prss8Cat−/Cat− mice born within the same litter. Furthermore, Prss8Cat−/Cat− mice were able to regenerate epidermal covering following cutaneous wounding. This study provides the first demonstration that essential in vivo functions of prostasin are executed by a non-enzymatic activity of this unique membrane-anchored serine protease.  相似文献   

2.
Compromise of elastic fiber integrity in connective tissues of the pelvic floor is most likely acquired through aging, childbirth-associated injury, and genetic susceptibility. Mouse models of pelvic organ prolapse demonstrate systemic deficiencies in proteins that affect elastogenesis. Prolapse, however, does not occur until several months after birth and is thereby acquired with age or after parturition. To determine the impact of compromised levels of fibulin-5 (Fbln5) during adulthood on pelvic organ support after parturition and elastase-induced injury, tissue-specific conditional knockout (cKO) mice were generated in which doxycycline (dox) treatment results in deletion of Fbln5 in cells that utilize the smooth muscle α actin promoter-driven reverse tetracycline transactivator and tetracycline responsive element-Cre recombinase (i.e., Fbln5f/f/SMA++-rtTA/Cre+, cKO). Fbln5 was decreased significantly in the vagina of cKO mice compared with dox-treated wild type or controls (Fbln5f/f/SMA++-rtTA/Cre-/-). In controls, perineal body length (PBL) and bulge increased significantly after delivery but declined to baseline values within 6–8 weeks. Although overt prolapse did not occur in cKO animals, these transient increases in PBL postpartum were amplified and, unlike controls, parturition-induced increases in PBL (and bulge) did not recover to baseline but remained significantly increased for 12 wks. This lack of recovery from parturition was associated with increased MMP-9 and nondetectable levels of Fbln5 in the postpartum vagina. This predisposition to prolapse was accentuated by injection of elastase into the vaginal wall in which overt prolapse occurred in cKO animals, but rarely in controls. Taken together, our model system in which Fbln5 is conditionally knock-downed in stromal cells of the pelvic floor results in animals that undergo normal elastogenesis during development but lose Fbln5 as adults. The results indicate that vaginal fibulin-5 during development is crucial for baseline pelvic organ support and is also important for protection and recovery from parturition- and elastase-induced prolapse.  相似文献   

3.
The fibulin family of extracellular matrix/matricellular proteins is composed of long fibulins (fibulin-1, -2, -6) and short fibulins (fibulin-3, -4, -5, -7) and is involved in protein–protein interaction with the components of basement membrane and extracellular matrix proteins. Fibulin-1, -2, -3, -4, and -5 bind the monomeric form of elastin (tropoelastin) in vitro and fibulin-2, -3, -4, and -5 are shown to be involved in various aspects of elastic fiber development in vivo. In particular, fibulin-4 and -5 are critical molecules for elastic fiber assembly and play a non-redundant role during elastic fiber formation. Despite manifestation of systemic elastic fiber defects in all elastogenic tissues, fibulin-5 null (Fbln5−/−) mice have a normal lifespan. In contrast, fibulin-4 null (Fbln4−/−) mice die during the perinatal period due to rupture of aortic aneurysms, indicating differential functions of fibulin-4 and fibulin-5 in normal development. In this review, we will update biochemical characterization of fibulin-4 and fibulin-5 and discuss their roles in elastogenesis and outside of elastogenesis based on knowledge obtained from loss-of-function studies in mouse and in human patients with FBLN4 or FBLN5 mutations. Finally, we will evaluate therapeutic options for matrix-related diseases.  相似文献   

4.
Matrix metalloprotease (MMP) activity is increased in the postpartum vagina of wild-type (WT) animals. This degradative activity is also accompanied by a burst in elastic fiber synthesis and assembly. The mechanisms that precipitate these changes are unclear. The goals of this study were to determine how vaginal distention (such as in parturition) affects elastic fiber homeostasis in the vaginal wall and the potential significance of these changes in the pathogenesis of pelvic organ prolapse. Vaginal distention with a balloon simulating parturition resulted in increased MMP-2 and MMP-9 activity in the vaginal wall of nonpregnant and pregnant animals. This was accompanied by visible fragmented and disrupted elastic fibers in the vaginal wall. In nonpregnant animals, the abundant amounts of tropoelastin and fibulin-5 in the vagina were not increased further by distention. In contrast, in pregnant animals, the suppressed levels of both proteins were increased 3-fold after vaginal distention. Distention performed in fibulin-5-deficient (Fbln5(-/-)) mice with defective elastic fiber synthesis and assembly induced accelerated pelvic organ prolapse, which never recovered. We conclude that, in pregnant mice, vaginal distention results in increased protease activity in the vaginal wall but also increased synthesis of proteins important for elastic fiber assembly. Distention may thereby contribute to the burst of elastic fiber synthesis in the postpartum vagina. The finding that distention results in accelerated pelvic organ prolapse in Fbln5(-/-) animals, but not in WT, indicates that elastic fiber synthesis is crucial for recovery of the vaginal wall from distention-induced increases in vaginal protease activity.  相似文献   

