首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Specific transduction of inducible (eroA) and constitutive (eroB) erythromycin resistance is mediated by thymineless induced lysates from derivatives of Staphylococcus aureus strain 8325(N)thy. Both loci can coexist in the same cell but segregate by transduction or transformation. The gene(s) is probably integrated in the recipient chromosome and excised at thymine starvation.  相似文献   

2.
EcoRI fragments of Staphylococcus aureus bacteriophage phi 11 DNA were cloned in vector plasmid pSA2100 in S. aureus. The clones were analyzed in marker rescue experiments with suppressor- and temperature-sensitive mutants of phi 11 to correlate the genetic and physical map. Several mutants could be identified on the physical map, and a clone containing fragment EcoRI-B of phi 11 DNA expressed immunity to phage infection. In addition, it was found that recombinant plasmids containing phi 11 DNA sequences can be transferred by high-frequency transduction after phage phi 11 infection of host cells.  相似文献   

3.
Methicillin resistance (mec) is not transduced into Staphylococcus aureus 8325-4, but is transduced into this host after it has been lysogenized with phage phi11 and has acquired the penicillinase plasmid pI524 by a separate transduction (Cohen and Sweeney, 1970, 1973). Strain 8325-4 is competent for transformation of typical plasmid or chromosomal markers and for mec only if it is lysogenic for phi11 or a related prophage (Sj?str?m et al., 1974, 1975). A mutant strain of phi11 that was temperature sensitive (Ts) for vegetative multiplication did not mediate competence for transformation of its 8325-4 lysogen if the lysogen had been grown at a nonpermissive temperature (Sj?str?m and Philipson, 1974). We isolated four Ts mutants of phi11 that did not mediate transducibility of their 8325-4(pI524) lysogens for mec after growth at nonpermissive temperatures (40 to 42 degrees C). Transduction of typical plasmid or chromosomal markers was not affected. These phi11-Ts mutants mediated normal competence of their lysogens for transformation of a tetracycline resistance plasmid. Similarly, phi11-Ts mutants that rendered their lysogens temperature sensitive for transformation did not depress the frequency of transduction of mec. These two types of phi11-Ts mutants fell into two different genetic complementation groups that differed in the physiology of deoxyribonucleic acid synthesis and in the time of expression of the mutations during a single-burst growth cycle at a nonpermissive temperature. A virulent mutant of phi11, which plaqued with 100% efficiency on 8325(phi11), also failed to condition strain 8325-4 for transducibility of mec but retained the ability to confer competence for transformation of a tetracycline resistance plasmid. Different genetic loci and physiological functions are involved in phi11 mutations that affect transducibility of mec and those that affect competence for transformation of markers generally in S. aureus 8325-4.  相似文献   

4.
When used in a helper phage capacity, phages 29, 52, 52A, 79, 80, 55, 71, 53, 83A, 85, 95, 96, phi11, and 80 alpha, all serological group B Staphylococcus phages, conferred competence for transformation to S. aureus 8325-4, a strain that does not normally become competent. Of the serological group A phages tested, only phage 3A showed significant competence-conferring activity. Phages 29, 55, 53, 83A, .85, 95, phi11, and 80 alpha showed an enhancement of competence-conferring activity if exposure to the cells occurred in the presence of nromal rabbit serum. All of the propagating strains for the Staphylococcus reference typing phages were rendered competent for transformation by exposure to at least one of these helper phages. The use of a helper phage to confer competence to S. aureus did not result in distortion of the genetic linkages observed in an inherently competent strain. Lysogenization by phages phi11 or 83A is shown not to be required for the expression of competence, and evidence is presented which indicates that competence in the inherently competent 8325 strain is due to a helper phage effect initiated by the adsorption to cells of phi11 virion parts [or phi11 particles in the case of the single lysogen 8325-4(phi11)] that have been liberated by prophage induction.  相似文献   

5.
A chemically defined medium has been developed for isolation of amino acid-requiring mutants of Staphylococcus aureus strain 8325, and for use as a selective medium in transformation assays. Variables affecting transformation of both plasmid and chromosomal markers have been studied. The optimal pH and temperature for transformation are 6.75 to 7.0 and 30 C, respectively. Ca ions are required for transformation, and only cells lysogenic for the phage phi11 can be transformed. Superinfection of competent cells with phi11 does not increase the transformation frequency. Maximal number of transformants is obtained after 20 min of contact between cells and deoxyribonucleic acid. The transformation frequencies for the plasmid marker erythromycin resistance (ero) and the chromosomal markers trp, thy, and cyt are of the same order of magnitude, whereas the frequency for the chromosomal marker tyr is approximately one order of magnitude lower.  相似文献   

