首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Summary In addition to ependymal epithelial cells, numerous tanycytes are found along the entire central canal of the mouse. These tanycytes are arranged in clusters in the cervical, thoracic and lumbar segments of the spinal cord. In the conus medullaris, tanycytes separate and ensheath bundles of myelinated and unmyelinated axons; their processes take part in the formation of the stratum marginale gliae. In the caudal part of the spinal cord, the ventral wall of the central canal is thin and some areas are reduced to a single-cell thickness. In this region, ependymal cells participate directly in the formation of the stratum marginale gliae.The meninges consist of the intima piae, the pia mater, the arachnoid, a subdural neurothelium and the dura mater. The subarachnoid space appears occluded and opens only around the spinal roots. In the vicinity of the spinal ganglia, the dura mater, the subdural neurothelium and the arachnoid form a cellular reticulum.  相似文献   

2.
A significant body of literature supports a role for the dura mater underlying cranial sutures in the regulation of sutural fate. These studies have implicated regional differentiation of the dura mater based on association with fusing and patent rat cranial sutures. The purpose of these experiments was to isolate and characterize dural cells associated with fusing (posterior frontal) and patent (sagittal) rat cranial sutures. Six-day-old rats were killed, and the dura mater underlying the posterior frontal and sagittal sutures was harvested. Dural cells were briefly trypsinized and allowed to reach confluence. Two litters (10 animals per litter) were used for each set of experiments. Cells were harvested after the first and fifth passages for analysis of vimentin and desmoplakin expression (characteristic of human meningeal cells), cellular proliferation, density at confluence (a measure of cellular contact inhibition), and alkaline phosphatase production. In addition, bone nodule formation and collagen I production were analyzed in first passage cells. The results indicate that suture-derived dural cells can be established and that these cells coexpress vimentin and desmoplakin. In addition, it is demonstrated that first-passage sagittal suture-derived dural cells proliferate significantly faster and have decreased cellular contact inhibition than posterior frontal suture-derived cells (p < 0.01). Finally, it is shown that suture-derived dural cells have osteoblast-like properties, including alkaline phosphatase production, collagen I expression, and bone nodule formation in vitro. The possible mechanisms by which regional differentiation of suture-derived dural cells occur are discussed.  相似文献   

3.
Basing on our definition of the ES as a complex of peridural anatomical formations and taking into account certain peculiarities of their topographic distribution, 4 areas (anterior, posterior and two lateral) are defined. The posterior area of the ES by its sizes predominates over all the others. The ES value is determined by differences in rates of size increment of the vertebral canal and in rates of size increment of the spinal cord dura mater (SCDM). Position of the SCDM sac concerning the central axis of the canal predetermines++ the size of the ES four areas. The dimensions of the ES areas are not similar at various levels of the spinal column. For example, the dimensions of the ES posterior area in newborns are the greatest in the cervical part at CVII, in the thoracic--at ThIV-VII, in the lumbar--at LI-III, and the dimensions of the ES anterior area--at CVII, ThI-IV, LIV-V and Sr. The lateral ES areas are the widest at CI, ThIII, LV and SI. The greatest increase in the rate of increment of linear sizes and area is observed for the spinal canal and spinal cord in 5-, 8- and 9-month-old fetuses and for SCDM--in 5- and 8-month-old fetuses and for ES--in 6-, 8- and 9-month-old fetuses. The topographic peculiarities in the ES structure revealed and rearrangement of its dimensions in the fetuses and newborns can be useful in interpretation of problems on functional formation of the vertebral column, spinal cord and its tunics, and be of applied aspect at various manipulations performed in these formations in premature infants and in newborns.  相似文献   