5.
Fibulin-5 is a 66 kDa modular, extracellular matrix protein that localizes to elastic fibers. Although in vitro protein–protein binding studies have shown that fibulin-5 binds many proteins involved in elastic fiber formation, the specific role of fibulin-5 in elastogenesis remains unclear. To provide a more detailed analysis of elastic fiber assembly in the absence of fibulin-5, the dermis of wild-type and fibulin-5 gene knockout (Fbln5?/?) mice was examined with electron microscopy (EM). Although light microscopy showed apparently normal elastic fibers near the hair follicles and the absence of elastic fibers in the intervening dermis of the Fbln5?/? mouse, EM revealed the presence of aberrantly assembled elastic fibers in both locales. Instead of the elastin being incorporated into the microfibrillar scaffold, the elastin appeared as globules juxtaposed to the microfibrils. Desmosine analysis showed significantly lower levels of mature cross-linked elastin in the Fbln5?/? dermis, however, gene expression levels for tropoelastin and fibrillin-1, the major elastic fiber components, were unaffected. Based on these results, the nature of tropoelastin cross-linking was investigated using domain specific antibodies to lysyl oxidase like-1 (LOXL-1). Immunolocalization with an antibody to the N-terminal pro-peptide, which is cleaved to generate the active enzyme, revealed abundant staining in the Fbln5?/? dermis and no staining in the wild-type dermis. Overall, these results suggest two previously unrecognized functions for fibulin-5 in elastogenesis; first, to limit the extent of aggregation of tropoelastin monomers and/or coacervates and aid in the incorporation of elastin into the microfibril bundles, and second, to potentially assist in the activation of LOXL-1.  相似文献   

6.
PRSS23 and PRSS35 are homologous proteases originally identified in mouse ovaries. In the periimplantation mouse uterus, Prss23 was highly expressed in the preimplantation gestation day 3.5 (D3.5) uterine luminal epithelium (LE). It disappeared from the postimplantation LE and reappeared in the stromal compartment next to the myometrium on D6.5. It was undetectable in the embryo from D4.5 to D6.5 but highly expressed in the embryo on D7.5. Prss35 became detectable in the uterine stromal compartment surrounding the embryo on D4.5 and shifted towards the mesometrial side of the stromal compartment next to the embryo from D5.5 to D7.5. In the ovariectomized uterus, Prss23 was moderately and Prss35 was dramatically downregulated by progesterone and 17β-estradiol. Based on the expression of Prss35 in granulosa cells and corpus luteum of the ovary and the early pregnant uterus, we hypothesized that PRSS35 might play a role in female reproduction, especially in oocyte development, ovulation, implantation, and decidualization. This hypothesis was tested in Prss35(−/−) mice, which proved otherwise. Between wild type (WT) and Prss35(−/−) mice, superovulation of immature females produced comparable numbers of cumulus-oocyte complexes; there were comparable numbers of implantation sites detected on D4.5 and D7.5; there were no obvious differences in the expression of implantation and decidualization marker genes in D4.5 or D7.5 uteri. Comparable mRNA expression levels of a few known protease-related genes in the WT and Prss35(−/−) D4.5 uteri indicated no compensatory upregulation. Comparable litter sizes from WT × WT and Prss35 (−/−)× Prss35 (−/−) crosses suggested that Prss35 gene was unessential for fertility and embryo development. Prss35 gene has been linked to cleft lip/palate in humans. However, no obvious such defects were observed in Prss35(−/−) mice. This study demonstrates the distinct expression of Prss23 and Prss35 in the periimplantation uterus and the dispensable role of Prss35 in fertility and embryo development.  相似文献   

