首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
A mutant strain (KL-38) of Aspergillus oryzae was obtained by UV irradiation. Phytase activity of KL-38 in molded rice (koji rice) was about 2.7-fold of that obtained from the parent strain (BP-1). Phytase activity of KL-38 in the submerged culture was similar to that of BP-1. Two types of phytase were produced from koji culture: phytase I (Phy I) was produced during incubation of both koji and submerged cultures, and phytase II (Phy II) was obtained only from koji culture. Phy II production was increased in KL-38 compared with BP-1, whereas the production of Phy I was similar for both KL-38 and BP-1. This finding indicates that A. oryzae has at least two types of phytase isozyme.  相似文献   

2.
Novel extracellular phytase was produced by Aspergillus niger NCIM 563 under submerged fermentation conditions at 30 °C in medium containing dextrin and glucose as carbon sources along with sodium nitrate as nitrogen source. Maximum phytase activity (41.47 IU/mL at pH 2.5 and 10.71 IU/mL at pH 4.0) was obtained when dextrin was used as carbon source along with glucose and sodium nitrate as nitrogen source. Nearly 13 times increase in phytase activity was observed when phosphate in the form of KH2PO4 (0.004 g/100 mL) was added in the fermentation medium. Physic-chemical properties of partially purified enzyme indicate the possibility of two distinct forms of phytases, Phy I and Phy II. Optimum pH and temperature for Phy I was 2.5 and 60 °C while Phy II was 4.0 and 60 °C, respectively. Phy I was stable in the pH range 1.5–3.5 while Phy II was stable in the wider pH range, 2.0–7.0. Molecular weight of Phy I and Phy II on Sephacryl S-200 was approximately 304 kDa and 183 kDa, respectively. Phy I activity was moderately stimulated in the presence of 1 mM Mg2+, Mn2+, Ca2+ and Fe3+ ions and inhibited by Zn2+ and Cd2+ ions while Phy II activity was moderately stimulated by Fe3+ ions and was inhibited by Hg2+, Mn2+ and Zn2+ ions at 1 mM concentration in reaction mixture. The Km for Phy I and II was 3.18 and 0.514 mM while Vmax was 331.16 and 59.47 μmols/min/mg protein, respectively.  相似文献   

3.
Several new types of cerulenin-resistant mutants of sake yeast were isolated. These mutants showed respiratory deficiency and could grow on media containing a higher concentration of antibiotics than could the parent. Sakes brewed by the mutants produced less succinate than by both the parent yeast and the mutants with respiratory deficiency induced by ethidium bromide. In addition, the acidity of these mutants was decreased. Since low acidity is favourable in both sake and wine, these mutants might be applicable for both sake and wine brewing.  相似文献   

4.
Aspergillus niger NCIM 563 produces dissimilar phytase isozymes under solid state and submerged fermentation conditions. Biochemical characterization and applications of phytase Phy III and Phy IV in SSF and their comparison with submerged fermentation Phy I and Phy III were studied. SSF phytases have a higher metabolic potential as compared to SmF. Phy I is tetramer and Phy II, III and IV are monomers. Phy I and IV have pH optima of 2.5 and Phy II and III have pH optima of 5.0 and 5.6, respectively. Phy I, III and IV exhibited very broad substrate specificity while Phy II was more specific for sodium phytate. SSF phytase is less thermostable as compared to SmF phytase. Phy I and II show homology with other known phytases while Phy III and IV show no homology with SmF phytases and any other known phytases from the literature suggesting their unique nature. This is the first report about differences among phytase produced under SSF and SmF by A. niger and this study provides basis for explanation of the stability and catalytic differences observed for these enzymes. Exclusive biochemical characteristics and multilevel application of SSF native phytases determine their efficacy and is exceptional.  相似文献   

