首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fruit bins infested with diapausing larvae of codling moth larvae, Cydia pomonella (L.), are a source of reinfestation of orchards and may jeopardize the success of mating disruption programs and other control strategies. Bins are not routinely treated for control of overwintering codling moth before placing them in orchards. Entomopathogenic nematodes provide a noninsecticidal alternative to methyl bromide that could be applied at the time bins are submerged in dump tanks at the packing house for flotation of fruit. Diapausing codling moth larvae in miniature fruit bins were highly susceptible to infective juveniles of Steinernema carpocapsae (Weiser). Immersion of bins in suspensions of S. carpocapsae ranging from 5 to 100 infective juveniles per milliliter of water resulted in 68-100% mortality. Immersion times of 1 or 5 min in suspensions with 5 infective juveniles of S. carpocapsae per milliliter of water, with and without Tween 80 (0.01%), yielded essentially the same mortality of codling moth larvae. Highest mortalities in codling moth larvae (88%) after treatment of bins in suspensions of 5 infective juveniles of S. carpocapsae per milliliter of water were observed after incubation for 24 h at 25 degrees C and 70% RH. Lowest mortalities (37%) were observed after incubation at 15 degrees C and 35% RH. Comparative tests conducted with Heterorhabditis marelatus Liu & Berry, Steinernema kraussei (Steiner), and S. carpocapsae with 5 infective juveniles per milliliter of water resulted in 21.7, 53.9, and 68.7% mortality, respectively. The use of miniature fruit bins as described in this article provides an effective means of assessing nematode efficacy without the cumbersome size of commercial bins.  相似文献   

2.
Fruit bins infested with diapausing codling moth larvae, Cydia pomonella (L.), are a potential source of reinfestation of orchards and may jeopardize the success of mating disruption programs and other control strategies. Entomopathogenic nematodes (EPNs) were tested as a potential means of control that could be applied at the time bins are submerged in dump tanks. Diapausing cocooned codling moth larvae in miniature fruit bins were highly susceptible to infective juveniles (IJs) of Steinernema carpocapsae (Weiser) and Steinernema feltiae (Filipjev) in a series of experiments. Cocooned larvae are significantly more susceptible to infection than are pupae. Experimental treatment of bins in suspensions of laboratory produced S. feltiae ranging from 10 to 100 IJs/ml of water with wetting agent (Silwet L77) resulted in 51-92% mortality. The use of adjuvants to increase penetration of hibernacula and retard desiccation of S. feltiae in fruit bins resulted in improved efficacy. The combination of a wetting agent (Silwet L77) and humectant (Stockosorb) with 10 S. feltiae IJs/ml in low and high humidity resulted in 92-95% mortality of cocooned codling moth larvae versus 46-57% mortality at the same IJ concentration without adjuvants. Immersion of infested bins in suspensions of commercially produced nematodes ranging from 10 to 50 IJs/ml water with wetting agent in an experimental packing line resulted in mortality in cocooned codling moth larvae of 45-87 and 56 - 85% for S. feltiae and S. carpocapsae, respectively. Our results indicate that EPNs provide an alternative nonchemical means of control that could be applied at the time bins are submerged in dump tanks at the packing house for flotation of fruit.  相似文献   

3.
Codling moths, Cydia pomonella (L.), have long been suspected of emerging from stacks of harvest bins in the spring and causing damage to nearby apple and pear orchards. With increased use of mating disruption for codling moth control, outside sources of infestation have become more of a concern for growers using pheromone based mating disruption systems. Studies were designed to provide information on bins as a source of codling moth and the pattern of codling moth emergence from stacks of bins. In these studies, codling moth larvae colonized wood harvest bins at a much higher frequency than harvest bins made of injection molded plastic (189 moths emerged from wood compared with five from plastic). There was no statistical difference in the number of moths infesting bins that had been filled with infested fruit compared with bins left empty at harvest. This suggests that codling moth enter the bins during the time that the bins are in the orchard before harvest. Emergence of laboratory reared adult codling moth from wood bins placed in stacks was found to be prolonged compared with field populations. Temperature differences within the bin stacks accounted for this attenuated emergence pattern. Covering bin stacks with clear plastic accelerated codling moth development in the upper levels of the stack. Codling moth emergence patterns from plastic-covered stacks more closely coincided with male flight in field populations. This information could be important in developing a technique for neutralizing codling moth-infested bins, and in understanding how infested bins may influence pest management in fruit orchards that are located near bin piles. Implications for control of codling moth in conventional orchards and in those using mating disruption as the principal component of an integrated pest management system include increased numbers of treatments directed at areas affected by infested bins.  相似文献   

