首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The proteasome inhibitor MG132 has been shown to induce apoptotic cell death through the formation of reactive oxygen species (ROS). Here, we evaluated the effects of MG132 on the growth and death of As4.1 juxtaglomerular cells in relation to ROS and glutathione (GSH) levels. MG132 inhibited the growth of As4.1 cells with an IC50 of approximately 0.3–0.4 μM at 48 h and induced cell death, which was accompanied by the loss of mitochondrial membrane potential (MMP; ΔΨm), Bcl-2 decrease, activation of caspase-3 and -8, and PARP cleavage. MG132 increased intracellular ROS levels including O2? and GSH depleted cell numbers. N-acetyl cysteine (NAC, a well-known antioxidant) significantly decreased ROS level and GSH depleted cell numbers in MG132-treated As4.1 cells, along with the prevention of cell growth inhibition, cell death and MMP (ΔΨm) loss. NAC also decreased the caspase-3 activity of MG132. l-Buthionine sulfoximine (BSO; an inhibitor of GSH synthesis) or diethyldithiocarbamate (DDC; an inhibitor of Cu/Zn-SOD) did not affect cell growth, death, ROS and GSH levels in MG132-treated As4.1 cells. Conclusively, MG132 reduced the growth of As4.1 cells via apoptosis. The changes of ROS and GSH by MG132 were involved in As4.1 cell growth and death.  相似文献   

2.
Sodium iodate (SI) is a widely used oxidant for generating retinal degeneration models by inducing the death of retinal pigment epithelium (RPE) cells. However, the mechanism of RPE cell death induced by SI remains unclear. In this study, we investigated the necrotic features of cultured human retinal pigment epithelium (ARPE-19) cells treated with SI and found that apoptosis or necroptosis was not the major death pathway. Instead, the death process was accompanied by significant elevation of intracellular labile iron level, ROS, and lipid peroxides which recapitulated the key features of ferroptosis. Ferroptosis inhibitors deferoxamine mesylate (DFO) and ferrostatin-1(Fer-1) partially prevented SI-induced cell death. Further studies revealed that SI treatment did not alter GPX4 (glutathione peroxidase 4) expression, but led to the depletion of reduced thiol groups, mainly intracellular GSH (reduced glutathione) and cysteine. The study on iron trafficking demonstrated that iron influx was not altered by SI treatment but iron efflux increased, indicating that the increase in labile iron was likely due to the release of sequestered iron. This hypothesis was verified by showing that SI directly promoted the release of labile iron from a cell-free lysate. We propose that SI depletes GSH, increases ROS, releases labile iron, and boosts lipid damage, which in turn results in ferroptosis in ARPE-19 cells.Subject terms: Disease model, Cell death  相似文献   

3.
Suberoyl bishydroxamic acid (SBHA) is a HDAC inhibitor that can regulate many biological functions including apoptosis and proliferation in various cancer cells. Here, we evaluated the effect of SBHA on the growth of HeLa cervical cancer cells in relation to apoptosis, reactive oxygen species (ROS) and glutathione (GSH) levels. Dose-dependent inhibition of cell growth was observed in HeLa cells with an IC50 of approximately 15 μM at 72 h. SBHA also induced apoptosis in HeLa cells, as evidenced by sub-G1 cells, annexin V-FITC staining cells, activations of caspase 3 and 8, and the loss of mitochondrial membrane potential (ΔΨm). In addition, all of the tested caspase inhibitors rescued some cells from SBHA-induced HeLa cell death. SBHA increased ROS levels including O 2 ?? and induced GSH depletion in HeLa cells. Generally, caspase inhibitors did not affect ROS levels in SBHA-treated HeLa cells, but they significantly prevented GSH depletion in these cells. Furthermore, while the well-known antioxidants, N-acetyl cysteine and vitamin C, did not affect cell death, ROS level or GSH depletion in SBHA-treated HeLa cells, l-buthionine sulfoximine, a GSH synthesis inhibitor, enhanced cell death and GSH depletion in these cells. In conclusion, SBHA inhibits the growth of HeLa cervical cancer cells via caspase-dependent apoptosis, and the inhibition is independent of ROS level changes, but dependent on GSH level changes.  相似文献   