7.
Recent studies have revealed an important role for LTBP-4 in elastogenesis. Its mutational inactivation in humans causes autosomal recessive cutis laxa type 1C (ARCL1C), which is a severe disorder caused by defects of the elastic fiber network. Although the human gene involved in ARCL1C has been discovered based on similar elastic fiber abnormalities exhibited by mice lacking the short Ltbp-4 isoform (Ltbp4S−/−), the murine phenotype does not replicate ARCL1C. We therefore inactivated both Ltbp-4 isoforms in the mouse germline to model ARCL1C. Comparative analysis of Ltbp4S−/− and Ltbp4-null (Ltbp4−/−) mice identified Ltbp-4L as an important factor for elastogenesis and postnatal survival, and showed that it has distinct tissue expression patterns and specific molecular functions. We identified fibulin-4 as a previously unknown interaction partner of both Ltbp-4 isoforms and demonstrated that at least Ltbp-4L expression is essential for incorporation of fibulin-4 into the extracellular matrix (ECM). Overall, our results contribute to the current understanding of elastogenesis and provide an animal model of ARCL1C.KEY WORDS: Latent transforming growth factor β-binding protein 4, Ltbp-4, Ltbp-4L, Ltbp-4S, Autosomal recessive cutis laxa type 1C, ARCL1C, Elastogenesis, Extracellular matrix, ECM, Fibulin-4, Fibulin-5  相似文献   

8.
We isolated oryctin, a 66-residue peptide, from the hemolymph of the coconut rhinoceros beetle Oryctes rhinoceros and cloned its cDNA. Oryctin is dissimilar to any other known peptides in amino acid sequence, and its function has been unknown. To reveal that function, we determined the solution structure of recombinant 13C,15N-labeled oryctin by heteronuclear NMR spectroscopy. Oryctin exhibits a fold similar to that of Kazal-type serine protease inhibitors but has a unique additional C-terminal α-helix. We performed protease inhibition assays of oryctin against several bacterial and eukaryotic proteases. Oryctin does inhibit the following serine proteases: α-chymotrypsin, endopeptidase K, subtilisin Carlsberg, and leukocyte elastase, with Ki values of 3.9 × 10−10 m, 6.2 × 10−10 m, 1.4 × 10−9 m, and 1.2 × 10−8 m, respectively. Although the target molecule of oryctin in the beetle hemolymph remains obscure, our results showed that oryctin is a novel single domain Kazal-type inhibitor and could play a key role in protecting against bacterial infections.  相似文献   

9.
Reported here is the production of recombinant human rhinovirus 14 (HRV14) 2A protease from bacterial cells transformed with a heat-inducible plasmid containing the HRV14 2A cDNA sequence. Overexpressed 2A protein partitioned into the inclusion bodies was solubilized in urea and then refolded in the presence of Zn2+. Transition metals were required for the restoration of 2A protease activity as a structural component, but appeared to be inhibitory if added exogenously once the enzyme was refolded. Based on the cleavage specificity studies, a colorimetric assay was developed for the highly purified HRV14 2A protease. A peptide with the sequence RKGDIKSY–p-nitroanilide was found to be cleaved by the 2A protease with a kcat/Km ratio of ~335 M−1s−1, which allows its activity to be measured continuously with a spectrophotometer or a microplate reader.  相似文献   

10.
Hypoxia-ischemia (HI) and excitotoxicity are validated causes of neonatal brain injuries and tissue plasminogen activator (t-PA) participates in the processes through proteolytic and receptor-mediated pathways. Brain microvascular endothelial cells from neonates in culture, contain and release more t-PA and gelatinases upon glutamate challenge than adult cells. We have studied t-PA to gelatinase (MMP-2 and MMP-9) activity links in HI and excitotoxicity lesion models in 5 day–old pups in wild type and in t-PA or its inhibitor (PAI-1) genes inactivated mice. Gelatinolytic activities were detected in SDS-PAGE zymograms and by in situ fluorescent DQ-gelatin microscopic zymographies. HI was achieved by unilateral carotid ligature followed by a 40 min hypoxia (8%O2). Excitotoxic lesions were produced by intra parenchymal cortical (i.c.) injections of 10 µg ibotenate (Ibo). Gel zymograms in WT cortex revealed progressive extinction of MMP-2 and MMP-9 activities near day 15 or day 8 respectively. MMP-2 expression was the same in all strains while MMP-9 activity was barely detectable in t-PA−/− and enhanced in PAI-1−/− mice. HI or Ibo produced activation of MMP-2 activities 6 hours post-insult, in cortices of WT mice but not in t-PA−/− mice. In PAI-1−/− mice, HI or vehicle i.c. injection increased MMP-2 and MMP-9 activities. In situ zymograms using DQ-gelatin revealed vessel associated gelatinolytic activity in lesioned areas in PAI-1−/− and in WT mice. In WT brain slices incubated ex vivo, glutamate (200 µM) induced DQ-gelatin activation in vessels. The effect was not detected in t-PA−/−mice, but was restored by concomitant exposure to recombinant t-PA (20 µg/mL). In summary, neonatal brain lesion paradigms and ex vivo excitotoxic glutamate evoked t-PA-dependent gelatinases activation in vessels. Both MMP-2 and MMP-9 activities appeared t-PA-dependent. The data suggest that vascular directed protease inhibition may have neuroprotection potential against neonatal brain injuries.  相似文献   