6.
7.
The Bacillus subtilis temperate bacteriophages phi 105 and SP02 are incapable of transduction of the small, multicopy drug resistance plasmids pUB110 and pCM194. Cloning endonuclease-generated fragments of phi 105 or SP02 DNA into each of the plasmids renders the chimeric derivatives susceptible to transduction specifically by the phage whose deoxyribonucleic acid is present in the chimera. The majority of phage deoxyribonucleic acid fragments identified that render plasmids transducible by phi 105 or SP02 appear to be internal fragments, not fragments containing the cohesive ends. However, the highest overall transduction frequency was observed in SP02-mediated transduction of a derivative of pUB110 containing a 1.6-megadalton EcoRI fragment that likely contains the SP02 cohesive ends (plasmid pPL1010). The transducing activity present in a phi 105 transducing lysate had a buoyant density slightly greater than infectious particles, whereas the majority of transducing particles in an SP02(pPL1010) transducing lysate had a buoyant density slightly less than infectious particles. Although no detectable change in plasmid structure resulted from transduction by phi 105 or SP02, deoxyribonucleic acid isolated from a purified SP02(pPL1010) transducing lysate contained no detectable monomeric pPL1010, but did contain a form of pPL1010 of higher molecular weight than the monomer.  相似文献   

8.
When the penicillinase plasmid of Staphylococcus aureus PS 81(P(81))(T(81)) was transferred to its cured derivative of PS 81(N(P))(T(81)), there was a fivefold increase in the transduction frequency of penicillinase plasmid markers after ultraviolet (UV) irradiation of the phage instead of the expected decrease typical for plasmid-borne markers. These results were independent of the transducing phage, the donor, and the method of curing the recipient and were also obtained with a cured derivative of PS 80(PI(80)). With PS 52, a naturally occurring penicillin-sensitive strain, and a cured transductant of PS 52 as the recipients, typical plasmid kinetics were observed. The plasmid location of penicillinase plasmid markers in transductants was confirmed by their instability in ethidium bromide (EB). In a cross between isogenic plasmids (PI(258)penZ cad x PI(258)penI asa ero), transductants were doubly selected for cadmium and erythromycin resistances. There was a twofold increase in transduction frequency after UV irradiation of the transducing phage and an increase in the proportion of recombinant type transductants. CsCl-EB density centrifugation revealed that plasmid deoxyribonucleic acid (DNA) was present in PS 81(P(81))(N(T)) and its cured derivative [PS 81(N(P))(N(T))], but not in PS 52. Sucrose gradient analysis of plasmid DNA showed that the penicillinase plasmid of PS 81(P(81))(N(T)) was larger than the plasmid in its cured derivative. Thus, the cured derivative contains plasmid DNA which appears to recombine with the incoming plasmid, causing the rise in transduction frequency noted after UV irradiation of transducing phage.  相似文献   

9.
Genes and regulatory sequences of bacteriophage phi X174   总被引:3,自引:0,他引:3  
Fragments of the DNA of bacteriophage phi X174 were inserted in the plasmids pACYC177 and pBR322, in order to test the in vivo effects of separate phage genes and regulatory sequences. The phi X174 inserts were identified by recombination and complementation with phage mutants, followed by restriction enzyme analysis. The genes B, C, F and G can be maintained stably in the cell even when there is efficient expression of these viral genes. Recombinant plasmids with the complete genes D and E can only be maintained when the expression of these genes is completely blocked. Expression of complete H and J genes could not yet be demonstrated. The intact gene A was apparently lethal for the host cell, as it was never found in the recombinants. The genes F and G are expressed, even when they are not preceded by one of the well characterized viral or plasmid promoter sequences. Screening of the nucleotide sequence of phi X174 gives two promoter-like sequences just in front of the two genes. Viral sequences with replication signals (the phi X174 (+) origin of replication, the initiation site for complementary strand synthesis and the incompatibility sequence) appeared to be functional also when inserted in recombinant plasmids. A plasmid with the phi X (+) origin can be forced to a rolling circle mode of replication. The A protein produced by infecting phages works in trans on the cloned viral origin. The (-) origin can function as initiation signal for complementary strand synthesis during transduction of single-stranded plasmid DNA. The intracellular presence of the incompatibility sequence on a plasmid prevents propagation of infecting phages.  相似文献   

