首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 463 毫秒
1.
Various reaction intermediates of sarcoplasmic reticulum Ca2+,Mg2+-ATPase were stabilized and accumulated by modifying a specific SH group or by using nucleotide analogs. Conformational changes of the Ca2+,Mg2+-ATPase during the catalytic cycle were studied in the stabilized intermediates by the use of fluorescent and spin probes, which were introduced at specific SH groups of ATPase, namely one highly reactive but functionally nonessential (SHN) and one essential for the decomposition of the E-P intermediate (SHD) [Kawakita, M., et al. (1980) J. Biochem. 87, 609-617]. The fluorescence intensity of N-(7-dimethylamino-4-methyl-3-coumarinyl)maleimide attached to SHD decreased by 2.5% upon addition of 10 microM AMP-P(NH)P provided that Ca2+ was also present. The AMP-P(NH)P-induced fluorescence change could also be detected by using other fluorescent probes such as N-[p-(2-benzimidazolyl)phenyl]maleimide and N-(1-anilinonaphthyl-4)maleimide. Moreover, labeling at SHN gave similar results. When SHN was labeled with N-[p-(2-benzimidazolyl)phenyl]maleimide, the fluorescence intensity also decreased by 2.5% upon addition of ATP only in the presence of Ca2+, where E-P formation took place. A conformational difference between ECa1-P X ADP and ECa1-P was suggested from saturation transfer ESR measurement of spin-labeled ATPase by using ADP beta S as an ADP analog to cause accumulation of ECa1-P X ADP beta S complex. Possible structural similarities among some of the intermediates are discussed based on these findings.  相似文献   

2.
The reactive sulfhydryl group (SHD) (Kawakita et al. (1980) J. Biochem. 87, 609-617) which is essential for the decomposition of the E-P intermediate of Ca2+-transporting ATPase of the rabbit skeletal muscle sarcoplasmic reticulum has been identified. One sample of sarcoplasmic reticulum membranes was reacted for 3 min with 0.4 mM N-[3H]ethylmaleimide at pH 7.0 at 30 degrees C to a labeling density of 1 mol/mol ATPase without loss of the Ca2+-transporting activity. Another sample of the membranes was treated similarly with non-radioactive N-ethylmaleimide and then labeled with 0.4 mM N-ethyl[14C]maleimide for 17 min. An extensive loss of the Ca2+-transporting activity occurred during the period of this radio-labeling, thus substantiating the 14C-labeling of SHD. The labeled membranes were digested by thermolysin, and the labeled peptides were fractionated by gel filtration and reversed-phase HPLC. Two major radioactive peptides were present in both 3H- and 14C-labeled thermolytic digests, and each of the major components of 14C-labeled peptides had a counterpart in the major components of 3H-labeled peptides which behaved identically on HPLC. The major 14C-labeled peptides were purified and found to be identical with the two SHN peptides, TL-I and TL-II (Saito-Nakatsuka et al. (1987) J. Biochem. 101, 365-376), and 0.5 mol/mol ATPase each of Cys344 and Cys364 was assigned as SHD. It seems that the Ca2+-transport system retains its activity while either of the two Cys residues is unoccupied, but loses it when both of them are modified with N-ethylmaleimide.  相似文献   

3.
Conformational changes associated with the functional states of the molecule of troponin were studied using SH-direct fluorogenic reagents, N-(p-(2-benzimidazolyl)phenyl) maleimide (BIPM) and N-(1-anilinonaphthyl-4) maleimide (ANM). 1. The fluorescence parameters of ANM-troponin, intensity, and polarization, did not change on combining it with tropomyosin alone, but markedly changed when F-actin was further added to the system. 2. The conformation around the dye-labeled sulfhydryl group(s) was shown to be susceptible to Ca2+ in terms of fluorescence intensity of the label, thermal transition of the conformation, and the microenvironment near the label. 3. On addition of Ca2+, the fluorescence characteristics of the two systems, ANM-troponin . tropomyosin and ANM-troponin . tropomyosin . F-actin complexes, were altered in opposite directions. When BIPM was used in place of ANM, similar changes were observed: a simple decrease in the intensity when pCa was decreased from 7.4 to 5.5 in the system without F-actin and a sigmoidal increase in the range from pCa 7 to 6 in the system with F-actin. Heavy meromyosin, when added to the latter complex (the reconstituted thin filaments), made the profile of its Ca2+ concentration dependence of fluorescence similar to that of the former complex. When tropomyosin was labeled in place of troponin, similar results were obtained. The data obtained imply that the Ca2+-induced conformational changes of troponin are markedly modified when detached from actin, and that heavy meromyosin weakens the interaction of the troponin . tropomyosin complex with F-actin.  相似文献   