4.
The non-insecticidal control strategies currently being implemented in South African orchards for the control of codling moth, Cydia pomonella (L.) may be hampered by wooden fruit bins being infested with diapausing codling moth larvae, acting as a potential source of re-infestation. Key factors contributing to the success or failure of an entomopathogenic nematode application were investigated using the SF 41 isolate of Heterorhabditis zealandica in laboratory bioassays with wooden minibins. Under operational conditions, an application rate of 100 IJs/mL (LD90=102 IJs/mL) effectively controlled codling moth larvae in these bins, and for further laboratory bioassays, the LD50 value of 18 IJs/mL (?25 IJs/mL) was identified as the discriminating dosage. Maximum mortality was attained when bins were pre-wet for at least 1 min (>90% RH) and maintained at maximum humidity (>95% RH) post-treatment for at least 3 days (LT90=73 h), to ensure nematode survival and subsequent satisfactory infection of diapausing codling moth larvae. Tarping bins achieved the desired high level of humidity required. Furthermore, adjuvants (specifically Reverseal 10?) also improved an application. The study conclusively illustrated that if all the above-mentioned conditions are met, H. zealandica has the potential to successfully disinfest wooden fruit bins of codling moth.  相似文献   

5.
Simultaneous use of parasitoids and entomopathogenic nematodes for codling moth (CM) control could produce an antagonistic interaction between the two groups resulting in death of the parasitoid larvae. Two ectoparasitic ichneumonid species, Mastrus ridibundus and Liotryphon caudatus, imported for classical biological control of cocooned CM larvae were studied regarding their interactions with Steinernema carpocapsae. Exposure of M. ridibundus and L. caudatus developing larvae to infective juveniles (IJs) of S. carpocapsae (10 IJs/cm2; approximately LC(80-90) for CM larvae) within CM cocoons resulted in 70.7 and 85.2% mortality, respectively. However, diapausing full grown parasitoid larvae were almost completely protected from nematode penetration within their own tightly woven cocoons. M. ridibundus and L. caudatus females were able to detect and avoid ovipositing on nematode-infected cocooned CM moth larvae as early as 12h after treatment of the host with IJs. When given the choice between cardboard substrates containing untreated cocooned CM larvae and those treated with an approximate LC95 of S. carpocapsae IJs (25 IJs/cm2) 12, 24, or 48h earlier, ovipositing parasitoids demonstrated a significant preference for untreated larvae. The ability of these parasitoids to avoid nematode-treated larvae and to seek out and kill cocooned CM larvae that survive nematode treatments enhances the complementarity of entomopathogenic nematodes and M. ridibundus and L. caudatus.  相似文献   