10.
The frequency of the transduction of plasmids rms5, rms7, pT127, pC194, pS194 and pUB101 by phages belonging to serological group B (80, 52, 52A, 53, 85, phi 11, S2) in two systems was compared. In system 1 phages for transduction were obtained from plasmid-containing lysogenic donors in the process of induction with mitomycin C; in system 2 phages for transduction were obtained by their multiplication in plasmid-containing nonlysogenic donors. In system 1 the transduction of plasmids rms5, rms7, pT127, pS194 by phage 52A was found to occur with a greater (by 3-5 orders) frequency than in system 2 (the frequency of transduction was 10(-2) to 10(-4), and 10(-6) to 10(-8) respectively). A similar situation was observed with plasmids rms5 and rms7 and phage 52; plasmid pT127 and phage 53; but not observed with plasmids rms5 and rms7 and phages 80, phi 11 and S2; plasmids pC194 and pS194 and phage 53; plasmid pUB101 and phages 52A, 80 and phi 11; plasmids pC194, pS194 and pT127 and phage 85.  相似文献   

11.
The temperate bacteriophage adh mediates plasmid DNA transduction in Lactobacillus gasseri ADH at frequencies in the range of 10-8 to 10-10 transductants per PFU. BglII-generated DNA fragments from phage adh were cloned into the BclI site of the transducible plasmid vector pGK12 (4.4 kb). Phage adh lysates induced from Lactobacillus lysogens harboring pGK12 or the recombinant plasmids were used to transduce strain ADH to chloramphenicol resistance. The transduction frequencies of recombinant plasmids were 102- to 105-fold higher than that of native pGK12. The increase in frequency generally correlated with the extent of DNA-DNA homology between plasmid and phage DNAs. The highest transduction frequency was obtained with plasmid pTRK170 (6.6 kb), a pGK12 derivative containing the 1.4- and 0.8-kb BglII DNA fragments of adh. DNA hybridization analysis of pTRK170-transducing phage particles revealed that pTRK170 had integrated into the adh genome, suggesting that recombination between homologous sequences present in phage and plasmid DNAs was responsible for the formation of high-frequency transducing phage particles. Plasmid DNA analysis of 13 transductants containing pTRK170 showed that each had acquired intact plasmids, indicating that in the process of transduction a further recombination step was involved in the resolution of plasmid DNA monomers from the recombinant pTRK170::adh molecule. In addition to strain ADH, pTRK170 could be transduced via adh to eight different L. gasseri strains, including the neotype strain, F. Gasser 63 AM (ATCC 33323).  相似文献   

12.
The origin of replication of the isometric single-stranded DNA bacteriophages is located in a specific sequence of 30 nucleotides, the origin region, which is highly conserved in these phage genomes. Plasmids harboring this origin region are subject to rolling-circle DNA replication and packaging of single-stranded (ss) plasmid DNA into phage coats in phi X174 or G4-phage-infected cells. This system was used to study the nucleotide sequence requirements for rolling-circle DNA replication and DNA packaging employing plasmids which contain the first 24, 25, 26, 27, 28 and the complete 30-base-pair (bp) origin region of phi X174. No difference in plasmid ss DNA packaging was observed for plasmids carrying only the 30-bp origin region and plasmids carrying the 30-bp origin region plus surrounding sequences (i.e. plasmids carrying the HaeIII restriction fragment Z6B of phi X174 replicative-form DNA). This indicates that all signals for DNA replication and phage morphogenesis are contained in the 30-bp origin region and that no contribution is made by sequences which immediately surround the origin region in the phi X174 genome. The efficiency of packaging of plasmid ssDNA for plasmids containing deletions in the right part of the origin region decreases drastically when compared with the plasmid containing the complete 30-bp origin region (for a plasmid carrying the first 28 bp of the origin region to approximately 5% and 0.5% in the phi X174 and G4 systems respectively). Previous studies [Fluit, A.C., Baas, P.D., van Boom, J.H., Veeneman, G.H. and Jansz, H.S. (1984) Nucleic Acids Res. 12, 6443--6454] have shown that the presence of the first 27 bp of the origin region is necessary as well as sufficient for cleavage of the viral strand in the origin region by phi X174 gene A protein. Moreover, Brown et al. [Brown, D.R., Schmidt-Glenewinkel, T., Reinberg, D. and Hurwitz, J. (1983) J. Biol. Chem. 258, 8402--8412] have shown that omission of the last 2 bp of the origin region does not interfere with phi X174 rolling-circle DNA replication in vitro. Our results therefore suggest that for optimal phage development in vivo, signals in the origin region are utilized which have not yet been noticed by the in vitro systems for phi X174 phage DNA replication and morphogenesis.  相似文献   