4.
In 94 corpses (59 male and 35 female) of mature persons the length of the spinal dura mater sac has been studied. The average length of the sac is 621 +/- 3 mm. In men its average length is 636 +/- 4 mm, it makes 40 mm more in length than that in women (596 +/- 4 mm). The length of various parts in the dura mater sac is not the same: the cervical part makes 23% of the whole length, the thoracic--47%, the lumbar--23%, the sacral--7%. In men the cervical part of the sac in average is 6 mm longer than the lumbar part, and in women--quite the reverse, it is 7 mm shorter than the lumbar part. The sacral part of the sac in women is 3 mm longer that that in men. The sex differences noted are statistically significant. It is stated that the length of the spinal cord, its dura mater and the vertebral column are related as 1:1.5:1.7, the length of their cervical parts--as 1:1.5:1.4. the thoracic--as 1:1.3:1.3, the lumbar--as 1:2.4:3, the sacrococcygeal--as 1:1.4:4.9, respectively. During ontogenesis the greatest increase in the dura mater sac takes place in the cervical part as compared to the spinal cord and the vertebral column; in the thoracic part the intensity of their growth is equal: in the lumbar and in the sacrococcygeal part the increase of the vertebral column is the greatest.  相似文献   

5.
The purpose of the present study was to evaluate, in vitro, a newly designed spinaloscope with a diameter of 1.8 mm, with integrated portals for instruments and irrigation. The 0 degree optical system has a resolution of 6,000 pixels. The instrument portals can be used for surgical lasers, biopsy forceps or burrs. We carried out our evaluations on fresh (unfixed) human lumbar spine specimens. The position of the endoscope was documented by CT scans. The endoscope was introduced into the spinal canal via the hiatus sacralis using a blunt trocar. The various structures and tissues were clearly identifiable and included the dura, the lig. flavum, the lig. long. posterior, spinal nerves, small pieces of disc material and various fibrous bands. The usefulness of the biopsy forceps was also shown.  相似文献   

6.
Non-human primates are most suitable for generating cervical experimental models, and it is necessary to study the anatomy of the cervical spine in non-human primates when generating the models. The purpose of this study was to provide the anatomical parameters of the cervical spine and spinal cord in long-tailed macaques (Macaca fascicularis) as a basis for cervical spine-related experimental studies. Cervical spine specimens from 8 male adult subjects were scanned by micro-computed tomography, and an additional 10 live male subjects were scanned by magnetic resonance imaging. The measurements and parameters from them were compared to those of 12 male adult human subjects. Additionally, 10 live male subjects were scanned by magnetic resonance imaging, and the width and depth of the spinal cord and spinal canal and the thickness of the anterior and posterior cerebrospinal fluid were measured and compared to the relevant parameters of 10 male adult human subjects. The tendency of cervical parameters to change with segmental changes was similar between species. The vertebral body, spinal canal, and spinal cord were significantly flatter in the human subjects than in the long-tailed macaques. The cerebrospinal fluid space in the long-tailed macaques was smaller than that in the human subjects. The anatomical features of the cervical vertebrae of long-tailed macaques provide a reference for establishing a preclinical model of cervical spinal cord injury.  相似文献   

7.
8.
Closing of the posterior intervertebral spaces of the craniovertebral joint is not performed by the classical posterior atlanto-occipital and atlantoaxial membranes. In the atlanto-occipital space, the connective laminae come from the occipital periosteum and from the anterior fascia of the rectus capitis posterior minor muscle, and pass round the anterior side of the posterior arch of the atlas to reach the spinal dura mater. In the atlantoaxial space, the anterior fasciae of the rectus capitis posterior major muscle and of the inferior oblique muscle, as well as the periosteum of the posterior arch of the atlas, extend to reach the spinal dura mater. Thus, the epidural space is sealed posteriorly by the connective laminae of the atlantoaxial space, and lets above a superior recessus containing the ganglia of the spinal nerves C1 and C2 and in which the vertebral artery transits.  相似文献   

9.

Objective

To report the outcomes of a posterior hybrid decompression protocol for the treatment of cervical spondylotic myelopathy (CSM) associated with hypertrophic ligamentum flavum (HLF).

Background

Laminoplasty is widely used in patients with CSM; however, for CSM patients with HLF, traditional laminoplasty does not include resection of a pathological ligamentum flavum.

Methods

This study retrospectively reviewed 116 CSM patients with HLF who underwent hybrid decompression with a minimum of 12 months of follow-up. The procedure consisted of reconstruction of the C4 and C6 laminae using CENTERPIECE plates with spinous process autografts, and resection of the C3, C5, and C7 laminae. Surgical outcomes were assessed using Japanese Orthopedic Association (JOA) score, recovery rate, cervical lordotic angle, cervical range of motion, spinal canal sagittal diameter, bone healing rates on both the hinge and open sides, dural sac expansion at the level of maximum compression, drift-back distance of the spinal cord, and postoperative neck pain assessed by visual analog scale.

