首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The affinities of Petrosavia, a rare, leafless, mycoheterotrophic genus composed of two species indigenous to East to Southeast Asia, have long been uncertain. However, recent molecular analyses show that the genus is sister to Japonolirion osense. Japonolirion and Petrosavia comprise the Petrosaviaceae, which are now placed in its own order, Petrosaviales, distinct from other monocots based on molecular analyses. We conducted an embryological study of Petrosavia, comparing it to Japonolirion, as well as to basal monocots (Acorus and Araceae) and more derived monocots (Nartheciaceae, Velloziaceae, and Triuridaceae). Our results showed that Petrosavia is very similar in embryology to Japonolirion, with both genera sharing a glandular anther tapetum, simultaneous cytokinesis in microspore mother cells, anatropous and crassinucellate ovules, T-shaped tetrads of megaspores, ab initio Cellular-type endosperm, and a mature seed coat composed of the exotesta, endotesta, and endotegmen. The two genera of Petrosaviaceae are clearly distinct from Acorus, and all Araceae, Nartheciaceae, Velloziaceae, and Triuridaceae genera in various combinations of characters. Thus, both molecular and embryological evidence support the distinctness of the Petrosaviaceae from other monocots and its placement in its own order, Petrosaviales.  相似文献   

2.
Most systematists have favored placing Petrosaviaceae close to the Triuridaceae (formerly positioned within Alismatidae) by focusing on the mycoheterotrophic habit and nearly free carpels of Petrosaviaceae. Others have favored a position near the melanthioid lilies, perhaps serving as a linking-family to the Triuridaceae. We discuss the results of recently published, independent, and combined DNA sequence analyses that indicate a strongly supported sister relationship betweenPetrosavia (Petrosaviaceae) andJaponolirion (Japonoliriaceae). Molecular data show no connection of these genera to the Alismatales (including Tofieldiaceae), the Melanthiaceae s. str., the Liliales, or the Triuridaceae (now in Pandanales), although there are morphological similarities to each of these groups. A relationship to the Pandanales has been indicated in some molecular analyses, but this is not supported by bootstrap/jackknife analyses or by most morphological characters. BothPetrosavia andJaponolirion are native to high-evelation habitats and have bracteate racemes, pedicellate flowers, six persistent tepals, septal nectaries, three nearly distinct carpels, simultaneous microsporogenesis, monosulcate pollen, and follicular fruits. Outside of the Alismatales, no other monocotyledons share this combination of features. We therefore suggest that the Petrosaviaceae be re-circumscribed to includeJaponolirion. If the family's isolated position among the monocot orders continues to be found in phylogenetic studies, then recognition of the already published order Petrosaviales would be appropriate.  相似文献   

3.
Using matK and rbcL sequences (3,269 bp in total) from 113 genera of 45 families, we conducted a combined analysis to contribute to the understanding of major evolutionary relationships in the monocotyledons. Trees resulting from the parsimony analysis are similar to those generated by earlier single or multiple gene analyses, but their strict consensus tree provides much better resolution of relationships among major clades. We find that Acorus (Acorales) is a sister group to the rest of the monocots, which receives 100% bootstrap support. A clade comprising Alismatales is diverged as the next branch, followed successively by Petrosaviaceae, the Dioscoreales–Pandanales clade, Liliales, Asparagales and commelinoids. All of these clades are strongly supported (with more than 90% bootstrap support). The sister-group relationship is also strongly supported between Alismatales and the remaining monocots (except for Acorus) (100%), between Petrosaviaceae and the remaining monocots (except for Acorus and Alismatales) (100%), between the clade comprising Dioscoreales and Pandanales and the clade comprising Liliales, Asparagales and commelinoids (87%), and between Liliales and the Asparagales–commelinoids clade (89%). Only the sister-group relationship between Asparagales and commelinoids is weakly supported (68%). Results also support the inclusion of Petrosaviaceae in its own order Petrosaviales, Nartheciaceae in Dioscoreales and Hanguanaceae in Commelinales.Electronic Supplementary Material Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s10265-003-0133-3  相似文献   

4.
5.
6.