13.
The temperate bacteriophage phiadh mediates plasmid DNA transduction in Lactobacillus gasseri ADH at frequencies in the range of 10 to 10 transductants per PFU. BglII-generated DNA fragments from phage phiadh were cloned into the BclI site of the transducible plasmid vector pGK12 (4.4 kb). Phage phiadh lysates induced from Lactobacillus lysogens harboring pGK12 or the recombinant plasmids were used to transduce strain ADH to chloramphenicol resistance. The transduction frequencies of recombinant plasmids were 10- to 10-fold higher than that of native pGK12. The increase in frequency generally correlated with the extent of DNA-DNA homology between plasmid and phage DNAs. The highest transduction frequency was obtained with plasmid pTRK170 (6.6 kb), a pGK12 derivative containing the 1.4- and 0.8-kb BglII DNA fragments of phiadh. DNA hybridization analysis of pTRK170-transducing phage particles revealed that pTRK170 had integrated into the phiadh genome, suggesting that recombination between homologous sequences present in phage and plasmid DNAs was responsible for the formation of high-frequency transducing phage particles. Plasmid DNA analysis of 13 transductants containing pTRK170 showed that each had acquired intact plasmids, indicating that in the process of transduction a further recombination step was involved in the resolution of plasmid DNA monomers from the recombinant pTRK170::phiadh molecule. In addition to strain ADH, pTRK170 could be transduced via phiadh to eight different L. gasseri strains, including the neotype strain, F. Gasser 63 AM (ATCC 33323).  相似文献   

14.
Generalized transducing phage similar to phage P1 in Escherichia coli was isolated from E. coli W39, an antigenic test strain of the O121 group. This phage, designated phi w39, was reciprocally heteroimmune to phages P1 and P7, but nonreciprocally heteroimmune to phage D6. Transduction experiments using various R plasmids with different molecular weights suggested that phage phi w39 could transduce at least 65 megadaltons DNA. As in the case of P1 prophage, phi w39 prophage existed as a plasmid belonging to incompatibility group Y and carried a dnaB-like function. The molecular weight of phi w39 plasmid was nearly the same as that of plasmid, i.e., 58.6 megadaltons. Despite the pronounced structural and functional similarity of phages phi w39 and P1, restriction cleavage patterns of their genomes differed considerably.  相似文献   

15.
T S Il'ina  E V Nechaeva 《Genetika》1977,13(12):2181-2188
The mutant strain KS713 of Escherichia coli K-12 deleted for the normal insertion site and secondary preferable one was obtained. The insertion frequency of phage phi80 into the double deletion strain is reduced about 30-fold with respect to integration into the strain H47 with deletion of the primary phi80 attachment site and about 500-fold relative to integration into wild type Escherichia coli. Analysis of the rare abnormal lysogens of KS 713 strain indicates that there are secondary sites on the chromosome, which are utilized for prophage attachment if insertion at preferable secondary att80-II site is eliminated too. The insertion of phi80 phage into the bfe locus was obtained by the appropriate selection technique. Induced prophage excision from the bfe site was rather efficient and lysates contained phi80 phage particles that could specificically transduce the argH+ gene. Upon transduction into a recipient strain carrying recA, heterogenotes harbouring both the wild-type and the mutant argH genes were isolated. These heterogenotes were used for producing high-frequency transducing lysates.  相似文献   

