首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Animal pollination is a vital ecosystem service, and wild bees are essential providers of this service for both crops and wild flowering plants. The early successional stage of a plantation, which can be dominated by grasses and herbaceous plant species, can provide a habitat for various species of wild bees. We sampled bees from 13 early successional plantation patches of different sizes, ranging from 1.3 to 10 ha. We then applied a hierarchical community model to infer species richness/abundance–area relationships. The results showed that estimates of population densities of individual species were unchanged with respect to area, suggesting that smaller patches can have the same value per area as larger patches. Estimated species richness increased rapidly for the small range of patch sizes examined. Total abundance was found to linearly increase with area. The inclusion of random site effects into the model resulted in significant density variations among patches; therefore, patch area was not the only determining factor of species abundance. These outcomes in relation to management operations for forests and plantations suggest that small patches of early successional forest contribute to conserve and restore wild bee diversity.  相似文献   

2.
Knowledge of the recovery of insect communities after forest disturbance in tropical Africa is very limited. Here, fruit‐feeding butterflies in a tropical rain forest at Kibale National Park, Uganda, were used as a model system to uncover how, and how fast, insect communities recover after forest disturbance. We trapped butterflies monthly along a successional gradient for one year. Traps were placed in intact primary forest compartments, heavily logged forest compartments with and without arboricide treatment approximately 43 years ago, and in conifer‐clearcut compartments, ranging from 9 to 19 years of age. The species richness, total abundance, diversity, dominance, and similarity of the community composition of butterflies in the eight compartments were compared with uni‐ and multivariate statistics. A total of 16,728 individuals representing 88 species were trapped during the study. Butterfly species richness, abundance, and diversity did not show an increasing trend along the successional gradient but species richness and abundance peaked at intermediate stages. There was monthly variation in species richness, abundance, diversity and composition. Butterfly community structure differed significantly among the eight successional stages and only a marginal directional change along the successional gradient emerged. The greatest number of indicator species and intact forest interior specialists were found in one of the primary forests. Our results show that forest disturbance has a long‐term impact on the recovery of butterfly species composition, emphasizing the value of intact primary forests for butterfly conservation.  相似文献   

3.
Succession of bee communities on fallows   总被引:4,自引:0,他引:4  
Wild bee communities were studied on one- to five-year-old set-aside fields with naturally developed vegetation (n = 20). and old orchard meadows (n = 4) to analyse effects of secondary succession on species diversity, resource use and associated life history traits. General theory predicts a steady increase of species richness with age of succession. In contrast, we found a first maximum in species richness of bees on two-year-old set-aside fields and a second on old meadows. Successional changes of bee communities were related to changes of vegetation. The transition from pioneer successional stages, dominated by annuals, to early successional stages, dominated by perennials, resulted in the highest species richness of flowering plants in the second year within the first five years of succession. Species richness of flowering plants was the best predictor variable for species richness of bees, whereas the cover of flowering plants correlated with the abundance of bees. Annual plants were visited more often and perennials less often than expected from their flower cover. Halictidae tended to prefer flowers of annuals, whereas Megachilidae. Apidae and Anthophoridae significantly preferred perennials. In departure from successional theory, body size, proportion of specialised bees and proportion of parasitic bees did not significantly increase with successional age, but number of generations and the proportion of soil-nesting bees decreased with successional age. Comparison of different management types showed that set-aside fields with naturally developed vegetation supported much more specialised and endangered bee species than set-aside fields sown with Phacelia tanacetifolia.  相似文献   

4.
Land‐use change is the main cause of deforestation and degradation of tropical forest in Mexico. Frequently, these lands are abandoned leading to a mosaic of natural vegetation in secondary succession. Further degradation of the natural vegetation in these lands could be exacerbated by stochastic catastrophic events such as hurricanes. Information on the impact of human disturbance parallel to natural disturbance has not yet been evaluated for faunal assemblages in tropical dry forests. To evaluate the response of herpetofaunal assemblages to the interaction of human and natural disturbances, we used information of pre‐ and post‐hurricane herpetofaunal assemblages inhabiting different successional stages (pasture, early forest, young forest, intermediate forest, and old growth forest) of dry forest. Herpetofaunal assemblages were surveyed in all successional stages two years before and two years after the hurricane Jova that hit the Pacific Coast of Mexico on October 2011. We registered 4093 individuals of 61 species. Overall, there were only slight effects of successional stage, hurricane Jova or the interaction between them on abundance, observed species richness and diversity of the herpetofauna. However, we found marked changes in estimated richness and composition of frogs, lizards, and snakes among successional stages in response to hurricane Jova. Modifications in vegetation structure as result of hurricane pass promoted particular changes in each successional stage and taxonomic group (anurans, lizards, and snakes). Secondary forests at different stages of succession may attenuate the negative effects of an intense, short‐duration, and low‐frequency natural disturbance such as hurricane Jova on successional herpetofaunal trajectories and species turnover.  相似文献   