4.
Absence of α-crystallins (αA and αB) in retinal pigment epithelial (RPE) cells renders them susceptible to oxidant-induced cell death. We tested the hypothesis that the protective effect of α-crystallin is mediated by changes in cellular glutathione (GSH) and elucidated the mechanism of GSH efflux. In α-crystallin overexpressing cells resistant to cell death, cellular GSH was >2 fold higher than vector control cells and this increase was seen particularly in mitochondria. The high GSH levels associated with α-crystallin overexpression were due to increased GSH biosynthesis. On the other hand, cellular GSH was decreased by 50% in murine retina lacking αA or αB crystallin. Multiple multidrug resistance protein (MRP) family isoforms were expressed in RPE, among which MRP1 was the most abundant. MRP1 was localized to the plasma membrane and inhibition of MRP1 markedly decreased GSH efflux. MRP1-suppressed cells were resistant to cell death and contained elevated intracellular GSH and GSSG. Increased GSH in MRP1-supressed cells resulted from a higher conversion of GSSG to GSH by glutathione reductase. In contrast, GSH efflux was significantly higher in MRP1 overexpressing RPE cells which also contained lower levels of cellular GSH and GSSG. Oxidative stress further increased GSH efflux with a decrease in cellular GSH and rendered cells apoptosis-prone. In conclusion, our data reveal for the first time that 1) MRP1 mediates GSH and GSSG efflux in RPE cells; 2) MRP1 inhibition renders RPE cells resistant to oxidative stress-induced cell death while MRP1 overexpression makes them susceptible and 3) the antiapoptotic function of α-crystallin in oxidatively stressed cells is mediated in part by GSH and MRP1. Our findings suggest that MRP1 and α crystallin are potential therapeutic targets in pathological retinal degenerative disorders linked to oxidative stress.  相似文献   

5.
Glutamate induced glutathione (GSH) depletion in C6 rat glioma cells, which resulted in cell death. This cell death seemed to be apoptosis through accumulation of reactive oxygen species (ROS) or hydroperoxides representing cytochrome c release from mitochondria and internucleosomal DNA fragmentation. A significant increase of 12-lipoxygenase enzyme activity was observed in the presence of arachidonic acid (AA) under GSH depletion induced by glutamate. AA promoted the glutamate-induced cell death, which reduced caspase-3 activity and diminished internucleosomal DNA fragmentation. Furthermore, AA reduced intracellular NAD, ATP and membrane potentials, which indicated dysfunction of the mitochondrial membrane. Protease inhibitors such as N-alpha-tosyl-L-phenylalanine chloromethyl ketone (TPCK) and 3, 4-dichloroisocumarin (DCI) but no Ac-DEVD, a caspase inhibitor, suppressed the glutamate-induced cell death. AA reduced the inhibitory effect of TPCK and DCI on the glutamate-induced cell death. These results suggest that AA promotes cell death by inducing necrosis from caspase-3-independent apoptosis. This might occur through lipid peroxidation initiated by ROS or lipid hydroperoxides generated during GSH depletion in C6 cells.  相似文献   

6.
Intracellular glutathione (GSH) depletion induced by buthionine sulfoximine (BSO) caused cell death that seemed to be apoptosis in C6 rat glioma cells. Arachidonic acid (AA) promoted BSO-induced cell death by accumulating reactive oxygen species (ROS) or hydroperoxides. AA inhibited caspase-3 activation and internucleosomal DNA fragmentation during the BSO-induced GSH depletion. Furthermore, AA reduced intracellular ATP content, induced dysfunction of mitochondrial membrane and enhanced 8-hydroxy-2'-deoxyguanosine (8-OH-dG) production. There was significant increase of 12-lipoxygenase activity in the presence of AA under the BSO-induced GSH depletion in C6 cells. These results suggest that AA promotes cell death by changing to necrosis from apoptosis through lipid peroxidation initiated by lipid hydroperoxides produced by 12-lipoxygenase under the GSH depletion in C6 cells. Some ROS such as hydroperoxide produced by unknown pathway make hydroxy radicals and induce 8-OH-dG formation in the cells. The conversion of apoptosis to necrosis may be a possible event under GSH depleted conditions.  相似文献   