6.
The susceptibility of codling moth diapausing larvae to three entomopathogenic nematode species was assessed in the laboratory using a bioassay system that employed cocooned larvae within cardboard strips. The LC50values forSteinernema carpocapsae, S. riobrave,andHeterorhabditis bacteriophorawere 4.7, 4.8, and 6.0 infective juveniles/cm2, respectively. When a discriminating concentration of 10 infective juveniles/cm2of each of the three nematode species was evaluated at 15, 20, 25, and 30°C,S. carpocapsaewas the most effective nematode with mortalities ranging from 66 to 90%. Mortalities produced byS. riobraveandH. bacteriophoraat the four temperatures were 2–94 and 25–69%, respectively. Studies were also conducted to test infectivity at 10, 35, and 40°C. No mortality was produced by any of the nematode species at 10°C.S. riobravewas the most infective nematode at 35°C producing 68% mortality which was more than twice that observed forS. carpocapsaeorH. bacteriophora.Codling moth larvae treated with 10 infective juveniles/cm2ofS. carpocapsaeand kept in 95+% RH at 25°C for 0–24 h followed by incubation at 25–35% RH indicated that more than 3 h in high humidity was needed to attain 50% mortality. Trials ofS. carpocapsae, S. riobrave,andH. bacteriophoraat 50 infective juveniles/cm2against cocooned larvae on pear and apple logs resulted in reductions of codling moth adult emergence of 83, 31, and 43%, respectively, relative to control emergence. Trials of the three entomopathogenic nematodes at 50 infective juveniles/cm2against cocooned larvae in leaf litter resulted in 99 (S. carpocapsae), 80 (S. riobrave), and 83% (H. bacteriophora) mortality, respectively. Our results indicate good potential of entomopathogenic nematodes, especiallyS. carpocapsae,for codling moth control under a variety of environmental conditions.  相似文献   

7.
Stacked wooden fruit bins are frequent overwintering sites for overwintering diapausing codling moth larvae. Control strategies against the codling moth (Cydia pomonella) (Lepidoptera: Tortricidae) in South Africa have been hampered by the reinfestation of orchards from nearby stacked infested fruit bins and by the movement of infested bins between orchards. Worldwide, wooden fruit bins are systematically being replaced with plastic bins, however in South Africa this will not be accomplished in the near future. The objective of this study was to evaluate the potential of two recycled commercially available entomopathogenic nematode (EPN) species, Heterorhabditis bacteriophora and Steinernema feltiae, as well as of a local species, Steinernema yirgalemense, to disinfest miniature wooden fruit bins under controlled conditions in the laboratory. After dipping miniature bins loaded with codling moth larvae in a suspension of 25?IJs/mL of each of the three EPN species, under optimum conditions of temperature and humidity, the highest percentage of control was obtained using S. feltiae (75%). The addition of adjuvants significantly increased S. feltiae infectivity to >95%, whereas it did not result in a significant increase in H. bacteriophora or S. yirgalemense infectivity.  相似文献   

8.
The codling moth (Cydia pomonella L.) is a serious pest of pome fruit. Diapausing cocooned larvae overwinter in cryptic habitats in the soil or in the bark of infested trees. The entomopathogenic nematode Steinernema feltiae (Filipjev) (Rhabditida: Steinernematidae) is used to control diapausing codling moth larvae. The objective of this study was to define environmental conditions favouring the performance of the nematodes. Cocooned larvae were more susceptible than non-cocooned larvae. Susceptibility of pupae was low. To determine the influence of decreasing water activity (aw-value) on the activity of the nematodes, mortality of codling moth larvae and Galleria mellonella L. were tested in sand-sodium-polyacrylate mixtures of variable water activity. S. feltiae was able to infect both insects at aw-values >0.9. Cocooned larvae of both insects died at lower aw-values than non-cocooned larvae. Mortality of cocooned larvae did not further increase after half an hour of exposure to nematodes, whereas the mortality of non-cocooned larvae increased with increasing exposure time. LC50 and LC90 considerably decrease with increasing RH. The negative influence of the relative humidity (macro environment) was less important than the effect of the water activity in the bark substrate (micro environment). The micro environment can be manipulated by applying S. feltiae with higher volumes of water. A surfactant-polymer-formulation significantly increased nematode efficacy and can buffer detrimental environmental effects.  相似文献   