5.
Abstract The response of insects to monoculture plantations has mainly proceeded at the expense of natural forest areas, and is an outstanding and important issue in ecology and conservation biology, with pollination services declined around the world. In this study, species richness and distribution of hoverfly and wild bee communities were investigated in a changing tropical landscape in southern Yunnan, south‐west China by Malaise traps periodically from 2008 to 2009. Species were recorded from the traditional land use types (natural forest, grassland, shrubland and rice field fallows), and from recently established rubber plantations of different ages. Hoverflies (total 53 species) were most common in young successional stages of vegetation, including rice field fallow and shrubland. Species richness was highest in rice field fallows and lowest in forests and showed a highly significant relationship with the number of forb species and ground vegetation cover. In contrast, the highest richness of wild bees (total 44 species) was recorded from the natural forest sites, which showed a discrete bee community composition compared to the remaining habitat types. There was no significant relationship between the bee species richness and the environmental variables, including the numbers of different plant life forms, coverage of canopy and ground vegetation, successional age of vegetation and land use type. At the landscape scale, open land use systems, including young rubber plantations, are assumed to increase the species richness of hoverflies; however, this might decrease wild bee diversity. The present land use change by rubber cultivation can be expected to have negative impacts on the native wild bee communities.  相似文献   

6.
在川西亚高山米亚罗林区海拔3 100~3 600 m阴坡、半阴坡, 以立地条件基本一致的箭竹和藓类林型不同恢复阶段(20~40 a生的箭竹阔叶林、50 a生的箭竹针阔混交林、160~200 a生的箭竹原始暗针叶老龄林; 20~40 a生的藓类阔叶林、50 a生的藓类针阔混交林、160~200 a生的藓类原始暗针叶老龄林)的群落为研究对象, 共设置了50个样方(20 m×20 m), 采用空间代时间的方法分析了岷江冷杉(Abies faxoniana)的天然更新状况, 并采用通径分析法对其影响因子进行分析。结果表明: 箭竹和藓类两种森林类型岷江冷杉幼苗、幼树和小树的密度偏低。对于箭竹林型不同恢复阶段, 岷江冷杉幼苗密度<幼树密度<小树密度; 对于藓类林型不同恢复阶段, 藓类阔叶林幼树密度大于幼苗和小树密度, 藓类针阔混交林小树密度大于幼苗和幼树密度, 而藓类原始暗针叶老龄林幼苗密度大于幼树和小树密度。藓类林型岷江冷杉天然更新状况好于箭竹林型。对箭竹林型而言, 影响岷江冷杉天然更新的关键因子为母树密度、倒木蓄积量、箭竹盖度和苔藓层厚度, 其中母树密度和倒木蓄积量对岷江冷杉天然更新起着促进作用, 箭竹盖度和苔藓层厚度对岷江冷杉天然更新起着阻碍作用; 对于藓类林型而言, 影响岷江冷杉天然更新的关键因子为灌木盖度和苔藓层厚度。灌木和苔藓有利于幼苗的发生, 但不利于幼苗向幼树、小树的过渡。  相似文献   

7.
The use of timber harvest residue as an energy source is thought to have environmental benefits relative to food‐based crops, yet the ecological impact of this practice remains largely unknown. We assessed whether the abundance and diversity of wild bees (Apoidea) were influenced by the removal of harvest residue and associated soil compaction within managed conifer forest in western Oregon, USA. We sampled bees over two years (2014–2015) on study plots that were subjected to five treatments representing gradients in removal of harvest residue and soil compaction. We collected >7,500 bee specimens from 92 distinct species/morphospecies that represented five of the seven bee families. We trapped 3x more individuals in the second year of the study despite identical sampling effort in both years, with most trapped bees classified as ground‐nesting species. Members of the sweat bee family (Halictidae) comprised more than half of all specimens, and the most abundant genus was composed of metallic green bees (Agapostemon, 33.6%), followed by long‐horned bees (Melissodes, 16.5%), sweat bees (Halictus, 15.9%), and bumble bees (Bombus, 13.6%). In both years, abundance and observed species richness were greatest in the most intensive harvest residue treatment, with other treatments having similar values for both measures. Our study indicates that early successional managed conifer forest that has experienced removal of harvest residue can harbor a surprising diversity of wild bees, which are likely to have important contributions to the broader ecological community through the pollination services they provide.  相似文献   