Results

No hardware failure or restenosis was noted. Postoperative JOA score improved significantly, with a mean recovery rate of 65.3±15.5%. Mean cervical lordotic angle had decreased 4.9 degrees by 1 year after surgery (P<0.05). Preservation of cervical range of motion was satisfactory postoperatively. Bone healing rates 6 months after surgery were 100% on the hinge side and 92.2% on the open side. Satisfactory decompression was demonstrated by a significantly increased sagittal canal diameter and cross-sectional area of the dural sac together with a significant drift-back distance of the spinal cord. The dural sac was also adequately expanded at the time of the final follow-up visit.

Conclusion

Hybrid laminectomy and autograft laminoplasty decompression using Centerpiece plates may facilitate bone healing and produce a comparatively satisfactory prognosis for CSM patients with HLF.  相似文献   

10.
The ability of newborns and immature animals to reossify calvarial defects has been well described. This capacity is generally lost in children greater than 2 years of age and in mature animals. The dura mater has been implicated as a regulator of calvarial reossification. To date, however, few studies have attempted to identify biomolecular differences in the dura mater that enable immature, but not mature, dura to induce osteogenesis. The purpose of these studies was to analyze metabolic characteristics, protein/gene expression, and capacity to form mineralized bone nodules of cells derived from immature and mature dura mater. Transforming growth factor beta-1, basic fibroblast growth factor, collagen type IalphaI, osteocalcin, and alkaline phosphatase are critical growth factors and extracellular matrix proteins essential for successful osteogenesis. In this study, we have characterized the proliferation rates of immature (6-day-old rats, n = 40) and mature (adult rats, n = 10) dura cell cultures. In addition, we analyzed the expression of transforming growth factor beta-1, basic fibroblast growth factor-2, proliferating cell nuclear antigen, and alkaline phosphatase. Our in vitro findings were corroborated with Northern blot analysis of mRNA expression in total cellular RNA isolated from snap-frozen age-matched dural tissues (6-day-old rats, n = 60; adult rats, n = 10). Finally, the capacity of cultured dural cells to form mineralized bone nodules was assessed. We demonstrated that immature dural cells proliferate significantly faster and produce significantly more proliferating cell nuclear antigen than mature dural cells (p < 0.01). Additionally, immature dural cells produce significantly greater amounts of transforming growth factor beta-1, basic fibroblast growth factor-2, and alkaline phosphatase (p < 0.01). Furthermore, Northern blot analysis of RNA isolated from immature and mature dural tissues demonstrated a greater than 9-fold, 8-fold, and 21-fold increase in transforming growth factor beta-1, osteocalcin, and collagen IalphaI gene expression, respectively, in immature as compared with mature dura mater. Finally, in keeping with their in vivo phenotype, immature dural cells formed large calcified bone nodules in vitro, whereas mature dural cells failed to form bone nodules even with extended culture. These studies suggest that differential expression of growth factors and extracellular matrix molecules may be a critical difference between the osteoinductive capacity of immature and mature dura mater. Finally, we believe that the biomolecular bone- and matrix-inducing phenotype of immature dura mater regulates the ability of young children and immature animals to heal calvarial defects.  相似文献   