Background and Aims

Although much is known about the vegetative traits associated with early monocot evolution, less is known about the reproductive features of early monocotyledonous lineages. A study was made of the embryology of Tofieldia glutinosa, a member of an early divergent monocot clade (Tofieldiaceae), and aspects of its development were compared with the development of other early divergent monocots in order to gain insight into defining reproductive features of early monocots.

Methods

Field-collected developing gynoecial tissues of Tofieldia glutinosa were prepared for histological examination. Over 600 ovules were sectioned and studied using brightfield, differential interference contrast, and fluorescence microscopy. High-resolution digital imaging was used to document important stages of megasporogenesis, megagametogenesis and early endosperm development.

Key Results

Development of the female gametophyte in T. glutinosa is of a modified Polygonum-type. At maturity the female gametophyte is seven-celled and 11-nucleate with a standard three-celled egg apparatus, a binucleate central cell (where ultimately, the two polar nuclei will fuse into a diploid secondary nucleus) and three binucleate antipodal cells. The antipodal nuclei persist past fertilization, and the process of double fertilization appears to yield a diploid zygote and triploid primary endosperm cell, as is characteristic of plants with Polygonum-type female gametophytes. Endosperm development is helobial, and free-nuclear growth initially proceeds at equal rates in both the micropylar and chalazal endosperm chambers.

Conclusions

The analysis suggests that the shared common ancestor of monocots possessed persistent and proliferating antipodals similar to those found in T. glutinosa and other early-divergent monocots (e.g. Acorus and members of the Araceae). Helobial endosperm among monocots evolved once in the common ancestor of all monocots excluding Acorus. Thus, the analysis further suggests that helobial endosperm in monocots is homoplasious with those helobial endosperms that are present in water lilies and eudicot angiosperms.Key words: Tofieldia, Tofieldiaceae, Alismatales, monocots, embryology, female gametophyte, antipodals, development, endosperm  相似文献   

7.
Female flower and fruit anatomy, including vasculature, are studied for the first time in Tetroncium (Juncaginaceae: Alismatales). Other members of Juncaginaceae (and the relatively close Maundiaceae) possess a peculiar type of gynoecium with pronounced carpel fusion via the floral centre. Their carpels are supplied by individual vascular traces and can be interpreted either as synascidiate (if viewed as horizontally inserted) or free and plicate (if viewed as obliquely inserted on an elongated receptacle). In Tetroncium, the gynoecium is tetracarpellate and clearly has a well‐developed synascidiate zone with septa formed by united flanks of adjacent carpels. The gynoecium of Tetroncium is supplied by a common ring of vascular tissue that splits into dorsal and heterocarpellary ventral (synventral) bundles, a condition that can be expected in a typical syncarpous gynoecium. The fruit is indehiscent and contains one or two seeds. The syncarpy of Tetroncium is of functional significance for fruit formation, as it allows the thin septa to be distorted, thus providing more space for the developing seed(s). The occurrence of typical syncarpy in Tetroncium provides further evidence for the highly homoplastic evolution of gynoecium characters in the early‐divergent monocot order Alismatales. Either the similarity between gynoecia of Maundiaceae and Triglochin (Juncaginaceae) is due to parallel evolution or the syncarpy of Tetroncium should be viewed as secondarily derived. In the latter scenario, fusion via the floral centre is probably a synapomorphy of core Alismatales (Helobiae) and more typical syncarpy evolved independently in several lineages, such as Scheuchzeria, Tetroncium and Butomus/Hydrocharitaceae. In total, Tetroncium differs from other Juncaginaceae in 13 structural characters, including ensiform leaves that are similar to those of Tofieldiaceae. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 179 , 712–724.  相似文献   