8.
The majority of studies investigating the effects of landscape composition and configuration on bee populations have been conducted in regions of intensive agricultural production, ignoring regions which are dominated by seminatural habitats, such as the islands of the Aegean Archipelago. In addition, research so far has focused on the landscape impacts on bees sampled in cropped fields while the landscape effects on bees inhabiting seminatural habitats are understudied. Here, we investigate the impact of the landscape on wild bee assemblages in 66 phryganic (low scrubland) communities on 8 Aegean islands. We computed landscape metrics (total area and total perimeter–area ratio) in 4 concentric circles (250, 500, 750, and 1000 m) around the center of each bee sampling site including 3 habitat groups (namely phrygana, cultivated land, and natural forests). We further measured the local flower cover in 25 quadrats distributed randomly at the center of each sampling site. We found that the landscape scale is more important than the local scale in shaping abundance and species richness of bees. Furthermore, habitat configuration was more important than the total area of habitats, probably because it affects bees’ movement across the landscape. Phrygana and natural forests had a positive effect on bee demographics, while cultivated land had a negative effect. This demonstrates that phryganic specialists drive bee assemblages in these seminatural landscapes. This finding, together with the shown importance of landscape scale, should be considered for the management of wild bees with special emphasis placed on the spatial configuration of seminatural habitats.  相似文献   

9.
As planted forests expand in area, they are beginning to dominate landscapes as a matrix and cause the fragmentation of remaining natural forests. To understand and predict the responses of biological assemblages to maturing planted landscapes, examining the effects of forest type (natural vs planted) and forest age on such assemblages is particularly important. Therefore, to document the effects of forest type and age on longhorned beetle assemblages, in 2008 we collected beetles in broad‐leaved natural and cedar planted forests where beetles had also been collected in 1989. Beetle species composition differed greatly between the two forest types in 1989, whereas this difference was less pronounced in 2008. Species richness and total abundance were higher in natural forests than in planted forests in 1989. In 2008, species richness had decreased in both forest types, but the difference between the two forest types had been maintained. Total abundance was also markedly lower in 2008, and the difference between forest types was much smaller. Although larval host plants were not associated with the responses of species to year (forest age or maturation), beetle species whose larvae fed on either broad‐leaved or coniferous trees (or both) exhibited slight preferences for natural forests. These results suggest that longhorned beetle assemblages become impoverished in planted landscapes as the planted matrix matures. Changes in species composition with forest maturation may be difficult to predict based on larval host plants. However, consideration of larval host plants may enable the prediction of changes in species composition caused by the replacement of natural forests by planted forests.  相似文献   

10.
Forest succession can influence herbivore communities through changes in host availability, plant quality, microclimate, canopy structure complexity and predator abundance. It is not well known, however, if such influence is constant across years. Caterpillars have been reported to be particularly susceptible to changes in plant community composition across forest succession, as most species are specialists and rely on the presence of their hosts. Nevertheless, in the case of tropical dry forests, plant species have less defined successional boundaries than tropical wet forests, and hence herbivore communities should be able to persist across different successional stages. To test this prediction, caterpillar communities were surveyed during eight consecutive years in a tropical dry forest in four replicated successional stages in Chamela, Jalisco and Mexico. Lepidopteran species richness and diversity were equivalent in mature forests and early successional stages, but a distinctive caterpillar community was found for the recently abandoned pastures. Species composition tended to converge among all four successional stages during the span of eight years. Overall, our results highlight the importance of both primary and secondary forest for the conservation of caterpillar biodiversity at a landscape level. We also highlight the relevance of long‐term studies when assessing the influence of forest succession to account for across year variation in species interactions and climatic factors. Abstract in French is available with online material.  相似文献   

