首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
2.
3.
One of the most important issues in stem cell research is to understand the regulatory mechanisms responsible for their differentiation. An extensive understanding of mechanism underlying the process of differentiation is crucial in order to prompt stem cells to perform a particular function after differentiation. To elucidate the molecular mechanisms responsible for the hematopoietic differentiation of embryonic stem cells (ESCs), we investigated murine ES cells for the presence of hematopoietic lineage markers as well as Wnt signaling pathway during treatments with different cytokines alone or in combination with another. Here we report that Wnt/beta-catenin signaling is down-regulated in hematopoietic differentiation of murine ES cells. We also found that differentiation induced by the interleukin-3, interleukin-6, and erythropoietin combinations resulted in high expression of CD3e, CD11b, CD45R/B220, Ly-6G, and TER-119 in differentiated ES cells. A high expression of beta-catenin was observed in two undifferentiated ES cell lines. Gene and protein expression analysis revealed that the members downstream of Wnt in this signaling pathway including beta-catenin, GSK-3beta, Axin, and TCF4 were significantly down-regulated as ES cells differentiated into hematopoietic progenitors. Our results show that the Wnt/beta-catenin signaling pathway plays a role in the hematopoietic differentiation of murine ESCs and also may support beta-catenin as a crucial factor in the maintenance of ES cells in their undifferentiated state.  相似文献   

4.
5.
Embryonic stem cells (ESCs) are an outstanding model for elucidating the molecular mechanisms of cellular differentiation. They are especially useful for investigating the development of early hematopoietic progenitor cells (HPCs). Gene expression in ESCs can be manipulated by several techniques that allow the role for individual molecules in development to be determined. One difficulty is that expression of specific genes often has different phenotypic effects dependent on their temporal expression. This problem can be circumvented by the generation of ESCs that inducibly express a gene of interest using technology such as the doxycycline-inducible transgene system. However, generation of these inducible cell lines is costly and time consuming. Described here is a method for disaggregating ESC-derived embryoid bodies (EBs) into single cell suspensions, retrovirally infecting the cell suspensions, and then reforming the EBs by hanging drop. Downstream differentiation is then evaluated by flow cytometry. Using this protocol, it was demonstrated that exogenous expression of a microRNA gene at the beginning of ESC differentiation blocks HPC generation. However, when expressed in EB derived cells after nascent mesoderm is produced, the microRNA gene enhances hematopoietic differentiation. This method is useful for investigating the role of genes after specific germ layer tissue is derived.  相似文献   

6.
7.
MicroRNAs play important roles in controlling the embryonic stem cell (ESC) state. Although much is known about microRNAs maintaining ESC state, microRNAs that are responsible for promoting ESC differentiation are less reported. Here, by screening 40 microRNAs pre-selected by their expression patterns and predicted targets in Dgcr8-null ESCs, we identify 14 novel differentiation-associated microRNAs. Among them, miR-27a and miR-24, restrained by c-Myc in ESC, exert their roles of silencing self-renewal through directly targeting several important pluripotency-associated factors, such as Oct4, Foxo1 and Smads. CRISPR/Cas9-mediated knockout of all miR-27/24 in ESCs leads to serious deficiency in ESC differentiation in vitro and in vivo. Moreover, depleting of them in mouse embryonic fibroblasts can evidently promote somatic cell reprogramming. Altogether, our findings uncover the essential role of miR-27 and miR-24 in ESC differentiation and also demonstrate novel microRNAs responsible for ESC differentiation.  相似文献   

8.
9.
10.
11.
12.
13.
胚胎干细胞向造血干/祖细胞定向诱导分化的研究进展   总被引:1,自引:0,他引:1  
胚胎干细胞(embryonic stem cell,ES细胞)是指由胚胎内细胞团(inner cell mass,ICM)细胞经体外抑制培养而筛选得到的细胞,具有无限增殖潜能,在体外可以向造血细胞分化,有可能为造血干细胞移植和血细胞输注开辟新的来源.此外,ES细胞向造血干/祖细胞的定向诱导分化也为阐明哺乳动物造血发育的细胞和分子机制提供了良好的体外模型.对ES细胞向造血干/祖细胞定向分化的研究进展进行了综述.  相似文献   

14.
Nuclear pore complexes (NPCs) are built from ~30 different proteins called nucleoporins or Nups. Previous studies have shown that several Nups exhibit cell-type-specific expression and that mutations in NPC components result in tissue-specific diseases. Here we show that a specific change in NPC composition is required for both myogenic and neuronal differentiation. The transmembrane nucleoporin Nup210 is absent in proliferating myoblasts and embryonic stem cells (ESCs) but becomes expressed and incorporated into NPCs during cell differentiation. Preventing Nup210 production by RNAi blocks myogenesis and the differentiation of ESCs into neuroprogenitors. We found that the addition of Nup210 to NPCs does not affect nuclear transport but is required for the induction of genes that are essential for cell differentiation. Our results identify a single change in NPC composition as an essential step in cell differentiation and establish a role for Nup210 in gene expression regulation and cell fate determination.  相似文献   