8.
Microsporogenesis in Monocotyledons   总被引:5,自引:1,他引:4  
This paper critically reviews the distribution of microsporogenesistypes in relation to recent concepts in monocot systematics.Two basic types of microsporogenesis are generally recognized:successive and simultaneous, although intermediates occur. Theseare characterized by differences in tetrad morphology, generallytetragonal or tetrahedral, although other forms occur, particularlyassociated with successive division. Successive microsporogenesisis predominant in monocotyledons, although the simultaneoustype characterizes the ‘lower’ Asparagales. Simultaneousmicrosporogenesis also occurs inJaponolirion and Petrosavia(unplaced taxa), some Araceae, Aponogeton, Thalassia andTofieldia(Alismatales), Dioscorea, Stenomeris and Tacca (Dioscoreales),and some Commelinanae: Arecaceae (Arecales), and Cyperaceae,Juncaceae and Thurniaceae (Poales). Simultaneous microsporogenesisis of phylogenetic significance within some of these groups,for example, Asparagales, Dioscoreales and Poales. An intermediatetype is recorded in Stemonaceae (Pandanales), Commelinaceae(Commelinales) and in Eriocaulaceae and Flagellariaceae (Poales).There is little direct relationship between microsporogenesistype and pollen aperture type in monocots (except for trichotomosulcateand pantoporate apertures), although trichotomosulcate aperturesin monocot pollen, and equatorial tricolpate and tricolporateapertures in eudicot pollen, are all related to simultaneousmicrosporogenesis. Copyright 1999 Annals of Botany Company Microsporogenesis, monocotyledons, pollen apertures, phylogeny, tetrads, simultaneous, successive, systematics.  相似文献   

9.
Gynoecium diversity and systematics in basal monocots   总被引:5,自引:0,他引:5  
Gynoecium and ovule structure was comparatively studied in representatives of the basal monocots, including Acorales (Acoraceae), Alismatales (Araceae, Alismataceae, Aponogetonaceae, Butomaceae, Hydrocharitaceae, Junc‐aginaceae, Limnocharitaceae, Potamogetonaceae, Scheuchzeriaceae, Tofieldiaceae), Dioscoreales (Dioscoreaceae, Taccaceae), and Triuridaceae as a family of uncertain position in monocots. In all taxa studied the carpels or gynoecia are closed at anthesis. This closure is attained in different ways: (1) by secretion without postgenital fusion (Araceae, Hydrocharitaceae); (2) by partly postgenitally fused periphery but with a completely unfused canal (Alismataceae, Aponogetonaceae, Butomaceae, Limnocharitaceae, Scheuchzeriaceae, Dioscoreaceae, Taccaceae); (3) by completely postgenitally fused periphery but with an unfused canal in the centre (Acoraceae, Tofieldiaceae); (4) by complete postgenital fusion and without an (unfused) canal (Juncaginaceae, Potamogetonaceae). In many Alismatales (but without Araceae) carpels have two lateral lobes. The stigmatic surface is restricted to the uppermost part of the ventral slit (if the carpel is plicate); it is never distinctly double‐crested (Butomaceae?). Stigmas are commonly unicellular‐papillate and secretory in most taxa. The locules are filled with a (often) mucilaginous secretion in a number of taxa. Superficial (probably intrusive) ethereal oil cells were found in the carpel wall of Acorus gramineus (as in Piperales!). Idioblasts in carpels are otherwise rare. A number of basal monocots has orthotropous ovules, which is perhaps the plesiomorphic condition in the group. The presence of almost tenuinucellar (pseudocrassinucellar) ovules is relatively common (Acoraceae, many Araceae, some Alismatales s.s.), whereas completely tenuinucellar ovules are rare and do not characterize larger groups. However, crassinucellar ovules occur in the largest number of families among the study group (basal Araceae, many Alismatales s.s.) The outer integument is always annular in orthotropous ovules. The inner integument is often lobed and it mostly forms the micropyle, whereas the outer integument is always unlobed. Gynoecium structure supports the isolated position of Acoraceae as sister to all other monocots. However, in an overall view, if compared with all other families, Acoraceae clearly shows the greatest similarities with Araceae.  相似文献   