5.
Lim MH  Lee OH  Chin JE  Ko HM  Kim IC  Lee HB  Im SY  Bai S 《Biotechnology letters》2008,30(12):2125-2130
Phytase liberates inorganic phosphate from phytic acid (myo-inositol hexakisphosphate) which is the major phosphate reserve in plant-derived foods and feeds. An industrial strain of Saccharomyces cerevisiae expressing the Debaryomyces castellii phytase gene (phytDc) and D. occidentalis α-amylase gene (AMY) was developed. The phytDc and AMY genes were constitutively expressed under the ADC1 promoter in S. cerevisiae by using the δ-integration system, which contains DNA derived exclusively from yeast. The recombinant industrial strain secreted both phytase and α-amylase for the efficient degradation of phytic acid and starch as main components of plant seeds. This new strain hydrolyzed 90% of 0.5% (w/v) sodium phytate within 5 days of growth and utilized 100% of 2% (w/v) starch within 48 h simultaneously.  相似文献   

6.
For improved fermentation of shoyu (soy sauce), a useful koji-making system has been developed using a mixed tane-koji of two shoyu koji moulds, namely Aspergillus oryzae K2 (length of conidiophores about 350 m) and the late-conidiation strain, A. oryzae HG (length of conidiophores about 2500 m). The mixed culture of strains K2 and HG had about twice the glutaminase activity of the single-strain cultures. In addition, the number of conidia in the mixed culture was about 10% of that in a culture of strain K2 alone.  相似文献   

7.
Debaryomyces castellii phytase was purified to homogeneity in a single step by hydrophobic interaction chromatography. Its molecular mass is 74 kDa with 28.8% glycosylation. Its activity was optimal at 60°C and pH 4.0. The K m value for sodium phytate was 0.532 mM. The enzyme exhibited a low specificity and hydrolyzed many phosphate esters. The phytase fully hydrolyzed myo-inositol hexakisphosphate (or phytic acid, Ins P6) to inositol and inorganic phosphate. The sequence of Ins P6 hydrolysis was determined by combining results from high-performance ionic chromatography and nuclear magnetic resonance. D. castellii phytase is a 3-phytase that sequentially releases phosphate groups through Ins (1,2,4,5,6) P5, Ins (1,2,5,6) P4, Ins (1,2,6) P3, Ins (1,2) P2, Ins (1 or 2) P1, and inositol (notation 3/4/5/6/1 or 2).  相似文献   

8.
Phytase of Pichia anomala was purified to near homogeneity by a two-step process of acetone precipitation followed by anion exchange chromatography using DEAE-Sephadex. The enzyme had a molecular weight of 64 kDa. It was optimally active at 60 °C and pH 4.0. This enzyme was found to be highly thermostable and acid-stable, with a half life of 7 and 8 days at 60 °C and pH 4.0 respectively. At 80 °C, the half life of phytase could be increased from 5 to 30 min by the addition of materials such as sucrose, lactose and arabinose (10% w/v). The enzyme exhibited a broad substrate specificity, since it acted on p-nitrophenyl phosphate, ATP, ADP, glucose-6-phosphate besides phytic acid. The K m value for phytic acid was 0.20 mM and V max was 6.34 mol/mg protein/min. There was no requirement of metal ions for activity. SDS was observed to be highly inhibitory to phytase activity. Sodium azide, DTT, -mercaptoethanol, EDTA, toluene, glycerol, PMSF, iodo-acetate and N-bromosuccinimide did not show inhibitory activity. The enzyme was inhibited by 2,3-butanedione, indicating the involvement of arginine residues in catalysis. Phytase activity was not inhibited in the presence of inorganic phosphate upto 10 mM. The shelf life of the enzyme was 6 months at 4 °C and there was no loss in the activity on lyophilization. Very few studies have been done on purification of yeast phytases. This is the first report on purification and characterization of phytase from P. anomala. The enzyme is unique in being thermostable, acid-stable, exhibiting broad substrate specificity and in not requiring metal ions for its activity. The yeast biomass containing phytase appears to be suitable for supplementing animal feeds to improve the availability of phosphorus from phytates.  相似文献   