4.
The fluorescent thiol reagent N-(1-anilinonaphthyl-4)maleimide (ANM) reacts covalently with the Ca2+ ATPase moiety of fragmented sarcoplasmic reticulum in two phases as determined by the increase of fluorescence intensity and optical density at 350 nm. In the rapid phase, 5.5 nmol of ANM reacts with 1 mg of fragmented sarcoplasmic reticulum protein. Assuming that 55% of the total membrane protein is the Ca2+ ATPase, this is equivalent to 1 mol of SH/10(5) g of ATPase, designated as SH1-ANM. ANM reacts with the second SH (SH2-ANM) at a much slower rate. Reaction of ANM with both SH1-ANM and SH2-ANM produces no inhibition of phosphoenzyme (EP) formation. Upon addition of Mg . ATP in the micromolar range, at [Ca2+] = 1 microM there is an increase in the fluorescence intensity of ANM attached to SH2-ANM, while the ANM attached to SH1-ANM does not respond to Mg . ATP. Under conditions in which there is no EP formation, there is no fluorescence change. Furthermore, the enhancement of ANM fluorescence produced by Mg . ATP is reversed by ADP as it reacts with EP to form ATP. Thus, it appears that the Mg . ATP-induced fluorescence increase reflects changes of enzyme conformation produced by EP formation.  相似文献   

5.
The flexibility of the tertiary structure around the active site of myosin ATPase [EC 3.6.1.3] was studied using the reactivity of two specific thiol groups, S1 and S2, as a structural probe. The following four maleimide derivatives were used as thiol-directed reagents: N-ethylmaleimide (NEM), N-(4-methoxy-2-benzimidazolyl methyl) maleimide (MBM), N-(p-(2-benzimidazolyl)phenyl)maleimide (BIPM) and N-(4-dimethyl-amino-3,5-dinitrophenyl)maleimide (DDPM). 1. All the maleimide derivatives used activated the Ca2+-ATPase activity and inhibited the EDTA-ATPase activity, like NEM, indicating that they modified S1. The rate of modification of S1 by NEM and BIPM increased with increasing pH, while that by DDPM decreased. BIPM simultaneously modified S1 and S2. 2. S1 showed much higher reactivity toward the maleimides, except for BIPM, than did N-acetylcysteine (N-Ac-Cys) a low molecular-weight model compound. The extremely small pKa value of S1, 6.28, accounted for this high reactivity. In addition, the ATP-induced increase in its reactivity inducated that S1 was in a buried state. Kinetic analysis showed that the teritiary structure around S1 at alkaline pH differed from that at acidic pH. 3. The apparent rate constant of S2-modification with NEM was approximately one seven-hundredth and one four-hundredth of those of S1 and N-Ac-Cys, respectively. Fluorimetric studies using BIPM revealed that S2 in the buried state was exposed upon adding ATP; this was compensated by the burying of some other thiol group(s) (Sp). Non-linearity of the Arrhenius plots of the reaction rate of S2 suggested that the S2 region of myosin had different conformations at high and low temperatures, the transition temperature being 10--15degrees. This non-linearity completely disappeared in the presence of Mg2+-ATP. On the other hand, Arrhenius plots for the thiols reactive to BIPM did not show non-linearity in the presence or absence of ATP.  相似文献   