10.
Japonolirion osense, the sole species of the genus, endemic to Japan, which is placed together with Petrosavia in the Petrosaviaceae and the order Petrosaviales, is still poorly known with respect to systematic characters. Here I present an embryological study of the anther, ovule, and seed of J. osense. Japonolirion is characterized by a glandular anther tapetum, simultaneous cytokinesis in the microspore mother cell, two-celled mature pollen grains, anatropous and crassinucellate ovules, a two-cell-layered nucellar cap formed early in ovule development, antipodal cells hypertrophied in post-fertilization stages, the ab initio cellular mode of endosperm formation, and exotegmic seeds. Comparisons with the basal monocots Acorus (Acorales) and Araceae (Alismatales), and with the more derived monocots Nartheciaceae (Dioscoreales) and Velloziaceae/Triuridaceae (Pandanales), showed that Japonolirion is clearly distinct from those basal and more derived monocots, supporting a distinct position for Petrosaviaceae or Petrosaviales within the monocots. Extensive comparisons further suggest that the two-cell-layered nucellar cap, whose cells are rich in cytoplasm at the time of fertilization in Japonolirion and thus obviously function as the obturator, is likely to be a common characteristic of the basal monocots and may even be a link with the magnoliids.  相似文献   

11.
The congenital fusion of carpels, or syncarpy, is considered a key innovation as it is found in more than 80% of angiosperms. Within the magnoliids however, syncarpy has rarely evolved. Two alternative evolutionary origins of syncarpy were suggested in order to explain the evolution of this feature: multiplication of a single carpel vs. fusion of a moderate number of carpels. The magnoliid family Annonaceae provides an ideal situation to test these hypotheses as two African genera, Isolona and Monodora, are syncarpous in an otherwise apocarpous family with multicarpellate and unicarpellate genera. In addition to syncarpy, the evolution of six other morphological characters was studied. Well-supported phylogenetic relationships of African Annonaceae and in particular those of Isolona and Monodora were reconstructed. Six plastid regions were sequenced and analyzed using maximum parsimony and Bayesian inference methods. The Bayesian posterior mapping approach to study character evolution was used as it accounts for both mapping and phylogenetic uncertainty, and also allows multiple state changes along the branches. Our phylogenetic analyses recovered a fully resolved clade comprising twelve genera endemic to Africa, including Isolona and Monodora, which was nested within the so-called long-branch clade. This is the largest and most species-rich clade of African genera identified to date within Annonaceae. The two syncarpous genera were inferred with maximum support to be sister to a clade characterized by genera with multicarpellate apocarpous gynoecia, supporting the hypothesis that syncarpy arose by fusion of a moderate number of carpels. This hypothesis was also favoured when studying the floral anatomy of both genera. Annonaceae provide the only case of a clear evolution of syncarpy within an otherwise apocarpous magnoliid family. The results presented here offer a better understanding of the evolution of syncarpy in Annonaceae and within angiosperms in general.  相似文献   

12.
Monocotyledons are distinguishable from dicotyledons by their subtype P2 sieve-element plastids containing cuneate protein crystals, a synapomorphic character uniformly present from basal groups through Lilioids to Commelinoids. The dicotyledon generaAsarum andSaruma (Aristolochiaceae-Asaroideae) are the only other taxa with cuneate crystals, but their sieveelement plastids include an additional large polygonal crystal, as is typical of many eumagnoliids. New investigations in Melanthiaceae s.l. revealed the same pattern (polygonal plus cuneate crystals) in the sieve-element plastids ofJaponolirion osense (Japonoliriaceae/Petrosaviaceae), ofHarperocallis flava, Pleea tenuifolia, andTofleldia (all: Tofieldiaceae). InNarthecium ossifragum a large crystal, present in addition to cuneate ones, usually breaks up into several small crystals, whereas inAletris glabra andLophiola americana (Nartheciaceae) and in all of the 15 species studied and belonging to Melanthiaceae s.str. only cuneate crystals are found. Highresolution TEM pictures reveal a crystal substructure that is densely packed in both cuneate and polygonal forms, but in Tofieldiaceae the polygonal crystals stain less densely, probably as a result of the slightly wider spacing of their subunits. The small crystals ofNarthecium are “loose”; that is, much more widely spaced. Such “loose” crystals are commonly found in sieve-element plastids of Velloziaceae, present there in addition to angular crystals, and together with cuneate crystals in a few Lilioids and many taxa of Poales (Commelinoids). Ontogenetic studies of the sieve elements ofSaruma, Aristolochia, and several monocotyledons have shown that in their plastids cuneate crystals develop very early and independent from a polygonal one present in some taxa. Therefore, a conceivable particulation of polygonal into cuneate crystals is excluded. Consequently, mutations of some monocotyledons that contain a lone, large, polygonal crystal in their sieve-element plastids are explained as the result of a complex genetic block. The total result of all studies in sieve-element plastids suggests thatJaponolirion and Tofieldiaceae are the most basal monocotyledons and that Aristolochiaceae are their dicotyledon sister group.  相似文献   