9.
The objective of this study was to determine the susceptibility of the strawberry crown moth, Synanthedon bibionipennis (Boisduval) (Lepidoptera: Sesiidae) larvae to two species of entomopathogenic nematodes. The entomopathogenic nematodes Steinernema carpocapsae (Weiser) strain Agriotos and Heterorhabditis bacteriophora (Steiner) strain Oswego were evaluated in laboratory soil bioassays and the field. Both nematode species were highly infective in the laboratory bioassays. Last instars were extremely susceptible to nematode infection in the laboratory, even in the protected environment inside the strawberry (Fragaria x ananassa Duch.) crown. Infectivity in the laboratory was 96 and 94% for S. carpocapsae and H. bacteriophora, respectively. Field applications in late fall (October) were less effective with S. carpocapsae and H. bacteriophora, resulting in 51 and 33% infection, respectively. Larval mortality in the field from both nematode treatments was significantly greater than the control, but treatments were substantially less efficacious than in the laboratory. Soil temperature after nematode applications in the field (11 degrees C mean daily temperature) was below minimum establishment temperatures for both nematode species for a majority of the post-application period. It is clear from laboratory data that strawberry crown moth larvae are extremely susceptible to nematode infection. Improved control in the field is likely if nematode applications are made in late summer to early fall when larvae are present in the soil and soil temperatures are more favorable for nematode infection.  相似文献   

10.
The potential of using an entomopathogenic nematode, Heterorhabditis zealandica Poinar, together with different test mulches (pine chips, wheat straw, pine wood shavings, blackwood and apple wood chips) to control diapausing codling moth, Cydia pomonella (L.) larvae was evaluated. Mesh cages were identified as a suitable larval-containment method. High levels of codling moth mortality were obtained when using pine wood shavings as mulch (88%) compared to pine chips, wheat straw, blackwood and apple wood chips (41–88%). Humidity (>95% RH) has to be maintained for at least 3 days to ensure nematode survival. It was also proven that nematodes had the ability to move out of infected soil into moist mulch, to infect the codling moth larvae residing at heights of up to 10 cm. Field experiments showed the importance of climatic conditions on nematode performance. Low temperatures (<15°C) recorded during the first trial resulted in low levels of control (48%), as opposed to the 67% mortality recorded during the second trial (temperatures ranged between 20 and 25°C). Low levels of persistence (<10%) were recorded in the mulches post-application. The study conclusively illustrated some of the baseline requirements fundamental to the success of entomopathogenic nematodes together with mulches for the control of codling moth.  相似文献   

11.
《Biological Control》2001,20(1):48-56
Infection of cocooned codling moth (cydia pomonella) larvae by the entomopathogenic nematode Steinernema carpocapsae was studied in three field experiments. Factors that varied within or between experiments included method of application, type of substrate containing cocooned larvae, time when nematodes were applied, seasonal effects, and supplemental wetting before or after nematode application. Conventional air-blast sprayer applications of 0.5–5.0 million infective juveniles (IJs)/tree in fall resulted in ca. 30% mortality of larvae in cardboard trap bands, whereas hand-gun application (2 million IJs/tree) produced mortality of ca. 70%. Application in the evening caused higher larval mortality than application in the morning when no supplemental wetting was used after treatments. Morning and evening applications caused equivalent larval mortality when a postwetting treatment was included. In a trial conducted in midsummer, supplemental wetting, either before or after hand-gun application of 1 million IJs/tree, enhanced nematode-produced mortality. Mortality approached 100% if both pre- and postwetting was used. Larvae in exposed cocoons on apple wood were infected at a higher rate (86%) than those on wood in less exposed positions (73%) or in nonperforated cardboard (72%). Mortality rates for larvae in perforated cardboard were intermediate (77%). Application volumes used to deliver nematodes slightly enhanced infection rate of larvae in some substrates but not others. In one trial, parasitism of codling moth by the wasp Mastrus ridibundus (Ichneumonidae) was negatively correlated with nematode infection of codling moth larvae. Dissections showed that ca. 10% of larvae infected by nematodes had been attacked by the wasp.  相似文献   