9.
Supplementation with phytase is an effective way to increase the availability of phosphorus in seed-based animal feed. The biochemical characteristics of an ideal phytase for this application are still largely unknown. To extend the biochemical characterization of wild-type phytases, the catalytic properties of a series of fungal phytases, as well as Escherichia coli phytase, were determined. The specific activities of the fungal phytases at 37°C ranged from 23 to 196 U · (mg of protein)−1, and the pH optima ranged from 2.5 to 7.0. When excess phytase was used, all of the phytases were able to release five phosphate groups of phytic acid (myo-inositol hexakisphosphate), which left myo-inositol 2-monophosphate as the end product. A combination consisting of a phytase and Aspergillus niger pH 2.5 acid phosphatase was able to liberate all six phosphate groups. When substrate specificity was examined, the A. niger, Aspergillus terreus, and E. coli phytases were rather specific for phytic acid. On the other hand, the Aspergillus fumigatus, Emericella nidulans, and Myceliophthora thermophila phytases exhibited considerable activity with a broad range of phosphate compounds, including phenyl phosphate, p-nitrophenyl phosphate, sugar phosphates, α- and β-glycerophosphates, phosphoenolpyruvate, 3-phosphoglycerate, ADP, and ATP. Both phosphate liberation kinetics and a time course experiment in which high-performance liquid chromatography separation of the degradation intermediates was used showed that all of the myo-inositol phosphates from the hexakisphosphate to the bisphosphate were efficiently cleaved by A. fumigatus phytase. In contrast, phosphate liberation by A. niger or A. terreus phytase decreased with incubation time, and the myo-inositol tris- and bisphosphates accumulated, suggesting that these compounds are worse substrates than phytic acid is. To test whether broad substrate specificity may be advantageous for feed application, phosphate liberation kinetics were studied in vitro by using feed suspensions supplemented with 250 or 500 U of either A. fumigatus phytase or A. niger phytase (Natuphos) per kg of feed. Initially, phosphate liberation was linear and identical for the two phytases, but considerably more phosphate was liberated by the A. fumigatus phytase than by the A. niger phytase at later stages of incubation.  相似文献   

10.
In the koji molds Aspergillus sojae and Aspergillus oryzae, exogenous DNA is integrated in the genome, in most cases irrespective of the sequence homology, suggesting that DNA integration occurs predominantly through a nonhomologous end joining pathway where two ku genes, namely, ku70 and ku80, play a key role. To determine the effect of ku gene disruption on the gene targeting frequency, we constructed ku70-, ku80-, and ku70–ku80-disrupted strains of A. sojae and A. oryzae. The gene targeting frequency of the tannase gene in ku70 and ku80 strains of both Aspergillus species was markedly enhanced as compared with that of the parental strains. The gene targeting frequency of the aflR and ku80 genes was also enhanced in an A. sojae ku70 background. Therefore, the koji mold strains with ku-disrupted genes will be excellent tools as hosts for efficient gene targeting.  相似文献   

11.
Aims: Phytase production by Sporotrichum thermophile in a cost‐effective cane molasses medium in submerged fermentation and its application in bread. Methods and Results: The production of phytase by a thermophilic mould S. thermophile was investigated using free and immobilized conidiospores in cane molasses medium in shake flasks, and stirred tank and air‐lift fermenters. Among surfactants tested, Tweens (Tween‐20, 40 and 80) and sodium oleate increased phytase accumulation, whereas SDS and Triton X‐100 inhibited the enzyme production. The mould produced phytase optimally at aw 0·95, and it declined sharply below this aw value. The enzyme production was comparable in air‐lift and stirred tank reactors with a marked reduction in fermentation time. Among the matrices tried, Ca‐alginate was the best for conidiospore immobilization, and fungus secreted sustained levels of enzyme titres over five cycles. The phytic acid in the dough was efficiently hydrolysed by the enzyme accompanied by the liberation of soluble phosphate in the bread. Conclusions: The phytase production by S. thermophile was enhanced in the presence of Tween‐80 in cane molasses medium. A peak in enzyme production was attained in 48 h in the fermenter when compared with that of 96 h in shake flasks. Ca‐alginate immobilized conidiospores germinated to produce fungal growth that secreted sustained levels of phytase over five cycles. The bread made with phytase contained reduced level of phytic acid and a high‐soluble phosphate. Significance and Impact of the Study: The phytase accumulation by S. thermophile was increased by the surfactants. The sustainability of enzyme production in stirred tank and air‐lift fermenters suggested the possibility for scaling up of phytase. The bread made with phytase contained low level of antinutrient, i.e. phytic acid.  相似文献   