11.
岷江冷杉林皆伐后次生群落结构和物种多样性的演替动态   总被引:1,自引:0,他引:1  
缪宁  周珠丽  史作民  冯秋红 《生态学报》2014,34(13):3661-3671
为阐明岷江冷杉林皆伐后次生群落的演替过程,采用空间代替时间的方法,在川西米亚罗林区海拔3100—3600 m的阴坡选择岷江冷杉林皆伐后次生演替10、20、30、40和50a阶段的次生群落作为研究对象,对其群落结构和物种多样性的动态进行了研究。不同演替阶段的树木均呈显著聚集分布。按群落中优势种的重要值将该演替序列划分为3个类型:悬钩子-蔷薇灌丛、白桦阔叶林和桦木-岷江冷杉针阔混交林。随次生演替,乔木和灌木种的物种丰富度趋于增加,而草本种的物种丰富度趋于减少;乔木和灌木种的Shannon-Wiener多样性指数趋于增大,而草本的Shannon-Wiener多样性指数趋于减小;乔木、灌木和草本层的Pielou均匀度指数均趋于增大;乔木层的Simpson优势度指数趋于减小,灌木和草本层的Simpson优势度指数在演替0—40年阶段趋于增大,而在演替50a阶段趋于减小。在该演替序列中,乔木、灌木和草本层的物种组成均呈耐荫种替代非耐荫种的趋势。  相似文献   

12.
Since prehistoric times, natural and man made fires have been important factors of natural disturbance in many forest ecosystems, like those on the southern slopes of the Alps. Their effect on scarce, endangered or stenotopic species and on the diversity of invertebrate species assemblages which depend on a mosaic of successional habitat stages, is controversially discussed. In southern Switzerland, in a region affected by regular winter fires, we investigated the effect of the fire frequency on a large spectrum of taxonomic groups. We focussed on total biodiversity, taxonomic groups specific to certain habitat types, and on scarce and endangered species. Overall species richness was significantly higher in plots with repeated fires than in the unburnt control sites. Plots with only one fire in the last 30 yr harboured intermediate species numbers. Fire frequency had a significantly positive effect on species richness of the guilds of interior forest species and forest edge specialists. Species of open landscape, open forests and interior forests were not influenced by fire frequency. A positive effect of fire on species richness was observed for ground beetles (Carabidae), hoverflies (Syrphidae), bees and wasps (Hymenoptera aculeata, without Formicidae), and spiders (Araneae). True bugs (Heteroptera), lacewings (Neuroptera) and the saproxylic beetle families Cerambycidae, Buprestidae and Lucanidae showed positive trends, but no statistically significant effects of fire on species numbers or/and abundances. Negative effects of fire on species numbers or/and abundances were found only for isopods and weevils (Curculionidae). A compromise for forest management is suggested, which considers the risk of damage by fire to people and goods, while avoiding the risk of damage to biodiversity by imitating the effects of sporadic fires and providing a mosaic forest with open gaps of different successional stages.  相似文献   

13.
华北地区落叶松林的分布、群落结构和物种多样性   总被引:1,自引:0,他引:1       下载免费PDF全文
华北落叶松(Larix principis-rupprechtii)林、日本落叶松(L. kaempferi)林及太白红杉(L. chinensis)林是华北地区常见的3种落叶松林类型, 其中日本落叶松林为人工林, 华北落叶松林既有天然分布又有人工种植, 太白红杉林则主要是天然林。该研究基于野外调查数据, 对这3种落叶松林的分布、物种组成、群落结构、物种多样性及其与环境间的关系进行了分析。研究发现, 3种落叶松林的分布受年平均气温的影响较大, 随着年平均气温的增加, 落叶松林的天然分布减少而人工种植的分布增加。3种森林中落叶松的林分径级及树高均为右偏分布, 说明3种落叶松林均处于相对稳定的演替阶段。3种落叶松林均拥有较高的物种丰富度且差异显著, 其中太白红杉林的物种丰富度最大(39.3 ± 17.9), 而华北落叶松林的物种丰富度最小(人工林27.2 ± 17.7, 天然林27.5 ± 13.8)。除最大树高与经度的关系不显著以外, 落叶松林的最大胸径和最大树高及物种丰富度均随经纬度的增加而显著降低, 随着年降水量的增加而显著增加。此外, 年平均气温对落叶松林的总物种丰富度影响不大, 但是对其群落结构影响显著。随着年平均气温的升高, 落叶松林的最大胸径显著降低而最大树高却显著增加。落叶松天然林和落叶松人工林物种多样性的地理分布格局及与气候因子间的关系与落叶松林总体的基本一致, 但群落结构的格局不尽相同: 随着经纬度的增加, 落叶松人工林的最大树高增加而天然林的最大树高减小; 落叶松天然林的最大胸径和最大树高分别随年平均气温的升高和年降水量的增加而减小, 而落叶松人工林的最大胸径和最大树高分别随年平均气温的升高和年降水量的增加而增大。  相似文献   