13.
基于两个叶绿体基因(matK和rbcL)和一个核糖体基因(18S rDNA)的序列分析,对代表了基部被子植物和单子叶植物主要谱系分支的86科126属151种被子植物(单子叶植物58科86属101种)进行了系统演化关系分析。研究结果表明由胡椒目Piperales、樟目Laurales、木兰目Magnoliales和林仙目Canellales构成的真木兰类复合群是单子叶植物的姐妹群。单子叶植物的单系性在3个序列联合分析中得到98%的强烈自展支持。联合分析鉴定出9个单子叶植物主要谱系(广义泽泻目Alismatales、薯蓣目Dioscorcales、露兜树目Pandanales、天门冬目Asparagalcs、百合目Liliales、棕榈目Arecales、禾本目Poales、姜目Zingiberales、鸭跖草目Commelinales)和6个其他被子植物主要谱系(睡莲目Nymphaeales、真双子叶植物、木兰目、樟目、胡椒目、林仙目)。在单子叶植物内,菖蒲目Acorales(菖蒲属Acorus)是单子叶植物最早分化的一个谱系,广义泽泻目(包括天南星科Araceae和岩菖蒲科Toficldiaccae)紧随其后分化出来,二者依次和其余单子叶植物类群构成姐妹群关系。无叶莲科Petrosaviaceac紧随广义的泽泻目之后分化出来,无叶莲科和剩余的单子叶植物类群形成姐妹群关系,并得到了较高的支持率。继无叶莲科之后分化的类群形成两个大的分支:一支是由露兜树目和薯蓣目构成,二者形成姐妹群关系:另一支是由天门冬目、百合目和鸭跖草类复合群组成,三者之间的关系在单个序列分析和联合分析中不稳定,需要进一步扩大取样范围来确定。在鸭跖草类复合群分支内,鸭跖草目和姜目的姐妹群关系在3个序列联合分析和2个序列联合分析的严格一致树中均得到强烈的自展支持,获得的支持率均是100%。但是,对于棕榈目和禾本目在鸭跖草类中的系统位置以及它们和鸭跖草目-姜目之间的关系,有待进一步解决。值得注意的是,无叶莲科与其他单子叶植物类群(除菖蒲目和泽泻目外)的系统关系在本文中获得较高的自展支持率,薯蓣目和天门冬目的单系性在序列联合分析中都得到了较好的自展支持,而这些在以往的研究中通常支持率较低。鉴于菖蒲科和无叶莲科独特的系统演化位置,本文支持将其分别独立成菖蒲目和无叶莲目Petrosavialcs的分类学界定。  相似文献   

14.
Leveillula on monocotyledonous plants have been recorded as L. taurica by several authors, whereas the fungus on Allium has been described as an independent species, namely L. allii, by some authors. We sequenced ca 600 bp of the rDNA ITS region for two Leveillula specimens from Allium and Polianthes (both from monocotyledons) and compared them with several already published sequences from Leveillula isolates from dicotyledons. Pair-wise percentages of sequence divergences were calculated for all Leveillula isolates. The ITS sequence of the Polianthes isolate was identical to L. taurica on Helianthus and Vicia. The sequence of the Allium isolate was 99.5 % identical to L. taurica on Euphorbia, Haplophylum, Peganum, etc. These results suggest close relationships between monocot and dicot pathogenic Leveillula species. The identity between two monocot isolates was 98.4 %. Phylogenetic analysis revealed that the two monocot isolates do not group into a clade together. This result suggests that Leveillula acquired parasitism to monocots at least twice independently.  相似文献   