6.
Interaction of Ca2+ and Gd3+ ions with Ca(2+)-transporting ATPase of the sarcoplasmic reticulum (SR-ATPase) was analyzed. Binding of Ca2+ to the transport site caused an enhancement of intrinsic fluorescence of SR-ATPase. Gd3+ also induced fluorescence enhancement. However, the effects of Ca2+ and Gd3+ were additive rather than competitive, indicating that the Gd(3+)-binding site responsible for this enhancement is distinct from the Ca(2+)-transport site. Gd3+ ions at concentrations higher than 10 microM caused a marked fluorescence quenching, indicating an additional interaction at low-affinity binding sites. Interaction of Ca2+ with the transport site led to a quenching of fluorescence of N-(1-anilinonaphthyl-4)maleimide (ANM) covalently attached at SHN [as defined in Yasuoka-Yabe, K. & Kawakita, M. (1983) J. Biochem. 94, 665-675]. In this case the effects of Ca2+ and Gd3+ were mutually exclusive, indicating that Ca2+ and Gd3+ were competing for the same binding site (i.e. the transport site) to affect ANM fluorescence. Competition between Ca2+ and Gd3+ for the Ca(2+)-transport site was also demonstrated by direct measurement of Ca(2+)-binding using nitrocellulose membrane filters. Affinity of Gd3+ for the Ca(2+)-transport site was a little lower than that of Ca2+. Based on these results it was concluded that Gd3+ has at least three kinds of binding sites on SR-ATPase, namely the Ca(2+)-transport site, the Gd(3+)-specific high-affinity site, and a number of low-affinity sites.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Sarcoplasmic reticulum isolated from rabbit skeletal muscle was labeled with a limited (0.625 nmol/mg sarcoplasmic reticulum protein) amount of the fluorescent thiol reagent N-(7-dimethylamino-4-methyl-3-coumarinyl)maleimide (DACM). The fluorescence intensity of the membrane-attached DACM decreased concurrently with (Ca2+ and caffeine)-induced Ca2+ release, depolarization-induced Ca2+ release and Ca2+-dependent dependent passive efflux of Ca2+. The decreased DACM fluorescence level initiated by a Ca2+ jump was subsequently reversed under passive efflux conditions when there was no ATP-dependent Ca2+ uptake, suggesting spontaneous closing of the channels. Therefore, the higher fluorescence level corresponds to a larger population of closed channels, whereas the lower level represents a larger population of opened channels. Under conditions when the Ca2+ release-coupled fluorescence change was maximal, a stoichiometric incorporation of DACM took place only into a 32-kDa protein. Furthermore, reconstituted vesicles, in which purified DACM-labeled 32-kDa protein was incorporated into unlabeled sarcoplasmic reticulum vesicles, were capable of both (Ca2+ and caffeine)-induced Ca2+ release and the release-coupled DACM fluorescence change. These results suggest that the 32-kDa protein is a constituent of the Ca2+ release channel or a protein which is in close contact with the channel.  相似文献   

8.
The (Ca2+ + Mg2+)-adenosine triphosphatase (ATPase) of sarcoplasmic reticulum contains a cysteine residue at position 12 of its sequence. This sulfhydryl group was 1 out of a total of 10-11 that were labeled by treatment of sarcoplasmic reticulum vesicles with N-[3H]ethylmaleimide under saturating conditions. This was shown by isolating a 31-residue NH2-terminal peptide from a tryptic digest of the succinylated ATPase, prepared from N-[3H]ethylmaleimide-labeled vesicles. Reaction of the vesicles with glutathione maleimide, parachloromercuribenzoic acid, or parachloromercuriphenyl sulfonic acid, membrane-impermeant reagents, prevented further reaction of sulfhydryl groups with N-ethylmaleimide. This result indicates that all sulfhydryl groups that are reactive with N-ethylmaleimide are on the outside of the vesicles. Since Cys12 is located in a hydrophilic NH2-terminal portion of the ATPase, the labeling results suggest that the NH2 terminus of the ATPase is on the cytoplasmic side of the membrane. These results are consistent with earlier observations (Reithmeier, R. A. F., de Leon, S., and MacLennan, D. H. (1980) J. Biol. Chem. 255, 11839-11846) that the (Ca2+ + Mg2+)-ATPase is synthesized without an NH2-terminal signal sequence.  相似文献   