14.
The diversity and abundance of wild bees ensures the delivery of pollination services and the maintenance of ecosystem diversity. As previous studies carried out in Central Europe and the US have shown, bee diversity and abundance is influenced by the structure and the composition of the surrounding landscape. Comparable studies have so far not been carried out in the Mediterranean region. The present study examines the influence of Mediterranean landscape context on the diversity and abundance of wild bees. To do this, we sampled bees in 13 sites in olive groves on Lesvos Island, Greece. Bees were assigned to five categories consisting of three body size groups (small, medium and large bees), the single most abundant bee species (Lasioglossum marginatum) and all species combined. The influence of the landscape context on bee abundance and species richness was assessed at five radii (250, 500, 750, 1000 and 1250 m) from the centre of each site. We found that the abundance within bee groups was influenced differently by different landscape parameters and land covers, whereas species richness was unaffected. Generally, smaller bees' abundance was impacted by landscape parameters at smaller scales and larger bees at larger scales. The land cover that influenced bee abundance positively was olive grove, while phrygana, conifer forest, broad-leaved forest, cultivated land, rock, urban areas and sea had mostly negative or no impact. We stress the need for a holistic approach, including all land covers, when assessing the effects of landscape context on bee diversity and abundance in the Mediterranean.  相似文献   

15.
Silvicultural practices are traditionally aimed at increasing forest profits; however, recent approaches to forest conservation have broadened to include nature-based silviculture for regenerating forests. In southern Ontario (Canada), originally dominated by deciduous forests, conifer plantations were established on abandoned agricultural sites. Currently, there is an increasing interest to convert these conifer stands to a state that mimics the original deciduous forest. We investigated arthropod abundance, species richness of carabid beetles, and abundance of arthropod assemblages (trophic and prey groups) under five silvicultural treatments conducted to regenerate deciduous forests (the natural forest type) from the old conifer plantations. The treatments included: (1) uniform canopy removal; (2) uniform canopy removal and understory removal; (3) group canopy removal; (4) group canopy removal and understory removal; and (5) untreated control plots (relatively pure red pine). Insects were sampled annually using sweepnets and pitfall traps. Results revealed treatment effects on the abundance of Coleoptera, Heteroptera, herbivores, and small arthropods (<3 mm) caught in sweepnet samples, where plots subjected to group shelterwood removal and understory removal supported higher abundances than the control plots. There was no treatment effect on the abundance of other arthropod groups or on the species richness and abundance of carabid beetles. The silvicultural treatments used to encourage natural regeneration did not seem to affect arthropod food availability for insectivorous vertebrates. Thus, the type of silvicultural strategy used to convert pine plantations to a stage that mimics the natural deciduous forests had little overall impact on arthropods.  相似文献   

16.
During the past 150 years forest management has dramatically altered in Central European woodlands, with severe consequences for biodiversity. Light forests that fulfilled variable human demands were replaced by dark high forests that function solely as wood plantations. In the Alps, by contrast, open woodlands are still present because the traditional land use as wood pasture has remained and physiographical conditions favour natural dynamics. The aim of our study was to investigate the effects of succession on the Orthoptera communities of alluvial pine woodlands in the northern Alps. Orthoptera showed a clear response to succession, with each successional stage harbouring a unique assemblage. The influence of succession on species richness and abundance were identical: The values were highest in the intermediate and lowest in the late seral stage. The diversity and abundance peak in the mid-successional stage probably reflects a trade-off between favourable ambient temperatures for optimal development and sufficient food, oviposition sites and shelter against predators. Food shortage and easy access for predators seemed to be limiting factors in the early successional stage. In contrast, in the late successional stage adverse microclimatic conditions probably limit Orthoptera occurrence. Although all three successional stages of the pine woodlands are relevant for conservation, the early and mid-successional stages are the most important ones. Conservation management for Orthoptera in this woodland type should aim at the reintroduction of cattle grazing and the restoration of the natural discharge and bedload-transport regimes of the alpine rivers.  相似文献   