15.
? Fusion of floral carpels (syncarpy) in angiosperms is thought to have allowed for significant improvements in offspring quantity and quality in syncarpous species over gymnosperms and apocarpous (free-carpelled) angiosperms. Given the disadvantages of apocarpy, it remains an evolutionary puzzle why many angiosperm lineages with free carpels (apocarpy) have been so successful and why some lineages show reversals to apocarpy. ? To investigate whether some advantages of syncarpy may accrue in other ways to apocarpous species, we reviewed previous studies of pollen-tube growth in apocarpous species and also documented pollen-tube growth in nine additional apocarpous species in six families. ? Anatomical studies of a scattering of apocarpous paleodicots, monocots, and eudicots show that, after transiting the style, 'extra' pollen tubes exit fully fertilized carpels and grow to other carpels with unfertilized ovules. In many species this occurs via openings in the simple carpels, as we report here for Sagittaria potamogetifolia, Sagittaria pygmaea, Sedum lineare, and Schisandra sphenanthera. ? The finding that extra-gynoecial pollen-tube growth is widespread in apocarpous species eliminates the possibility of a major fitness cost of apocarpy relative to syncarpy and may help to explain the persistence of, and multiple reversals to, apocarpy in the evolutionary history of angiosperms.  相似文献   

16.
Petrosaviaceae is a monocotyledonous plant family that comprises two genera: the autotrophic Japonolirion and the mycoheterotrophic Petrosavia. Accordingly, this plant family provides an excellent system to examine specificity differences in mycobionts between autotrophic and closely related mycoheterotrophic plant species. We investigated mycobionts of Japonolirion osense, the sole species of the monotypic genus, from all known habitats of this species by molecular identification and detected 22 arbuscular mycorrhizal (AM) fungal phylotypes in Archaesporales, Diversisporales, and Glomerales. In contrast, only one AM fungal phylotype in Glomerales was predominantly detected from the mycoheterotrophic Petrosavia sakuraii in a previous study. The high mycobiont diversity in J. osense and in an outgroup plant, Miscanthus sinensis (Poaceae), indicates that fungal specificity increased during the evolution of mycohetrotrophy in Petrosaviaceae. Furthermore, some AM fungal sequences of J. osense showed >99 % sequence similarity to the dominant fungal phylotype of P. sakuraii, and one of them was nested within a clade of P. sakuraii mycobionts. These results indicate that fungal partners are not necessarily shifted, but rather selected for in the course of the evolution of mycoheterotrophy. We also confirmed the Paris-type mycorrhiza in J. osense.  相似文献   

17.
Japonolirion, comprising Japonolirion osense Nakai, which occurs on serpentinite at two widely separated localities in Japan, has been considered as an isolated taxon, but more recently has been proved by molecular evidence to be a sister group to an achlorophyllous, mycoheterotrophic genus, Petrosavia. In an effort to research possible characters linking these groups, we analyzed the flavonoid compounds obtained from leaves of Japonolirion using UV spectra, mass spectrometry and 1H and 13C nuclear magnetic resonance, and acid hydrolysis of the original glycosides as well as direct thin layer chromatography and high performance liquid chromatography comparisons with authentic specimens. As a result, we identified seven flavonoids, of which two were major components identified as 6-C-glucosylquercetin 3-O-glucoside and isoorientin. The remaining five were minor components identified as 6-C-glucosylkaempferol 3-O-glucoside, quercetin 3-O-glucoside, quercetin 3-O-arabinoside, vicenin-2 and orientin. Both 6-C-glucosylquercetin 3-O-glucoside and 6-C-glucosylkaempferol 3-O-glucoside were recorded for the first time in nature. Because of their restricted occurrence in angiosperms, both C-glycosylflavonols and 3-O-glycosides of C-glycosylflavonols may be significant chemical markers for assessing relationships of J. osense.  相似文献   