11.
In the large arteries, it is believed that elastin provides the resistance to stretch at low pressure, while collagen provides the resistance to stretch at high pressure. It is also thought that elastin is responsible for the low energy loss observed with cyclic loading. These tenets are supported through experiments that alter component amounts through protease digestion, vessel remodeling, normal growth, or in different artery types. Genetic engineering provides the opportunity to revisit these tenets through the loss of expression of specific wall components. We used newborn mice lacking elastin (Eln−/−) or two key proteins (lysyl oxidase, Lox−/−, or fibulin-4, Fbln4−/−) that are necessary for the assembly of mechanically-functional elastic fibers to investigate the contributions of elastic fibers to large artery mechanics. We determined component content and organization and quantified the nonlinear and viscoelastic mechanical behavior of Eln−/−, Lox−/−, and Fbln4−/− ascending aorta and their respective controls. We confirmed that the lack of elastin, fibulin-4, or lysyl oxidase leads to absent or highly fragmented elastic fibers in the aortic wall and a 56–97% decrease in crosslinked elastin amounts. We found that the resistance to stretch at low pressure is decreased only in Eln−/− aorta, confirming the role of elastin in the nonlinear mechanical behavior of the aortic wall. Dissipated energy with cyclic loading and unloading is increased 53–387% in Eln−/−, Lox−/−, and Fbln4−/− aorta, indicating that not only elastin, but properly assembled and crosslinked elastic fibers, are necessary for low energy loss in the aorta.  相似文献   

12.
Macrophages play crucial roles in the formation of atherosclerotic lesions. Akt, a serine/threonine protein kinase B, is vital for cell proliferation, migration, and survival. Macrophages express three Akt isoforms, Akt1, Akt2, and Akt3, but the roles of Akt1 and Akt2 in atherosclerosis in vivo remain unclear. To dissect the impact of macrophage Akt1 and Akt2 on early atherosclerosis, we generated mice with hematopoietic deficiency of Akt1 or Akt2. After 8 weeks on Western diet, Ldlr−/− mice reconstituted with Akt1−/− fetal liver cells (Akt1−/−Ldlr−/−) had similar atherosclerotic lesion areas compared with control mice transplanted with WT cells (WT→Ldlr−/−). In contrast, Akt2−/−Ldlr−/− mice had dramatically reduced atherosclerotic lesions compared with WT→Ldlr−/− mice of both genders. Similarly, in the setting of advanced atherosclerotic lesions, Akt2−/−Ldlr−/− mice had smaller aortic lesions compared with WT→Ldlr−/− and Akt1−/−Ldlr−/− mice. Importantly, Akt2−/−Ldlr−/− mice had reduced numbers of proinflammatory blood monocytes expressing Ly-6Chi and chemokine C-C motif receptor 2. Peritoneal macrophages isolated from Akt2−/− mice were skewed toward an M2 phenotype and showed decreased expression of proinflammatory genes and reduced cell migration. Our data demonstrate that loss of Akt2 suppresses the ability of macrophages to undergo M1 polarization reducing both early and advanced atherosclerosis.  相似文献   

13.

Purpose

The purpose of our study was to investigate alterations in the meibomian gland (MG) in Cu, Zn-Superoxide Dismutase-1 knockout (Sod1 −/−) mouse.