7.
8.
In a previous study, we demonstrated that staurosporine (STS) induces programmed cell death (PCD) in the fungus Neurospora crassa and that glutathione has the capability of inhibiting both STS-induced reactive oxygen species (ROS) formation and cell death. Here, we further investigated the role of glutathione in STS-induced PCD in N. crassa and observed an efflux of reduced glutathione (GSH) together with a change in the cell internal redox state to a more oxidative environment. This event was also observed with another PCD inducer, phytosphingosine (PHS), although externally added GSH did not prevent PHS-induced PCD. The nature of ROS, detected under the experimental conditions at which GSH export occurred, is also different in the two systems, predominantly superoxide in the case of STS and hydrogen peroxide in the case of PHS. In both cases, GSH export preceded the alterations in the plasma membrane that lead to selective dye permeation. We conclude that glutathione export in the context of PCD is not exclusive of certain mammalian cells and can be extended to Fungi, being an early PCD event in N. crassa. In addition, STS and PHS induce different PCD pathways in this fungus and the role of GSH export in each of them is likely different.  相似文献   

9.
Antimycin A (AMA) inhibits succinate oxidase, NADH oxidase, and mitochondrial electron transport chain between cytochrome b and c. We recently demonstrated that AMA inhibited the growth of Calu-6 lung cancer cells through apoptosis. Here, we investigated the effects of AMA and/or MAPK inhibitors on Calu-6 lung cancer cells in relation to cell growth, cell death, reactive oxygen species (ROS), and GSH levels. Treatment with AMA inhibited the growth of Calu-6 cells at 72 h. AMA-induced apoptosis was accompanied by the loss of mitochondrial membrane potential (MMP; ΔΨm). While ROS were decreased in AMA-treated Calu-6 cells, O 2 ?? among ROS was increased. AMA also induced GSH depletion in Calu-6 cells. Treatment with MEK inhibitor intensified cell death, MMP (ΔΨm) loss, and GSH depletion in AMA-treated Calu-6 cells. JNK inhibitor also increased cell death, MMP (ΔΨm) loss, and ROS levels in these cells. Treatment with p38 inhibitor magnified cell growth inhibition by AMA and increased cell death, MMP (ΔΨm) loss, ROS level, and GSH depletion in AMA-treated cells. Conclusively, all the MAPK inhibitors slightly intensified cell death in AMA-treated Calu-6 cells. The changes of ROS and GSH by AMA and/or MAPK inhibitors were in part involved in cell growth and death in Calu-6 cells.  相似文献   

10.
The third reading frame of the envelope gene from HIV-1 codes for a protein homologous to the human selenoprotein glutathione peroxidase (GPX). Cells stably or transiently transfected with a HIV-1 GPX construct are protected against the loss of the mitochondrial transmembrane potential and subsequent cell death induced by exogenous reactive oxygen species (ROS) as well as mitochondrion-generated ROS. However, HIV-1 GPX does not confer a general apoptosis resistance, because HIV-1 GPX-transfected cells were not protected against cell death induced by staurosporine or oligomycin. The inhibition of cell death induced by the ROS donor tert-butylhydroperoxide was also observed in cells depleted from endogenous glutathione (GSH), suggesting that GSH is not the sole electron acceptor for HIV-1 GPX. Clinical HIV-1 isolates from long-term non-progressors (untreated patients with diagnosed HIV-1 infection for > 10 years, with CD4 T cell count of > 500 cells/mm3) mostly possess an intact GPX gene (with only 18% of loss-of-function mutations), while HIV-1 isolates from patients developing AIDS contain non-functional GPX mutants in 9 out of 17 cases (53%). Altogether, these data suggest that HIV-1 GPX possesses a cytoprotective, pathophysiologically relevant function.  相似文献   