17.
A major debate in the study of biodiversity concerns its influence on ecosystem functioning. We compared whether wood production in forests was associated with tree functional group identity (i.e. deciduous, conifer or sclerophylous), tree species richness (1–≥ 5) and tree functional group richness (1–3) by comparing more than 5000 permanent plots distributed across Catalonia (NE Spain). Deciduous forests were more productive than coniferous and sclerophylous forests. Wood production increased with tree species richness. However, functional group richness increased wood production only in sclerophylous forests. When other forest structure, environmental variables and management practices were included in the analysis, tree functional group identity and species richness still remained significant, while functional species richness did not. Our survey indicates that across a regional scale, and across a broad range of environmental conditions, a significant positive association exists between local tree species richness and wood production at least in typical early successional Mediterranean-type forests.  相似文献   

18.
The subtropical evergreen broad-leaved forests of Yunnan and Taiwan were compared along environmental and successional gradients with the aim of identifying important taxon and species diversity as well as the drivers of mountain biodiversity patterns. A detrended correspondence analysis of an exhaustive set of data collected from 105 and 223 plots for Yunnan and Taiwan, respectively, was applied to classify natural mature forest types. Additional data from 72 and 68 plots for Yunnan and Taiwan, respectively, were used for analyses of secondary succession. The floristic richness and diversity index were calculated for each type of forest. In Yunnan, the monsoon forests in mesic-humid sites had more taxa and tended to show higher species diversity than the other two forest types. In Taiwan, species diversity values were significantly higher in the MachilusCastanopsis zone in the middle altitudes (500–1500 m) than for the other three forest zones. For both Yunnan and Taiwan, the forests at the middle successional stage showed significantly higher species diversity than those at the early successional stage. Differences in diversity between the middle and late stages were not significant. These findings highlight the high species diversity of the natural mature evergreen broad-leaved forests of both Yunnan and Taiwan. In the secondary forests, as succession proceeds, species diversity comes to resemble that of the natural mature forests. In both ecosystems, the drivers of species diversity patterns are moisture, altitude, and succession/disturbance.  相似文献   

19.
European forest management guidelines include conservation and enhancement of biodiversity. Within plantation forestry, trackways provide contiguous permanent open-habitat with potential to enhance biodiversity. We examined the ground-active spider assemblage in the trackway network of Thetford Forest, Eastern England, the largest lowland conifer forest in the UK, created by afforestation of heathland and farmland. Results are relevant to other forests in heath regions across Europe. We used pitfall trapping to sample the spider assemblage of trackways within thicket-aged stands (n = 17), mature stands (n = 13) and heathland reference sites (n = 9). A total of 9,314 individuals of 71 species were recorded. Spider assemblages of the trackway network were distinct from those of the heathland reference sites; however, trackways were found to support specialist species associated with grass-heath habitats, including nationally scarce species. Richness of grass-heath species was similar for trackways in thicket-aged forest and heathland reference sites, although the abundance of individuals was three times greater in the reference sites. Trackways in mature stands had lower grass-heath species richness and abundance than both thicket trackways and heath reference sites. Wide trackways within thicket stands contained greater richness and abundance of specialist xeric species than narrower trackways. However, fewer xeric individuals were found in trackways compared to heathland reference sites. Either inferior habitat quality in trackways or poor dispersal ability of specialist xeric species may largely restrict these to relict areas of heathland. Targeted widening of trackways to allow permanent unshaded habitat and creating early successional stages by mechanical disturbance regimes could improve trackway suitability for specialist species, helping to restore connectivity networks for grass-heath biodiversity.  相似文献   

20.
Ground beetles were collected by pitfall trapping to compare their species richness between conifer plantations (14 sites) and regenerating forests (14 sites) and among forest ages and to examine how different functional groups responded to forest type, forest age, patch size, elevation, and geographic location in terms of abundance and richness. Ground beetles were collected from middle August to late October, 2008. A total of 34 species were identified from 3,156 collected ground beetles. Individual-based rarefaction curves showed greater species richness in regenerating forests, especially in 40–50-year-old forests, than in conifer plantations. Stepwise multiple regression analysis showed that patch size and elevation were major predictors of species richness and/or abundance of forest specialists, brachypterous species, and large- and medium-bodied species. A multivariate regression tree indicated that patch size and elevation were major predictors of assemblage structure. Although our results suggest that maintaining forest areas adjacent to agricultural landscapes may be essential to preserve ground beetle assemblages irrespective of forest types, further study is necessary to clarify the effects of habitat quality and amount on ground beetles in forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号