Methods

Tear function tests [Break up time (BUT) and cotton thread] and ocular vital staining test were performed on Sod1 −/− male mice (n = 24) aged 10 and 50 weeks, and age and sex matched wild–type (+/+) mice (n = 25). Tear and serum samples were collected at sacrifice for inflammatory cytokine assays. MG specimens underwent Hematoxylin and Eosin staining, Mallory staining for fibrosis, Oil Red O lipid staining, TUNEL staining, immunohistochemistry stainings for 4HNE, 8-OHdG and CD45. Transmission electron microscopic examination (TEM) was also performed.

Results

Corneal vital staining scores in the Sod1 −/− mice were significantly higher compared with the wild type mice throughout the follow-up. Tear and serum IL-6 and TNF-α levels also showed significant elevations in the 10 to 50 week Sod1 −/− mice. Oil Red O staining showed an accumulation of large lipid droplets in the Sod1 −/− mice at 50 weeks. Immunohistochemistry revealed both increased TUNEL and oxidative stress marker stainings of the MG acinar epithelium in the Sod1 −/− mice compared to the wild type mice. Immunohistochemistry staining for CD45 showed increasing inflammatory cell infiltrates from 10 to 50 weeks in the Sod1 −/− mice compared to the wild type mice. TEM revealed prominent mitochondrial changes in 50 week Sod1 −/− mice.

Conclusions

Our results suggest that reactive oxygen species might play a vital role in the pathogensis of meibomian gland dysfunction. The Sod1 −/− mouse appears to be a promising model for the study of reactive oxygen species associated MG alterations.  相似文献   

14.
Vulvovaginal candidiasis (VVC) caused by Candida albicans affects a significant number of women during their reproductive ages. Clinical observations revealed that a robust vaginal polymorphonuclear neutrophil (PMN) migration occurs in susceptible women, promoting pathological inflammation without affecting fungal burden. Evidence to date in the mouse model suggests that a similar acute PMN migration into the vagina is mediated by chemotactic S100A8 and S100A9 alarmins produced by vaginal epithelial cells in response to Candida. Based on the putative role for the Th17 response in mucosal candidiasis as well as S100 alarmin induction, this study aimed to determine whether the Th17 pathway plays a role in the S100 alarmin-mediated acute inflammation during VVC using the experimental mouse model. For this, IL-23p19−/−, IL-17RA−/− and IL-22−/− mice were intravaginally inoculated with Candida, and vaginal lavage fluids were evaluated for fungal burden, PMN infiltration, the presence of S100 alarmins and inflammatory cytokines and chemokines. Compared to wild-type mice, the cytokine-deficient mice showed comparative levels of vaginal fungal burden and PMN infiltration following inoculation. Likewise, inoculated mice of all strains with substantial PMN infiltration exhibited elevated levels of vaginal S100 alarmins in both vaginal epithelia and secretions in the vaginal lumen. Finally, cytokine analyses of vaginal lavage fluid from inoculated mice revealed equivalent expression profiles irrespective of the Th17 cytokine status or PMN response. These data suggest that the vaginal S100 alarmin response to Candida does not require the cells or cytokines of the Th17 lineage, and therefore, the immunopathogenic inflammatory response during VVC occurs independently of the Th17-pathway.  相似文献   

15.
Myelodysplastic syndrome (MDS) is characterized by ineffective hematopoiesis and hyperplastic bone marrow. Complete loss or interstitial deletions of the long arm of chromosome 5 occur frequently in MDS. One candidate tumor suppressor on 5q is the mammalian Diaphanous (mDia)-related formin mDia1, encoded by DIAPH1 (5q31.3). mDia-family formins act as effectors for Rho-family small GTP-binding proteins including RhoB, which has also been shown to possess tumor suppressor activity. Mice lacking the Drf1 gene that encodes mDia1 develop age-dependent myelodysplastic features. We crossed mDia1 and RhoB knockout mice to test whether the additional loss of RhoB expression would compound the myelodysplastic phenotype. Drf1 −/− RhoB −/− mice are fertile and develop normally. Relative to age-matched Drf1 −/− RhoB +/− mice, the age of myelodysplasia onset was earlier in Drf1 −/− RhoB −/− animals—including abnormally shaped erythrocytes, splenomegaly, and extramedullary hematopoiesis. In addition, we observed a statistically significant increase in the number of activated monocytes/macrophages in both the spleen and bone marrow of Drf1 −/− RhoB −/− mice relative to Drf1 −/− RhoB +/− mice. These data suggest a role for RhoB-regulated mDia1 in the regulation of hematopoietic progenitor cells.  相似文献   