11.
J Liu  H M Shen  C N Ong 《Life sciences》2001,69(16):1833-1850
Recent studies have demonstrated that induction of apoptosis is related to the cell growth inhibition potential of Salvia Miltiorrhiza (SM), a traditional herbal medicine. In the present study, we further explore the mechanistic pathway involved in SM-induced apoptosis in human hepatoma HepG2 cells. A rapid decline of intracellular glutathione (GSH) and protein thiol content was found in SM-treated cells. Moreover. SM exposure resulted in mitochondrial dysfunction as demonstrated by: (i) the onset of mitochondrial permeability transition (MPT); (ii) the disruption of mitochondrial membrane potential (MMP); and (iii) the release of cytochrome c from mitochondria into the cytosol. Subsequently, elevated level of intracellular reactive oxygen species (ROS) was observed prior to the onset of DNA fragmentation. However, no caspase-3 cleavage was observed throughout the whole period of SM treatment, while a caspase-3-independent poly(ADP-ribose) polymerase (PARP) cleavage was noted at the late stage in SM-induced apoptosis. Pretreatment of cells with N-acetylcysteine (NAC), the GSH synthesis precursor, conferred complete protection against MMP loss, ROS generation and apoptosis induced by SM. MPT inhibitors, cyclosporin A plus trifluoperazine, partially restored intracellular GSH content, and reduced SM-induced ROS formation and subsequently inhibited cell death. Moreover, antioxidants NAC, deferoxamine and catalase had little effect on GSH depletion and mitochondrial dysfunction, yet still were able to completely protect cells from SM-induced apoptosis. Taken together, our results suggest that SM deplete intracellular thiols, which, in turn, causes MPT and subsequent increase in ROS generation, and eventually apoptotic cell death.  相似文献   

12.
We found that glutathione (GSH) is involved in abscisic acid (ABA)-induced stomatal closure. Regulation of ABA signaling by GSH in guard cells was investigated using an Arabidopsis mutant, cad2-1, that is deficient in the first GSH biosynthesis enzyme, γ-glutamylcysteine synthetase, and a GSH-decreasing chemical, 1-chloro-2,4-dinitrobenzene (CDNB). Glutathione contents in guard cells decreased along with ABA-induced stomatal closure. Decreasing GSH by both the cad2-1 mutation and CDNB treatment enhanced ABA-induced stomatal closure. Glutathione monoethyl ester (GSHmee) restored the GSH level in cad2-1 guard cells and complemented the stomatal phenotype of the mutant. Depletion of GSH did not significantly increase ABA-induced production of reactive oxygen species in guard cells and GSH did not affect either activation of plasma membrane Ca2+-permeable channel currents by ABA or oscillation of the cytosolic free Ca2+ concentration induced by ABA. These results indicate that GSH negatively modulates a signal component other than ROS production and Ca2+ oscillation in ABA signal pathway of Arabidopsis guard cells.  相似文献   

13.
Chromosomal DNA and mitochondrial dysfunctions play a role on mammalian cell death induced by oxidative stress. The major biochemical dysfunction of chromosome is the presence of an ordered cleavage of the DNA backborn, which is separated and visualized as an electrophoretic pattern of fragments. Oxidative stress provides chromatin dysfunction such as single strand and double strand DNA fragmentation leading to cell death. More than 1 Mb of giant DNA, 200-800 kb or 50-300 kb high molecular weight (HMW) DNA and internucleosomal DNA fragments are produced during apoptosis or necrosis induced by oxidative stress such as glutathione (GSH) depletion in several types of mammalian cells. Reactive oxygen species (ROS)-mediated DNA fragmentation is enhanced by polyunsaturated fatty acids including arachidonic acid or their hydroperoxides, leading to necrosis. Mitochondrial dysfunction on decrease of trans membrane potential, accumulation of ROS, membrane permeability transition and release of apoptotic factors during apoptosis or necrosis has been implicated. This review refers to the correlation of chromosomal DNA fragmentation and apoptosis or necrosis induced by GSH depletion, and the possible mechanisms of oxidative stress-induced cell death.  相似文献   

14.
Exposure of cells to γ-rays induces the production of reactive oxygen species (ROS) that play a main role in ionizing radiation damage. We have investigated the radioprotective effect of phloroglucinol (1,3,5-trihydroxybenzene), phlorotannin compound isolated from Ecklonia cava, against γ-ray radiation-induced oxidative damage in vitro and in vivo. Phloroglucinol significantly decreased the level of radiation-induced intracellular ROS and damage to cellular components such as the lipid, DNA and protein. Phloroglucinol enhanced cell viability that decreased after exposure to γ-rays and reduced radiation-induced apoptosis via inhibition of mitochondria mediated caspases pathway. Phloroglucinol reduced radiation-induced loss of the mitochondrial membrane action potential, reduced the levels of the active forms of caspase 9 and 3 and elevated the expression of bcl-2. Furthermore, the anti-apoptotic effect of phloroglucinol was exerted via inhibition of mitogen-activated protein kinase kinase-4 (MKK4/SEK1), c-Jun NH2-terminal kinase (JNK) and activator protein-1 (AP-1) cascades induced by radiation exposure. Phloroglucinol restored the level of reduced glutathione (GSH) and protein expression of a catalytically active subunit of glutamate-cysteine ligase (GCL), which is a rate-limiting enzyme in GSH biosynthesis. In in vivo study, phloroglucinol administration in mice provided substantial protection against death and oxidative damage following whole-body irradiation. We examined survival with exposure to various radiation doses using the intestinal crypt assay and determined a dose reduction factor (DRF) of 1.24. Based on our findings, phloroglucinol may be possibly useful as a radioprotective compound.  相似文献   