11.
The human brain grows rapidly during the first 2 years of life. This growth generates tensile strain in the overlying dura mater and neurocranium. Interestingly, it is largely during this 2-year growth period that infants are able to reossify calvarial defects. This clinical observation is important because it suggests that calvarial healing is most robust during the period of active intracranial volume expansion. With a rat model, it was previously demonstrated that immature dura mater proliferates more rapidly and produces more osteogenic cytokines and markers of osteoblast differentiation than does mature dura mater. It was therefore hypothesized that mechanical strain generated by the growing brain induces immature dura mater proliferation and increases osteogenic cytokine expression necessary for growth and healing of the overlying calvaria. Human and rat (n = 40) intracranial volume expansion was calculated as a function of age. These calculations demonstrated that 83 percent of human intracranial volume expansion is complete by 2 years of age and 90 percent of Sprague-Dawley rat intracranial volume expansion is achieved by 2 months of age. Next, the maximal daily circumferential tensile strains that could be generated in immature rat dura mater were calculated, and the corresponding daily biaxial tensile strains in the dura mater during this 2-month period were determined. With the use of a three-parameter monomolecular growth curve, it was calculated that rat dura mater experiences daily equibiaxial strains of at most 9.7 percent and 0.1 percent at birth (day 0) and 60 days of age, respectively. Because it was noted that immature dural cells may experience tensile strains as high as approximately 10 percent, neonatal rat dural cells were subjected to 10 percent equibiaxial strain in vitro, and dural cell proliferation and gene expression profiles were analyzed. When exposed to mechanical strain, immature dural cells rapidly proliferated (5.8-fold increase in proliferating cell nuclear antigen expression at 24 hours). Moreover, mechanical strain induced marked up-regulation of dural cell osteogenic cytokine production; transforming growth factor-beta1 messenger RNA levels increased 3.4-fold at 3 hours and fibroblast growth factor-2 protein levels increased 4.5-fold at 24 hours and 5.6-fold at 48 hours. Finally, mechanical strain increased dural cell expression of markers of osteoblast differentiation (2.8-fold increase in osteopontin levels at 3 hours). These findings suggest that mechanical strain can induce changes in dura mater biological processes and gene expression that may play important roles in coordinating the growth and healing of the neonatal calvaria.  相似文献   

12.
Spinal cord injury (SCI) can induce prolonged spinal cord compression that may result in a reduction of local tissue perfusion, progressive ischemia, and potentially irreversible tissue necrosis. Due to the combination of risk factors and the varied presentation of symptoms, the appropriate method and time course for clinical intervention following SCI are not always evident. In this study, a three-dimensional finite element fluid-structure interaction model of the cervical spinal cord was developed to examine how traditionally sub-clinical compressive mechanical loads impact spinal arterial blood flow. The spinal cord and surrounding dura mater were modeled as linear elastic, isotropic, and incompressible solids, while blood was modeled as a single-phased, incompressible Newtonian fluid. Simulation results indicate that anterior, posterior, and anteroposterior compressions of the cervical spinal cord have significantly different ischemic potentials, with prediction that the posterior component of loading elevates patient risk due to the concomitant reduction of blood flow in the arterial branches. Conversely, anterior loading compromises flow through the anterior spinal artery but minimally impacts branch flow rates. The findings of this study provide novel insight into how sub-clinical spinal cord compression could give rise to certain disease states, and suggest a need to monitor spinal artery perfusion following even mild compressive loading.  相似文献   

13.
The spinal cord axial structures (AS) (its dura mater and vertebral canal) demonstrate the greatest growth rate during the intrauterine period and on the 18th month. After birth for the dura mater this age is 3 years, and for the spinal cord and the vertebral canal--7 years of age. The pubertal jump in growth of these formations is noted during the adolescent age (17-21 years). During the first two decades AS demonstrate asymptotic type of growth. In AS development the following periods in common have been revealed: a) intensive growth in children up to 7 years of age; b) growth stabilization (from 8 up to 16 years of age); c) period of a relative morphological stability (22-35 years); d) period of unstable compensatory-adaptive rearrangements (36-60 years); e) period of involutive changes (61-90 years).  相似文献   

14.
The distribution of 5'-nucleotidase (5'-Nu) is reported in spinal meninges of the rat on the basis of an immunohistochemical and enzyme histochemical investigation. Strong immunoreactivity was found in the arachnoid membrane and in the sheaths of the spinal roots as well as in septa subdividing the roots. Also the superficial layer of the ligamentum denticulatum showed enzyme staining. No immunoreactivity could be detected in the pia mater or along the spinal nerve roots outside the subarachnoid space. Within the arachnoid mater the immunoreactivity was concentrated in the basal zone of the arachnoid membrane, thus appearing as a narrow fluorescent band near the border of the dura. An accentuation of immunoreactivity could be observed in areas where small dural blood vessels approach the subarachnoid space. It is well known that adenine nucleotides released from neural and glial cells of the central nervous system finally reach the cerebrospinal fluid. We presume that 5'-Nu in the arachnoid membrane and spinal root sheaths is responsible for the conversion of adenine nucleotides into adenosine and that this conversion is associated with the reabsorption process of cerebrospinal fluid which most probably also takes place in spinal meninges. Adenosine, the product of 5'-nucleotidase, could play a role in the reabsorption process by its vasodilatatory effect on dural and epidural vessels.  相似文献   