12.
Adequate moisture levels are required for nematode survival and subsequent efficacy as entomopathogens. Formulation of nematodes aimed at aboveground applications may assist in maintaining such moisture levels. In this study, we report the effects of a superabsorbent polymer formulation, Zeba® on the performance of an entomopathogenic nematode, Heterorhabditis zealandica Poinar, for controlling diapausing codling moth, Cydia pomonella (L.) larvae in cryptic habitats on trees. Water activity (aw-value) on bark was considered to be an indication of moisture levels on trees in cryptic habitats where codling moth larvae are known to occur, thereby influencing nematode efficacy. H. zealandica was only able to infect codling moth larvae at aw≥0.92, with aw50=0.94 and aw90=0.96. Laboratory experiments in which nematode concentration was investigated indicated a positive linear relationship between the concentration of nematodes applied and the level of control obtained, with the highest level of mortality recorded at 80 IJs/larva, requiring at least 4 h of conditions conducive to nematode activity to ensure infectivity and subsequent efficacy. Further experimentation showed that the use of the Zeba formulation, together with the nematodes, improved the level of control obtained at 60% and 80% RH in the laboratory and that it also enhanced the survival and infection-ability of the nematodes in the field. The study conclusively illustrates that the tested formulation assisted in maintaining adequate moisture levels on the application substratum, as required for nematode survival and subsequent efficacy.  相似文献   

13.
Nosema carpocapsae is a microsporidian pathogen of the codling moth, Cydia pomonella. We report the occurrence of this pathogen in a colony originating from collections made in the United States. This is the first record of N. carpocapsae infecting North American codling moths. This North American isolate of N. carpocapsae was indistinguishable from isolates received from New Zealand and Bulgaria, based on small subunit ribosomal RNA sequencing, but was more virulent than the previously described New Zealand isolate. In the laboratory, infected larvae and pupae had increased mortality compared to their uninfected counterparts and developmental time increased by 1 week. There was no effect on female fecundity. Within a cohort of eggs laid by infected females, neonates that emerged first were more likely to be uninfected. We established an uninfected colony by interrupting horizontal transmission and only utilizing the larvae that emerged from the first-laid eggs.  相似文献   

14.
Incidences of potential per os Cydia pomonella granulovirus (CpGV) transmission within a large codling moth colony were identified. CpGV was detected in the water which is used to wash egg sheets. When pre-neonates were extracted from eggs prior to emergence and tested for the presence of CpGV, 40% were found to carry amounts of CpGV detectable by a polymerase chain reaction (PCR) assay, suggesting possible transovarial transmission of the virus. Although symptoms typical of virus infection and larval death were found infrequently within communal rearing trays, the frequency with which CpGV DNA was detected by PCR assays increased from a mean of 31% of 10-day-old larvae to 94% of 25-day-old larvae. CpGV in codling moth cadavers remained virulent after being held at 60 degrees C for 3 days under conditions similar to the treatment of spent diet at the rearing facility before its disposal. PCR tests of surface samples taken from air filters and rearing rooms of the rearing facility were found to contain CpGV. Bioassays of surface samples from the diet trash bin and a filter through which outside air is passed before entering the rearing chambers resulted in significant codling moth neonate mortality. The virulence of CpGV in dust from the spent diet and the original inadvertent positioning of the diet trash bin directly below one of the air intake ducts are suggested as a possible additional source of CpGV contamination within the facility.  相似文献   

15.
Codling moth, Cydia pomonella Linnaeus (Lepidoptera: Tortricidae), is a serious pest of apples worldwide. This study aimed to evaluate the mortality rate of codling moth eggs, larvae and pupae in the field in commercial and neglected apple and walnut orchards over two years, and to investigate the biodiversity and intensity of parasitoids associated with codling moth in the orchards. Five patches of wax paper containing 1-day-old codling moth eggs were placed in a neglected orchard in order to evaluate parasitism rates. Corrugated cardboard bands were placed around the trunk of 15 trees during late spring and the beginning of summer through to fruiting season to capture and measure parasitism of codling moth larvae. 5285 larvae in total were collected during this study. Mortality rate (egg?+?larvae?+?pupae) varied between the commercial and neglected orchards, reaching a maximum of (42.89% and 66.67%) in neglected apple orchards and (61.03% and 74.76%) in the neglected walnut orchard in 2003 and 2004, respectively. Trichogramma cacoeciae (Hymenoptera: Tichogrammatidae) was the only egg parasitoid recorded. Eight hymenopteran larval and pupal parasitoids belonging to several subfamilies were recorded: Cheloninae, Agathidinae, Cremastinae, Haltichellinae, Chalcidinae, Anomalinae, and Pteromalinae and one dipteran belonging to Tachininae. In conclusion, mortality factors, mainly by parasitoids, are contributing to a general reduction in codling moth larvae populations particularly in neglected orchards. The hymenopteran Ascogaster quadridentata and the dipteran Neoplectops pomonellae can contribute to biological control programmes against codling moth in the coastal region and other regions.  相似文献   