15.
Diabetic retinopathy (DR) and age‐related macular degeneration (AMD) are two important leading causes of acquired blindness in developed countries. As accumulation of advanced glycation end products (AGEs) in retinal pigment epithelial (RPE) cells plays an important role in both DR and AMD, and the methylglyoxal (MGO) within the AGEs exerts irreversible effects on protein structure and function, it is crucial to understand the underlying mechanism of MGO‐induced RPE cell death. Using ARPE‐19 as the cell model, this study revealed that MGO induces RPE cell death through a caspase‐independent manner, which relying on reactive oxygen species (ROS) formation, mitochondrial membrane potential (MMP) loss, intracellular calcium elevation and endoplasmic reticulum (ER) stress response. Suppression of ROS generation can reverse the MGO‐induced ROS production, MMP loss, intracellular calcium increase and cell death. Moreover, store‐operated calcium channel inhibitors MRS1845 and YM‐58483, but not the inositol 1,4,5‐trisphosphate (IP3) receptor inhibitor xestospongin C, can block MGO‐induced ROS production, MMP loss and sustained intracellular calcium increase in ARPE‐19 cells. Lastly, inhibition of ER stress by salubrinal and 4‐PBA can reduce the MGO‐induced intracellular events and cell death. Therefore, our data indicate that MGO can decrease RPE cell viability, resulting from the ER stress‐dependent intracellular ROS production, MMP loss and increased intracellular calcium increase. As MGO is one of the components of drusen in AMD and is the AGEs adduct in DR, this study could provide a valuable insight into the molecular pathogenesis and therapeutic intervention of AMD and DR.  相似文献   

16.
Propyl gallate (PG) as a synthetic antioxidant exerts a variety of effects on tissue and cell functions. Here, we investigated the effects of MAPK (MEK, JNK and p38) inhibitors on PG-treated HeLa cells in relation to cell death, ROS and GSH levels. PG induced cell growth inhibition and apoptosis in HeLa cells, which was accompanied by the loss of mitochondrial membrane potential (MMP; ΔΨm). ROS levels were increased or decreased in PG-treated HeLa cells depending on the incubation times. PG also increased GSH depleted cell numbers in HeLa cells. All the MAPK inhibitors slightly enhanced cell growth inhibition, death and MMP (ΔΨm) loss, and increased ROS levels in PG-treated HeLa cells. However, MAPK inhibitors did not significantly affect GSH depletion in PG-treated cells. In conclusion, the enhanced effect of MAPK inhibitors on PG-induced HeLa cell death was accompanied by increasing ROS levels but the effect was not related to changes of GSH level.  相似文献   

17.
Nitric oxide (NO) has been postulated to be required, together with reactive oxygen species (ROS), for the activation of the hypersensitive reaction, a defense response induced in the noncompatible plant-pathogen interaction. However, its involvement in activating programmed cell death (PCD) in plant cells has been questioned. In this paper, the involvement of the cellular antioxidant metabolism in the signal transduction triggered by these bioactive molecules has been investigated. NO and ROS levels were singularly or simultaneously increased in tobacco (Nicotiana tabacum cv Bright-Yellow 2) cells by the addition to the culture medium of NO and/or ROS generators. The individual increase in NO or ROS had different effects on the studied parameters than the simultaneous increase in the two reactive species. NO generation did not cause an increase in phenylalanine ammonia-lyase (PAL) activity or induction of cellular death. It only induced minor changes in ascorbate (ASC) and glutathione (GSH) metabolisms. An increase in ROS induced oxidative stress in the cells, causing an oxidation of the ASC and GSH redox pairs; however, it had no effect on PAL activity and did not induce cell death when it was generated at low concentrations. In contrast, the simultaneous increase of NO and ROS activated a process of death with the typical cytological and biochemical features of hypersensitive PCD and a remarkable rise in PAL activity. Under the simultaneous generation of NO and ROS, the cellular antioxidant capabilities were also suppressed. The involvement of ASC and GSH as part of the transduction pathway leading to PCD is discussed.  相似文献   