12.
Phytases release inorganic phosphates from phytate in soil. A gene encoding phytase (AfPhyA) was isolated from Aspergillus ficuum and its ability to degrade phytase and release phosphate was demonstrated in Saccharomyces cerevisiae. A promoter from the Arabidopsis Pky10 gene and the carrot extensin signal peptide were used to drive the root-specific and secretory expression of the AfPhyA gene in soybean plants. The phytase activity and inorganic phosphate levels in transgenic soybean root secretions were 4.7 U/mg protein and 439 μM, respectively, compared to 0.8 U/mg protein and 120 μM, respectively, in control soybeans. Our results demonstrated the potential usefulness of the root-specific promoter for the exudation of recombinant phytases and offered a new perspective on the mobilization of phytate in soil to inorganic phosphates for plant uptake. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Guilan Li and Shaohui Yang authors contribute equally to the paper.  相似文献   

13.
Utilization of phytate by some yeasts   总被引:8,自引:0,他引:8  
Summary Of 21 yeast strains screened for ability to hydrolyse phytic acid salts, nine strains grew on sodium phytate as sole source of inorganic phosphate. Of the five most interesting strains for their growth parameters tested and for their phytase activity in batch-culture,Schwanniomyces castellii CBS 2863 had the highest phytase activity in presence of 5 g phytate I–1.  相似文献   

14.
【背景】植酸是一种能螯合金属离子和蛋白质的有机磷类化合物,广泛存在于植物组织中,影响动物对营养元素的吸收。在饲料中加入植酸酶可有效降解植酸。【目的】构建毕赤酵母异源表达卡氏德巴利酵母(Debaryomyces castellii,D. castellii)植酸酶的菌株,促进卡氏德巴利酵母植酸酶的研究及工业应用。【方法】将卡氏德巴利酵母植酸酶基因进行密码子优化后转入毕赤酵母GS115中,通过筛选多拷贝、敲除蛋白酶、过表达分子伴侣及转运蛋白的方法获取优势菌株。【结果】所得重组菌株GS115/DCphy(ΔPep4)(BFR2)的产酶酶活是低拷贝菌株的7倍。【结论】研究结果为卡氏德巴利酵母植酸酶的异源表达及潜在工业应用提供了一定的指导。  相似文献   

15.
Aspergillus flavus is a common filamentous fungus that produces aflatoxins and presents a major threat to agriculture and human health. Previous phylogenetic studies of A. flavus have shown that it consists of two subgroups, called groups I and II, and morphological studies indicated that it consists of two morphological groups based on sclerotium size, called “S” and “L.” The industrially important non-aflatoxin-producing fungus A. oryzae is nested within group I. Three different gene regions, including part of a gene involved in aflatoxin biosynthesis (omt12), were sequenced in 33 S and L strains of A. flavus collected from various regions around the world, along with three isolates of A. oryzae and two isolates of A. parasiticus that were used as outgroups. The production of B and G aflatoxins and cyclopiazonic acid was analyzed in the A. flavus isolates, and each isolate was identified as “S” or “L” based on sclerotium size. Phylogenetic analysis of all three genes confirmed the inference that group I and group II represent a deep divergence within A. flavus. Most group I strains produced B aflatoxins to some degree, and none produced G aflatoxins. Four of six group II strains produced both B and G aflatoxins. All group II isolates were of the “S” sclerotium phenotype, whereas group I strains consisted of both “S” and “L” isolates. Based on the omt12 gene region, phylogenetic structure in sclerotium phenotype and aflatoxin production was evident within group I. Some non-aflatoxin-producing isolates of group I had an omt12 allele that was identical to that found in isolates of A. oryzae.  相似文献   