16.
Current evidence suggests a multifactorial etiology to pelvic organ prolapse (POP), including genetic predisposition. We conducted a genome-wide association study of POP in African American (AA) and Hispanic (HP) women from the Women’s Health Initiative Hormone Therapy study. Cases were defined as any POP (grades 1–3) or moderate/severe POP (grades 2–3), while controls had grade 0 POP. We performed race-specific multiple logistic regression analyses between SNPs imputed to 1000 genomes in relation to POP (grade 0 vs 1–3; grade 0 vs 2–3) adjusting for age at diagnosis, body mass index, parity, and genetic ancestry. There were 1274 controls and 1427 cases of any POP and 317 cases of moderate/severe POP. Although none of the analyses reached genome-wide significance (p<5x10-8), we noted variants in several loci that met p<10−6. In race-specific analysis of grade 0 vs 2–3, intronic SNPs in the CPE gene (rs28573326, OR:2.14; 95% CI 1.62–2.83; p = 1.0x10-7) were associated with POP in AAs, and SNPs in the gene AL132709.5 (rs1950626, OR:2.96; 95% CI 1.96–4.48, p = 2.6x10-7) were associated with POP in HPs. Inverse variance fixed-effect meta-analysis of the race-specific results showed suggestive signals for SNPs in the DPP6 gene (rs11243354, OR:1.36; p = 4.2x10-7) in the grade 0 vs 1–3 analyses and for SNPs around PGBD5 (rs740494, OR:2.17; p = 8.6x10-7) and SHC3 (rs2209875, OR:0.60; p = 9.3x10-7) in the grade 0 vs 2–3 analyses. While we did not identify genome-wide significant findings, we document several SNPs reaching suggestive statistical significance. Further interrogation of POP in larger minority samples is warranted.  相似文献   

17.
Previously, we showed Leishmania donovani Ufm1 has a Gly residue conserved at the C-terminal region with a unique 17 amino acid residue extension that must be processed prior to conjugation to target proteins. In this report, we describe for the first time the isolation and characterization of the Leishmania Ufm1-specific protease Ufsp. Biochemical analysis of L. donovani Ufsp showed that this protein possesses the Ufm1 processing activity using sensitive FRET based activity probes. The Ufm1 cleavage activity was absent in a mutant Ufsp in which the active site cysteine is altered to a serine. To examine the effects of abolition of Ufm1 processing activity, we generated a L. donovani null mutant of Ufsp (LdUfsp−/−). Ufm1 processing activity was abolished in LdUfsp−/− mutant, and the processing defect was reversed by re-expression of wild type but not the cys>ser mutant in the LdUfsp−/− parasites. Further LdUfsp−/− mutants showed reduced survival as amastigotes in infected human macrophages but not as promastigotes. This growth defect in the amastigotes was reversed by re-expression of wild type but not the cys>ser mutant in the Ufsp−/− indicating the essential nature of this protease for Leishmania pathogenesis. Further, mouse infection experiments showed deletion of Ufsp results in reduced virulence of the parasites. Additionally, Ufsp activity was inhibited by an anti-leishmanial drug Amphotericin B. These studies provide an opportunity to test LdUfsp−/− parasites as drug and vaccine targets.  相似文献   

18.
The adult olfactory epithelium has maintained the ability to reconstitute its olfactory sensory neurons (OSNs) from a basal progenitor cell compartment. This allows for life-long turnover and replacement of receptor components as well as repair of the primary olfactory pathway in response to injury and environmental insults. The present study investigated whether fibulin-3, a glycoprotein in the extracellular matrix and binding partner of tissue inhibitor of metalloproteinases-3 (TIMP-3), plays a role in ongoing plasticity and regenerative events in the adult primary olfactory pathway. In wild-type control mice, fibulin-3 protein was detected on IB4+CD31+ blood vessels, nerve fascicles and the basement membrane underneath the olfactory epithelium. After target ablation (olfactory bulbectomy), fibulin-3 was also abundantly present in the central nervous system (CNS) scar tissue that occupied the bulbar cavity. Using two different lesion models, i.e. intranasal Triton X-100 lesion and olfactory bulbectomy, we show that fibulin-3 deficient (Efemp1?/?) mice have impaired recovery of the olfactory epithelium after injury. Ten days post-injury, Efemp1?/? mice showed altered basal stem/progenitor cell proliferation and increased overall numbers of mature (olfactory marker protein (OMP) -positive) versus immature OSNs. However, compromised regenerative capacity of the primary olfactory pathway in Efemp1?/? mice was evidenced by reduced numbers of mature OSNs at the later time point of 42 days post-injury. In addition to these neural differences there were consistent changes in blood vessel structure in the olfactory lamina propria of Efemp1?/? mice. Overall, these data suggest a role for fibulin-3 in tissue maintenance and regeneration in the adult olfactory pathway.  相似文献   