15.
As dura mater has an anisotropic fibrous structure and exists under wet and dynamic stretching conditions in the brain, its mechanical properties have not yet been properly investigated. Here we developed a fluid-assisted mechanical system integrated with a photonic sensor and a pressure sensor in order to measure the elasticity of the dura mater. Porcine dura mater sample was loaded as a stretched diaphragm into a liquid chamber to mimic the in vivo condition. Increasing the flow rate of saline solution into the chamber swelled and deformed the dura mater. The micron-scale deflection of the dura mater was optically detected by the photonic sensor. Fluid pressure and deflection values were then used to calculate the elastic modulus. The average elastic modulus of the porcine dura mater was 31.14 MPa. We further measured the elasticity of a well-known material to further validate the system. We expect that this optofluidic system developed in this study will be useful to measure the elasticity of a variety of thin biological tissues.  相似文献   

16.
This study deals with some macroscopical, microscopical, and ultrastructural aspects of the spinal cord central canal of the German shepherd dog. The caudal end of the spinal cord is constituted by the conus medullaris, which may extend to the first sacral vertebra, the terminal ventricle, and the filum terminale. The latter structure is considered as internum (second to third sacral vertebrae) or externum (fifth caudal vertebra), according to its relation to the dura mater. Occasionally, there is a second anchorage which is close to the level of the sixth caudal vertebra. The central canal is surrounded by a ciliated ependymal epithelium, which differs depending upon the levels. The most caudal part of the filum terminale bears a columnar ciliated ependymal epithelium surrounded by two layers of glia and pia mater, which separate the central canal from the subarachnoid space. Microfil injections show a communication between the cavity and the subarachnoid space, as the plastic is able to pass through the ependymal epithelium. At the level of the terminal ventricle there are real separations of the ependymal epithelium, which seem to connect the lumen of the spinal canal with the subarachnoid space. These structures probably constitute one of the drainage pathways of the cerebrospinal fluid. The diameter of the central canal is related to the age of the animal. However, even in very old animals the spinal cord central canal reaches the tip of the filum terminale and remains patent until death. At the ultrastructural level the ependymal cells present villi, located on cytoplasmic projections, cilia, dense mitochondria, and oval nuclei. © 1995 Wiley-Liss, Inc.  相似文献   

17.
For decades surgeons have exploited the ability of infants to reossify large calvarial defects. To demonstrate the role of dura mater-osteoblast communication during the process of calvarial reossification, the authors used a novel in vitro system that recapitulates the in vivo anatomic relationship of these cell populations. Primary cultures of osteoblast cells from 2-day-old Sprague-Dawley rat pups were grown on six-well plates, and cultures of immature, non-suture-associated dura mater cells from 6-day-old Sprague-Dawley rat pups were grown on Transwell inserts. When the osteoblast and dura mater cell cultures reached confluence, they were combined. This Transwell co-culture system permitted the two cell populations to grow together in the same well, but it prevented direct cell-to-cell contact. Therefore, the authors were able to determine, for the first time, whether paracrine signaling from immature, non-suture-associated dura mater could influence the biologic activity of osteoblasts.Osteoblasts co-cultured with dural cells proliferated significantly faster after 2 days (2.1 x 10(5) +/- 2.4 x 10(4) versus 1.4 x 10(5) +/- 2.2 x 10(4), p < or = 0.05) and 4 days (3.1 x 10(5) +/- 5 x 10(4) versus 2.2 x 10(5) +/- 4.0 x 10(4), p < or = 0.01) than did osteoblasts cultured alone. After 20 days, co-cultured osteoblasts expressed greater amounts of mRNA for several markers of osteoblast differentiation, including collagen I alpha I (4-fold), alkaline phosphatase (2.5-fold), osteopontin (3-fold), and osteocalcin (4-fold), than did osteoblasts cultured alone. After 30 days, co-cultured osteoblasts produced bone nodules that were significantly greater both in number (324 +/- 29 nodules versus 252 +/- 29 nodules per well, p , < or = 0.04) and total area of nodules (65 +/- 11 mm(2) versus 24 +/- 1.6 mm(2), p < or = 0.003) than osteoblasts cultured alone.To begin to understand how dural cells effect changes in osteoblast gene expression, the authors compared the expression of candidate genes, transforming growth factor beta 1 and fibroblast growth factor 2, in dural cells and osteoblasts before and after 5 days of culture. Interestingly, the dura mater produced marked amounts of these osteogenic cytokines compared with osteoblasts.The described co-culture system demonstrated that co-cultured osteoblasts proliferated more rapidly and experienced an increased rate and degree of cellular maturation than did osteoblasts cultured alone. The authors hypothesize that this effect was due to paracrine signaling (e.g., transforming growth factor beta 1 and fibroblast growth factor 2) from the dura mater, and they are investigating those mechanisms in ongoing experiments. Collectively these data verify that immature, non-suture-associated dura mater can influence the biologic activity of osteoblasts. Moreover, the production of cytokines derived from the dura mater (e.g., transforming growth factor beta 1 and fibroblast growth factor 2), and they may begin to explain why immature animals and infants with intact dura mater can reossify large calvarial defects.  相似文献   