18.
Floral development and floral phyllotaxis in species of Adonis, Callianthemum, and Trollius (Ranunculaceae) were studied with scanning electron microscopy. The floral organs are initiated in spiral sequence and the flowers have spiral phyllotaxis. The sepal primordia are broad, crescent-shaped, and truncate, but those of petals, stamens, and carpels are rather hemispherical. A relatively long plastochron appears to be present between the last sepal and the first petal as compared with the short and equal plastochrones of all subsequent floral organs. Maturation of the stamens within the androecium appears to be centripetal. The carpels have a short ascidiate zone. Placentation is uniformly lateral, even in Adonis and Callianthemum, which have only one fertile ovule per carpel (versus median in other genera of Ranunculoideae with a single fertile ovule). In Adonis and Callianthemum at the tip of the carpel the ventral slit is gaping and the stigma is broadly exposed, whereas in Trollius the stigma is narrower and more pronouncedly decurrent along the ventral slit. The petals in Callianthemum and Trollius are more conspicuously delayed in development than those in Adonis as compared with sepals and stamens. A short carpel stipe is formed early in Callianthemum but later in Adonis and Trollius. In Trollius farreri (commonly having only five carpels in contrast to other species of Trollius) the carpels form a single (spiral) series. Thus floral development is similar in all three genera and, at a lower level, Adonis and Callianthemum are especially close but have different autapomorphies, which reflects the current classification of the genera.  相似文献   

19.
Almost all angiosperms are angiospermous, i.e. the ovules are enclosed in carpels at anthesis and during seed development, but angiospermy develops in different ways across angiosperms. The most common means of carpel closure is by a longitudinal ventral slit in carpels that are partly or completely free. In such carpels, the closure process commonly begins at midlength of the prospective longitudinal slit and then proceeds downward and upward. Closure by a transverse slit is rarer, but it is prominent in groups of the ANITA grade and in a few early branching monocots (some Alismatales) and some early branching eudicots (a few Ranunculaceae and Nelumbonaceae), in these eudicots combined with a more or less developed longitudinal slit. In all these cases the carpels have a single ovule in ventral median position. In ANITA lines with pluriovulate carpels, there is only a short longitudinal slit in the uniformly ascidiate carpels. In carpels with a unifacial style the closure area is narrow; this pattern is rare and scattered mainly in some wind‐pollinated monocots and eudicots. In most angiosperms the carpels become closed before the ovules are visible from the outside of the still incompletely closed carpels (early carpel closure). This is notably the case in the ANITA grade and magnoliids. Delayed carpel closure, with the ovules visible before the carpels are closed, is much rarer and is concentrated in a few monocots (mainly some Alismatales and some Poales) and a few eudicots (mainly a few Ranunculales and many Caryophyllales, and scattered in some other eudicots). A kind of delayed carpel closure (with the placenta visible before closure but mostly not the ovules) also occurs in syncarpous gynoecia with a free central placenta. Most gynoecia with a free central placenta occur in the superasterids. In such gynoecia the individual carpel tips are not differentiated but the opening in young gynoecia has the shape of a circular diaphragm. In this case, when ovary septa and free carpel tips are missing, the number of carpels is sometimes unclear (Primulaceae, Lentibulariaceae, some Santalaceae). Extremely ascidiate carpels are concentrated in the ANITA grade, a few magnoliids and some early branching monocots. Aspects of potential advantages of plicate vs. ascidiate carpels with regard to flexibility of pollen tube transmitting tract differentiation are discussed. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 178 , 556–591.  相似文献   

20.
We present a comparative study of the floral structure and development of Nartheciaceae, a small dioscorealean family consisting of five genera (Aletris, Lophiola, Metanarthecium, Narthecium, and Nietneria). A noticeable diversity existed in nine floral characters. Analyses of their respective character states in the light of a phylogenetic context revealed that the flowers of Nartheciaceae, whose plesiomorphies occur in Aletris and Metanarthecium, have evolved toward in all or part of Lophiola, Narthecium, and Nietneria: (1) loss of a perianth tube; (2) stamen insertion at the perianth base; (3) congenital carpel fusion; (4) loss of the septal nectaries; (5) unilocular style; (6) unfused lateral carpellary margins in the style; (7) flower with the median outer tepal on the abaxial side; (8) flower with moniliform hairs; and (9) flower with weak monosymmetry. We further found that, as the flowers developed, the ovary shifted its position from inferior to superior. As a whole, their structure changes suggest that the Nartheciaceae flowers have evolved in close association with pollination and seed dispersal. By considering inferior ovaries and the presence of septal nectaries as plesiomorphies of Nartheciaceae, we discussed evolution of the ovary position and septal nectaries in all the monocots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号