16.
Pathogenicity of infective juveniles of selected Steinernema spp. and Heterorhabditis spp. toward developing and reproductive stages of the red imported fire ant, Solenopsis invicta Buren, was tested under laboratory conditions. At 10(3)-10(5) infective juveniles per Petri dish, mortality of reproductive larvae, pupae, and alates ranged from 28 to 100% at higher doses after 96 h at 23-25 degrees C. Steinernema carpocapsae All was the most consistent species tested; this nematode caused mortality of fire ant larvae, pupae, and alates of 82-94, 64-96, and 38-99%, respectively. Although not susceptible to nematode infection, worker ants vigorously preened nematodes from brood, alates, and themselves. In a field study, S. carpocapsae (5 x 10(6) and 2 x 10(6) drench, 2 x 10(6) infective juvenile infection) was applied to active fire ant mounds in 3.8-liter suspensions. Hydramethylnon (75 ml), a water drench, a water injection, and untreated fire ant mounds were marked and treated. Overall activity in mounds treated with nematodes of hydramethylnon ranged from 40 to 48%. Satellite mound activity accounted for 32-44% of overall activity in mounds treated with nematodes 2 wk after treatment. However, 6 wk after treatment, activity in mounds treated with hydramethylnon was 44%; activity of mounds treated with nematodes ranged from 52 to 80%. Satellite mound activity accounted for 0-24% of overall activity. Whereas a soil drench of S. carpocapsae showed potential as a control method for the red imported fire ant, colony relocation after nematode treatment could limit overall efficacy unless application techniques are developed to overcome or take advantage of the movement.  相似文献   

17.
The codling moth, Cydia pomonella (L.), and oriental fruit moth, Grapholita molesta (Busck), are two key pests of apple (Malus domestica Borkh.) in North Carolina. Growers extensively relied on organophosphate insecticides, primarily azinphosmethyl, for > 40 yr to manage these pests. Because of organophosphate resistance development and regulatory actions, growers are transitioning to management programs that use new, reduced-risk, and OP-replacement insecticides. This study evaluated the toxicity of a diversity of replacement insecticides to eggs, larvae, and adults, as well as an assessment of their residual activity, to codling moth and oriental fruit moth. Laboratory-susceptible strains of both species were used for all bioassays. Fresh field-harvested apples were used as a media for assessing the ovicidal activity of insecticides. For larval studies, insecticides were topically applied to the surface of lima bean-based diet, onto which neonates were placed. Toxicity was based on two measures of mortality; 5-d mortality and development to adult stage. Ovicidal bioassays showed that oriental fruit moth eggs were generally more tolerant than codling moth eggs to insecticides, with novaluron, acetamiprid, and azinphoshmethyl having the highest levels of toxicity to eggs of both species. In contrast, codling moth larvae generally were more tolerant than oriental fruit moth to most insecticides. Methoxyfenozide and pyriproxyfen were the only insecticides with lower LC50 values against codling moth than oriental fruit moth neonates. Moreover, a number of insecticides, particularly the IGRs methoxyfenozide and novaluron, the anthranilic diamide chlorantriliprole, and the spinosyn spinetoram, provided equal or longer residual activity against codling moth compared with azinphosmethyl in field studies. Results are discussed in relation to their use in devising field use patterns of insecticides and for insecticide resistance monitoring programs.  相似文献   

18.
Four species of entomopathogenic nematodes, Steinernema carpocapsae , Heterorhabditis bacteriophora , H. indica and H. marelatus , were tested for their ability to kill and reproduce in larvae of the Asian longhorn beetle, Anoplophora glabripennis (Motchulsky). The larvae were permissive to all four species but mortality was higher and production of infective juveniles was greater for S. carpocapsae and H. marelatus . The lethal dosage of H. marelatus was determined to be 19 infective juveniles for second and third instar larvae and 347 infective juveniles for fourth and fifth instar larvae. H. marelatus infective juveniles, applied via sponges to oviposition sites on cut logs, located and killed host larvae within 30 cm galleries and reproduced successfully in several of the larvae.  相似文献   