18.
Oxidative damage from reactive oxygen species (ROS) has been implicated in many diseases, including age-related macular degeneration, in which the retinal pigment epithelium (RPE) is considered a primary target. The aim of this study was to determine whether erythropoietin (EPO) protects cultured human RPE cells against oxidative damage and to identify the pathways that may mediate protection. EPO (1 IU/ml) significantly increased the viability of oxidant-treated RPE cells, decreased the release of the inflammatory cytokines tumor necrosis factor-α and interleukin-1β, recovered the RPE cells' barrier integrity disrupted by oxidative stress, prevented oxidant-induced cell DNA fragmentation and membrane phosphatidylserine exposure, and also reduced the levels of oxidant-induced intracellular ROS and restored cellular antioxidant potential, total antioxidant capacity, glutathione peroxidase, and superoxide dismutase and decreased malondialdehyde, the end product of lipid peroxidation. EPO inhibited caspase-3-like activity. Protection by EPO was partly dependent on the activation of Akt1 and the maintenance of the mitochondrial membrane potential. No enhanced or synergistic protection was observed during application of Z-DEVD-FMK (caspase-3 inhibitor) combined with EPO compared with cultures exposed to EPO and H2O2 alone. Together, these results suggest that EPO could protect against oxidative injury-induced cell death and mitochondrial dysfunction in RPE cells through modulation of Akt1 phosphorylation, mitochondrial membrane potential, and cysteine protease activity.  相似文献   

19.
Suberoyl bishydroxamic acid (SBHA) as a histone deacetylase (HDAC) inhibitor has various cellular effects such as cell growth and apoptosis. In the present study, we evaluated the effects of SBHA on the growth and death of A549 lung cancer cells. SBHA inhibited the growth of A549 cells with an IC50 of approximately 50 μM at 72 h in a dose-dependent manner. DNA flow cytometric analysis indicated that SBHA induced a G2/M phase arrest of the cell cycle. This agent also induced apoptosis, as evidenced by sub-G1 cells and annexin V-FITC staining cells. SBHA-induced apoptosis was accompanied by the loss of mitochondrial membrane potential (MMP; ΔΨm), Bcl-2 decrease, Bax increase, and the activation of caspase-3. All of the tested caspase inhibitors significantly rescued some cells from SBHA-induced A549 cell death. However, none of the caspase inhibitors prevented the loss of MMP (ΔΨm) induced by SBHA. Intracellular reactive oxygen species (ROS) levels including O 2 ?? were increased in 50 μM SBHA-treated A549 cells. None of the caspase inhibitors attenuated ROS levels in these cells. SBHA also elevated the number of glutathione (GSH)-depleted cells in A549 cells, which was reduced by treatment with caspase inhibitors. In conclusion, this is the first report that SBHA inhibited the growth of A549 lung cancer cells via caspase-dependent apoptosis, which was related to GSH depletion rather than changes in ROS level.  相似文献   

20.
The mitochondrial permeability transition (MPT) is a calcium and oxidative stress sensitive transition in the permeability of the mitochondrial inner membrane that plays a crucial role in cell death. However, the mechanism regulating the MPT remains controversial. To study the role of oxidative stress in the regulation of the MPT, we used diethyl maleate (DEM) to deplete glutathione (GSH) in human leukemic CEM cells. GSH depletion increased mitochondrial calcium and reactive oxygen species (ROS) levels in a co-dependent manner causing loss of mitochondrial membrane potential (deltapsi(m)) and cell death. These events were inhibited by the calcium chelator BAPTA-AM and the antioxidants N-acetylcysteine (NAC) and the triphenyl phosphonium-linked ubiquinone derivative MitoQ. In contrast, the MPT inhibitor cyclosporine A (CsA) and small interference RNA (siRNA) knockdown of cyclophilin D (Cyp-D) were not protective. These results indicate that mitochondrial permeabilization induced by GSH depletion is not regulated by the classical MPT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号