16.
Summary Phytase production byAspergillus ficuum was studied using solid state cultivation on several cereal grains and legume seeds. The microbial phytase was used to hydrolyze the phytate in soybean meal and cotton seed meal. Wheat bran, soybean meal, cottonseed meal and corn meal supported good fungal growth and yielded a high level of phytase when an adequate amount of moisture was present. The level of phytase production on solid substrate was higher than that obtained by submerged liquid fermentation. Higher levels of phosphorus (more than 10 mg Pi/100 g substrate) in the growth medium (static culture) inhibited phytase synthesis, and the degree of phosphorus inhibition was less apparent in semisolid medium than in liquid medium. A static cultivation on semisolid substrate produced a higher level of phytase (2-20-fold) than that obtained by agitated cultivation. The minimal amount of water required for growth and enzyme production on those substrates was about 15%, while the optimum level for phytase production was between 25 and 35% and that for cell growth was above 50%. Optimum pH for phytase production was between 4 and 6.A ficuum grew well on raw (unheated) substrate containing a minimal amount of water and produced as much phytase as on heated substrate. About half of the phytic acid in soybean meal and cottonseed meal was hydrolyzed by treatment withA. ficuum phytase.  相似文献   

17.
The extracellular acid phosphatase-encoding Arxula adeninivorans APHO1 gene was isolated using degenerated specific oligonucleotide primers in a PCR screening approach. The gene harbours an ORF of 1449 bp encoding a protein of 483 amino acids with a calculated molecular mass of 52.4 kDa. The sequence includes an N-terminal secretion sequence of 17 amino acids. The deduced amino acid sequence exhibits 54% identity to phytases from Aspergillus awamori, Asp. niger and Asp. ficuum and a more distant relationship to phytases of the yeasts Candida albicans and Debaryomyces hansenii (36–39% identity). The sequence contains the phosphohistidine signature and the conserved active site sequence of acid phosphatases. APHO1 expression is induced under conditions of phosphate limitation. Enzyme isolates from wild and recombinant strains with the APHO1 gene expressed under control of the strong A. adeninivorans-derived TEF1 promoter were characterized. For both proteins, a molecular mass of approx. 350 kDa, corresponding to a hexameric structure, a pH optimum of pH 4.8 and a temperature optimum of 60°C were determined. The preferred substrates include p-nitrophenyl-phosphate, pyridoxal-5-phosphate, 3-indoxyl-phosphate, 1-naphthylphosphate, ADP, glucose-6-phosphate, sodium-pyrophosphate, and phytic acid. Thus the enzyme is a secretory acid phosphatase with phytase activity and not a phytase as suggested by strong homology to such enzymes.  相似文献   

18.
A novel phytase producing thermophilic strain of Bacillus laevolacticus insensitive to inorganic phosphate was isolated from the rhizosphere soil of leguminous plant methi (Medicago falacata). The culture conditions for production of phytase by B. laevolacticus under shake flask culture were optimized to obtain high levels of phytase (2.957 ± 0.002 U/ml). The partially purified phytase from B. laevolacticus strain was optimally active at 70 °C and between pH 7.0 and pH 8.0. The enzyme exhibited thermostability with ∼80% activity at 70 °C and pH 8.0 for up to 3 h in the presence/absence of 5 mM CaCl2. The phytase from B. laevolacticus showed high specificity for phytate salts of Ca+ > Na+. The enzyme showed an apparent K m 0.526 mM and V max 12.3 μmole/min/mg of activity against sodium phytate.  相似文献   

19.
ABSTRACT

Due to the indigestibility, utilization of konjac taro, Amorphophallus konjac has been limited only to the Japanese traditional konjac food. Koji preparation with konjac taro was examined to utilize konjac taro as a source of utilizable carbohydrates. Aspergillus luchuensis AKU 3302 was selected as a favorable strain for koji preparation, while Aspergillus oryzae used extensively in sake brewing industry was not so effective. Asp. luchuensis grew well over steamed konjac taro by extending hyphae with least conidia formation. Koji preparation was completed after 3-day incubation at 30°C. D-Mannose and D-glucose were the major monosaccharides found in a hydrolyzate giving the total sugar yield of 50 g from 100 g of dried konjac taro. An apparent extent of konjac taro hydrolysis at 55°C for 24 h seemed to be completed. Since konjac taro is hydrolyzed into monosaccharides, utilization of konjac taro carbohydrates may become possible to various products of biotechnological interest.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号