19.
【目的】探讨昆虫病原线虫小卷蛾斯氏线虫Steinernema carpocapsae All侵染对草地贪夜蛾Spodoptera frugiperda幼虫天然免疫反应的影响。【方法】借助倒置显微镜观察和鉴定草地贪夜蛾幼虫的血细胞类型,并对小卷蛾斯氏线虫侵染后不同时间的草地贪夜蛾幼虫血细胞总数目进行统计;通过倒置显微镜观察草地贪夜蛾幼虫对侵入的小卷蛾斯氏线虫的包囊反应;利用倒置荧光显微镜观察小卷蛾斯氏线虫侵染后的草地贪夜蛾幼虫血细胞对金黄色葡萄球菌Staphylococcus aureus的吞噬活性;检测小卷蛾斯氏线虫侵染后的草地贪夜蛾幼虫血淋巴中酚氧化酶(phenoloxidase, PO)活性、体内抗菌肽基因相对表达水平以及血浆的抗菌活性。【结果】从草地贪夜蛾幼虫体内共发现5种不同类型的血细胞,分别为原血细胞、粒细胞、类绛色细胞、珠血细胞和浆血细胞。注射1 μL侵染期(infective juveniles, IJs)小卷蛾斯氏线虫(3 IJs/μL)后9和12 h,草地贪夜蛾幼虫的血细胞总数目显著增多。草地贪夜蛾幼虫的血细胞不能包囊活的以及冷处死的小卷蛾斯氏线虫,但可以包囊热处死的线虫。活的小卷蛾斯氏线虫会显著抑制草地贪夜蛾幼虫血细胞对金黄色葡萄球菌的吞噬活性,但冷处死和热处死的线虫不能。注射1 μL(3 IJs/μL)小卷蛾斯氏线虫后,草地贪夜蛾幼虫血淋巴PO活性总体呈“下降 升高 下降”变化趋势;体内抗菌肽基因Attacin-A2, Attacin-B1, Cecropin-B3, Cecropin-D, Gallerimycin, Gloverin-3以及Lebocin-2的表达水平在线虫侵染后12 h时显著上调,24 h时恢复到对照水平或低于对照水平;血淋巴抗菌活性水平在小卷蛾斯氏线虫侵染后12 h时显著升高,24 h时与对照无显著差异。【结论】小卷蛾斯氏线虫在侵入早期会抑制草地贪夜蛾幼虫的天然免疫反应来建立感染;随后草地贪夜蛾的免疫系统会被激活试图抵御小卷蛾斯氏线虫的侵染;后期随着线虫的成功定殖,草地贪夜蛾的免疫系统最终被抑制或破坏。本研究所得结果为进一步揭示线虫 草地贪夜蛾的免疫互作机理奠定了基础,也为改善昆虫病原线虫对草地贪夜蛾的防治效果提供了理论依据。  相似文献   

20.
A model for predicting mortality of Indianmeal moth larvae [Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae)] under fluctuating low-temperature conditions was developed. The time and temperature combinations required to achieve 100% mortality of field-collected, cold-acclimated P. interpunctella larvae obtained from laboratory mortality experiments were used to develop the mortality model. Accumulation of mortality rate over time was called the cumulative lethality index (CLI). Complete mortality of insect populations would occur when CLI equals 1. Observed mortality of field-collected, cold-acclimated P. interpunctella larvae in five 76.2-T (3,000-bu) shelled corn bins located in Rosemount, MN, during the winters of 2003-2004 and 2004-2005 were used to validate the CLI model (i.e., mortality model). Excellent agreement between predicted and measured time to 100% larval mortality was observed. The CLI model would be useful for developing low-temperature aeration management strategies for controlling overwintering P. interpunctella in grain bins. In addition, this model will be useful when determining if additional control measures will be required as a result of above-seasonal ambient temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号