15.
Dental pulp cells (DPCs) are valuable cell source for dental regeneration, albeit their application is restricted by limited pluripotency due to current culture condition. Mouse embryonic fibroblasts (MEFs) are served as feeder layer to maintain undifferentiated state of iPSCs and ESCs with long-term in vitro culture. Bone morphogenetic protein 4 (BMP4) plays an important role in the regulation of undifferentiated state and lineage commitment of cells through modulation of microenvironment. However, so far little was known how micro environment affect the multipotency of dental derived cells. To demonstrate the effect of optimized culture condition on multipotency of DPCs, cell proliferation and senescence of DPCs with MEF and/or rhBMP4-CM were examined by CCK8, telomerase activity and flow cytometry. Multilineage differentiation was detected by immunofluorescent staining, Real-time PCR and western blot. Expression of BMP4/NFATc1/LIF in the co-culture medium was evaluated by ELISA and expression of Oct-4/Sox2/c-Myc/NFATc1 in co-cultured DPCs was detected by Real-time PCR. NFATc1 inhibitor INCA-6 was applied to DPCs with MEF and/or rhBMP4-CM, expression of NFATc1/Oct-4/Sox2/c-Myc was examined by Realtime PCR and western blot. Our results demonstrated that DPCs cultured with MEF and/or rhBMP4-CM showed increased cell proliferation, telomerase rate and multilineage differentiation capability. MEF-CM enhanced expression of Oct-4/Sox2/c-Myc/NFATc1 in co-cultured DPCs through secretion of BMP4/NFATc1 in the culture medium. INCA-6 effectively restrained the MEF/BMP4-CM induced upregulation of Oct-4/Sox2/c-Myc/NFATc1 in DPCs. These resuts indicate that both MEF-CM and BMP4-CM provided similar efficient culture system to improve the multipotency of DPCs, which might contribute to the application of DPCs in dental regeneration.  相似文献   

16.
The mammalian target of rapamycin (mTOR) pathway regulates stem cell regeneration and differentiation in response to growth factors, nutrients, cellular energetics, and various extrinsic stressors. Inhibition of mTOR activity has been shown to enhance the regenerative potential of pluripotent stem cells. DEPTOR is the only known endogenous inhibitor of all known cellular mTOR functions. We show that DEPTOR plays a key role in maintaining stem cell pluripotency by limiting mTOR activity in undifferentiated embryonic stem cells (ESCs). DEPTOR levels dramatically decrease with differentiation of mouse ESCs, and knockdown of DEPTOR is sufficient to promote ESC differentiation. A strong decrease in DEPTOR expression is also observed during human ESCs differentiation. Furthermore, reduction in DEPTOR level during differentiation is accompanied by a corresponding increase in mTOR complex 1 activity in mouse ESCs. Our data provide evidence that DEPTOR is a novel stemness factor that promotes pluripotency and self-renewal in ESCs by inhibiting mTOR signaling.  相似文献   

17.
18.
19.
Yu P  Pan G  Yu J  Thomson JA 《Cell Stem Cell》2011,8(3):326-334
Here, we show that as human embryonic stem cells (ESCs) exit the pluripotent state, NANOG can play a key role in determining lineage outcome. It has previously been reported that BMPs induce differentiation of human ESCs into extraembryonic lineages. Here, we find that FGF2, acting through the MEK-ERK pathway, switches BMP4-induced human ESC differentiation outcome to mesendoderm, characterized by the uniform expression of T (brachyury) and other primitive streak markers. We also find that MEK-ERK signaling prolongs NANOG expression during BMP-induced differentiation, that forced NANOG expression results in FGF-independent BMP4 induction of mesendoderm, and that knockdown of NANOG greatly reduces T induction. Together, our results demonstrate that FGF2 signaling switches the outcome of BMP4-induced differentiation of human ESCs by maintaining NANOG levels through the MEK-ERK pathway.  相似文献   

20.
Identification of factors that direct embryonic stem (ES) cell (ESC) differentiation into functional cardiomyocytes is essential for successful use of ESC-based therapy for cardiac repair. Neuregulin-1 (NRG1) and microRNA play important roles in the cardiac differentiation of ESCs. Understanding how NRG1 regulates microRNA will provide new mechanistic insights into the role of NRG1 on ESCs. It may also lead to the discovery of novel microRNAs that are important for ESC cardiac differentiation. The objective of this study was to assess the microRNA expression profile during NRG1-induced ESC cardiac differentiation. Murine ESCs were incubated with a recombinant NRG1β or an inhibitor of ErbB2 or ErbB4 during hanging drop-induced cardiac differentiation. The expression of cardiac-specific markers and microRNAs was analyzed by RT-PCR and microRNA array, respectively. We found that the expression of NRG1 and the ErbB receptors was increased during hanging drop-induced cardiac differentiation of ESCs. NRG1 stimulation during a specific developmental window enhanced, while inhibition of the ErbB2 or ErbB4 receptor inhibited, cardiac differentiation of ESCs. NRG1 increased the expression of mmu-miR-296-3p and mmu-miR-200c*, and decreased mmu-miR-465b-5p. Inhibition of mmu-miR-296-3p or mmu-miR-200c* decreased, while inhibition of mmu-miR-465-5p increased, the differentiation of ESCs into the cardiac lineage. This is the first report demonstrating that microRNAs are differentially regulated by NRG1-ErbB signaling during cardiac differentiation of ESCs. This study has also identified new microRNAs that are important for ESC cardiac differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号