18.
Dopamine receptors (Dar) were studied as a component of the nervous dopaminergic system in the human dura mater. Dar were stained in several dural zones (vascular, perivascular, intervascular) in different regions (basal, calvarial, tentorial, occipital, frontal, parietal, temporal) of the cranial meninges. Specimens of human dura mater were harvested from autopsies of 10 elderly male subjects (age range, 60-75 years). Dar were labeled with specific (H3) markers, studied with radiobinding techniques (including liquid scintillation), stained for light microscope autoradiography, and measured by means of quantitative analysis of images. All results were evaluated with statistical analysis to identify significant results. More dural Dar were found in the basal region than in the calvarial one. Moreover, Dar are more abundant in the vascular and perivascular dural zone than in the intervascular one. The vascular distribution of Dar seemed to indicate that Dar play a role in the control of meningeal blood vessels. The location and distribution of D1 and D2 receptors in the human cranial dura mater confirmed the presence of a dopaminergic system, which could play an important role in controlling blood flow and/or other functions of meningeal membranes.  相似文献   

19.
The adrenergic nerves of the radical and longitudinal arteries and the dura mater at the level of cervical, thoracic and lumbar segments of the ventral and dorsal sides of the spinal cord were studied in 70 mature cats by methods of Falck and Glenner. The adrenergic fibres form developed plexuses different in the density of disposition of nerve conductors on the arteries of different segments of the spinal cord. The adrenergic fibres are also found in the pia mater tissue. Nerve fibres containing active monoaminoxidase are less in number than adrenergic ones found by Falck's method. It is probably due to activation of catecholamines being realized by other ways in addition to oxydative desamination.  相似文献   

20.
N N Nawar 《Acta anatomica》1979,105(3):291-297
In mouse fetuses aged 12, 14, 16, 18 and 20 days, the cervical dorsal root ganglion was studied quantitatively. The main growth in volume of the interneuroblastic spaces was between the 12th and 16th day of pre-natal life while the main increase in volume of its neuroblasts occurred in the subsequent 4 days. Thus, it was postulated that the growth and branching of the neuroblastic dendrites, growth of the neuroglial elements and the vascular ramifications inside the ganglion occurred mainly between the 12th and 16th day of pre-natal life. Different modalities in the spatial relationship between the dorsal root ganglion and the different components of the spinal nerve were met with. At times, the trunk of the spinal nerve was located inside the ganglion. At that site, the posterior primary ramus emerged from it and appeared as a branch of the ganglion. The ventral root sometimes passed close to the fibrous capsule of the ganglion. In other cases, it passed inside the ganglion, dividing the ganglionic neuroblasts into dorsal and ventral groups. These either remained ensheathed by one fibrous capsule or became divided into two separate masses that remained connected to each other by the fibrous dural sheath.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号