16.
The intracellular presence of a recombinant plasmid containing the intercistronic region between the genes H and A of bacteriophage phi X174 strongly inhibits the conversion of infecting single-stranded phi X DNA to parental replicative-form DNA. Also, transfection with single-stranded or double-stranded phi X174 DNA of spheroplasts from a strain containing such a "reduction" plasmid shows a strong decrease in phage yield. This phenomenon, the phi X reduction effect, was studied in more detail by using the phi X174 packaging system, by which plasmid DNA strands that contain the phi X(+) origin of replication were packaged as single-stranded DNA into phi X phage coats. These "plasmid particles" can transduce phi X-sensitive host cells to the antibiotic resistance coded for by the vector part of the plasmid. The phi X reduction sequence in the resident plasmid strongly affected the efficiency of the transduction process, but only when the transducing plasmid depended on primosome-mediated initiation of DNA synthesis for its conversion to double-stranded DNA. The combination of these results led to a model for the reduction effect in which the phi X reduction sequence interacted with an intracellular component that was present in limiting amounts and that specified the site at which phi X174 replicative-form DNA replication takes place. The phi X reduction sequence functioned as a viral incompatibility element in a way similar to the membrane attachment site model for plasmid incompatibility. In the DNA of bacteriophage G4, a sequence with a similar biological effect on infecting phages was identified. This reduction sequence not only inhibited phage G4 propagation, but also phi X174 infection.  相似文献   

17.
The staphylococcal plasmid phi 11de is capable of transduction in the absence of both a helper bacteriophage and detectable plaque-forming bacteriophage. The mechanism of transfer is distinct from generalized transduction in that it does not transduce chromosomal material and is selective with respect to the plasmid DNA that is transduced. The transductants containing phi 11de have the following characteristics: (i) erythromycin resistance at levels displayed by the donor, (ii) expression of and susceptibility to plasmid incompatibility, (iii) dependence upon the host recombination system during transduction, (iv) complementation of phi 11 mutants, and (v) reactivation of UV-irradiated phage.  相似文献   

18.
Plasmid pPL1010 is a 7.0-kilobase derivative of plasmid pUB110 that harbors the cohesive end site of the bacteriophage SP02 genome. Plasmid pPL1017 is a 6.8-kilobase derivative of plasmid pC194 that contains the immunity region of bacteriophage phi 105 and the cohesive end site of bacteriophage SP02. These plasmids are transducible by bacteriophage SP02 at a frequency of 10(-2) transductants per PFU among mutant derivatives of Bacillus subtilis 168 and have been transferred to other strains of B. subtilis and B. amyloliquefaciens by means of bacteriophage SP02-mediated transduction, with frequencies ranging from 10(-5) to 10(-7) transductants per PFU. The introduced plasmids were stably maintained in nearly all new hosts in the absence of selective pressure. An exception was found in B. subtilis DSM704, which also harbored three cryptic plasmids. Plasmids pPL1010 and pPL1017 were incompatible with a 7.9-kilobase replicon native to strain DSM704. Furthermore, plasmid pPL1017 was processed by strain DSM704 into a approximately 5.3-kilobase replicon that was compatible with the resident plasmid content of strain DSM704. The use of bacteriophage SP02-mediated plasmid transduction has allowed the identification of Bacillus strains that are susceptible to bacteriophage SP02-mediated genetic transfer but cannot support bacteriophage SP02 lytic infection.  相似文献   

19.
An efficient method for moving mutations in cloned Escherichia coli DNA from plasmid vectors to the bacterial chromosome was developed. Cells carrying plasmids that had been mutated by the insertion of a resistance gene were infected with lambda phage containing homologous cloned DNA, and resulting lysates were used for transduction. Chromosomal transductants (recombinants) were distinguished from plasmid transductants by their ampicillin-sensitive phenotype, or plasmid transductants were avoided by using a recBC sbcB E. coli strain as recipient. Chromosomal transductants were usually haploid when obtained in a nonlysogen because of selection against the lambda vector and partially diploid when obtained in a lysogen. Pure stocks of phage that carry the resistance marker and transduce it at high frequency were obtained from transductant bacteria. The lambda-based method for moving mutant alleles into the bacterial chromosome described here should be useful for diverse analyses of gene function and genome structure.  相似文献   

20.
Lactococcus lactis bacteriophage sk1 can transduce plasmids containing the phage cos site and surrounding DNA sequences at frequencies as high as 2x10(-3) transductants per PFU. Deletion analysis demonstrated that the presence of phage DNA spanning cos and putative R sites were the most important for efficient plasmid transduction. Inserts of 440 bp containing cos and the R sites were sufficient to induce transduction frequencies of 10(-4) transductants per PFU. The role of the R1 site was investigated by altering 14 of the 19 bases in the site. This resulted in a two-fold decrease in transduction frequency compared to a 26-fold decrease in transduction following deletion of the entire site. It was demonstrated that transducing plasmids were packaged as linear trimeric concatemers commencing at the cos site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号