19.
Analysis of knockout animals indicates that 3′,5′cyclic guanosine monophosphate (cGMP) has an important role in gut homeostasis but the signaling mechanism is not known. The goals of this study were to test whether increasing cGMP could affect colon homeostasis and determine the mechanism. We increased cGMP in the gut of Prkg2+/+ and Prkg2−/− mice by treating with the PDE5 inhibitor Vardenafil (IP). Proliferation, differentiation and apoptosis in the colon mucosa were then quantitated. Vardenafil (Vard) treatment increased cGMP in colon mucosa of all mice, but reduced proliferation and apoptosis, and increased differentiation only in Prkg2+/+ mice. Vard and cGMP treatment also increased dual specificity protein phosphatase 10 (DUSP10) expression and reduced phospho-c-Jun N-terminal kinase (JNK) levels in the colon mucosa of Prkg2+/+ but not Prkg2−/− mice. Treatment of Prkg2−/− mice with the JNK inhibitor SP600125 reversed the defective homeostasis observed in these animals. Activation of protein kinase G2 (PKG2) in goblet-like LS174T cells increased DUSP10 expression and reduced JNK activity. PKG2 also increased goblet cell-specific MUC2 expression in LS174T cells, and this process was blocked by DUSP10-specific siRNA. The ability of cGMP signaling to inhibit JNK-induced apoptosis in vivo was demonstrated using dextran sodium sulfate (DSS) to stress the colon epithelium. Vard was a potent inhibitor of DSS-induced epithelial apoptosis, and significantly blocked pathological endpoints in this model of experimental colitis. In conclusion, Vard treatment activates cGMP signaling in the colon epithelium. Increased PKG2 activity alters homeostasis by suppressing proliferation and apoptosis while promoting differentiation. The PKG2-dependent mechanism was shown to involve increased DUSP10 and subsequent inhibition of JNK activity.  相似文献   

20.
Autophagy is a lysosomal degradation pathway of cellular components that displays antiinflammatory properties in macrophages. Macrophages are critically involved in chronic liver injury by releasing mediators that promote hepatocyte apoptosis, contribute to inflammatory cell recruitment and activation of hepatic fibrogenic cells. Here, we investigated whether macrophage autophagy may protect against chronic liver injury. Experiments were performed in mice with mutations in the autophagy gene Atg5 in the myeloid lineage (Atg5fl/fl LysM-Cre mice, referred to as atg5−/−) and their wild-type (Atg5fl/fl, referred to as WT) littermates. Liver fibrosis was induced by repeated intraperitoneal injection of carbon tetrachloride. In vitro studies were performed in cultures or co-cultures of peritoneal macrophages with hepatic myofibroblasts. As compared to WT littermates, atg5−/− mice exposed to chronic carbon tetrachloride administration displayed higher hepatic levels of IL1A and IL1B and enhanced inflammatory cell recruitment associated with exacerbated liver injury. In addition, atg5−/− mice were more susceptible to liver fibrosis, as shown by enhanced matrix and fibrogenic cell accumulation. Macrophages from atg5−/− mice secreted higher levels of reactive oxygen species (ROS)-induced IL1A and IL1B. Moreover, hepatic myofibroblasts exposed to the conditioned medium of macrophages from atg5−/− mice showed increased profibrogenic gene expression; this effect was blunted when neutralizing IL1A and IL1B in the conditioned medium of atg5−/− macrophages. Finally, administration of recombinant IL1RN (interleukin 1 receptor antagonist) to carbon tetrachloride-exposed atg5−/− mice blunted liver injury and fibrosis, identifying IL1A/B as central mediators in the deleterious effects of macrophage autophagy invalidation. These results uncover macrophage autophagy as a novel antiinflammatory pathway regulating liver fibrosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号