9.
The Ca2+-transporting ATPase of rabbit skeletal muscle sarcoplasmic reticulum was site-specifically labeled with either N-(1-anilinonaphth-4-yl)maleimide (ANM) or 5-[[(iodoacetamido)-ethyl]amino]naphthalene-1-sulfonate (IAEDANS), and the segmental motion of submolecular domains of the ATPase molecule was examined by means of time-resolved and steady-state fluorescence anisotropy measurements. The ANM-binding domain showed wobbling with a rotational relaxation time phi = 69 ns in the absence of free Ca2+ without any independent wobbling of the ANM moiety. The IAEDANS-binding domain showed a significantly slower wobbling with phi = 190 ns in the absence of Ca2+. The present results demonstrated for the first time that the ATPase molecule is composed of distinct domains whose mobilities are considerably different from each other. The binding of Ca2+ to the transport site increased the segmental motion of ANM-labeled domain, leading to a phi value of 65 ns. Solubilization of the ANM-labeled SR membranes by deoxycholate led to a further increase in the segmental flexibility (phi = 48 ns in the absence of free Ca2+), indicating that the mobility of the ANM-binding domain was considerably restricted through interaction with the membrane. The mobility of the ANM-binding domain of solubilized ATPase was also increased to some extent upon binding of Ca2+.  相似文献   

10.
Heavy sarcoplasmic reticulum vesicles were labeled with the thiol-reacting fluorescent probe N-(7-dimethylamino-4-methyl-4-coumarinyl)maleimide (DACM), and the DACM-labeled foot protein moiety was purified. The fluorescence intensity of the DACM attached to the foot protein decreased by the addition of low (activating) concentrations of ryanodine, while it increased at higher (inhibitory) concentrations, suggesting that the lower fluorescence represents the active state of the foot protein, while the higher fluorescence, its inactive state. Under conditions that induce Ca2+ release from SR (Ca2+ jump, addition of Ca2+ release inducing reagents such as caffeine and polylysine), the fluorescence intensity of the protein-attached DACM decreased rapidly (e.g. k congruent to 70 s-1 under optimum conditions). The initial rate of Ca2+ release from the DACM-labeled SR showed a close correlation with the amplitude of the fluorescence change of the foot protein-attached DACM under variety of conditions; e.g. in the presence of Ca2+, polylysine, ATP, and ruthenium red, etc. The fluorescence change of the foot protein was much faster than Ca2+ release from SR under a variety of conditions of Ca2+ release. We propose that the binding of release triggering reagents to the foot protein induces a rapid conformational change, which in turn regulates Ca2+ release.  相似文献   

11.
The fluorescent reagent, S-mercuric N-dansyl-cysteine, reacts specifically with thiols of the purified Ca2+-ATPase of the sarcoplasmic reticulum, producing an increase of fluorescence of fluorescence intensity at 500 nm (lambda ex = 335 nm). The reaction is stoichiometric, and the increase of the fluorescence intensity is proportional to the number of blocked thiols. Twelve reactive thiols per 10(5) daltons of ATPase peptide fall into roughly three classes. Blocking of the most reactive thiol entails little inhibition of enzyme activity. Blocking of the five thiols reacting next (intermediate class) results in almost complete inhibition of both phosphorylated intermediate formation and ATP hydrolysis. The second order rate constants of the reaction of thiols have been determined by stopped flow studies. The most reactive thiol and the six least reactive thiols can each be treated as a single class with respect to the rate constant; five thiols of intermediate reactivity appear to have different rate constants (k2, k3, ..k6). Of these constants, k1, corresponding to the most reactive thiol, does not change with [Ca2+]. Upon increasing [Ca2+] from 10(-9) to 10(-5) M, k2 increase and k7-12 decreases; the changes roughly parallel the activation of ATPase activity and the Ca2+ binding to the high affinity alpha sites (Ikemoto, N. (1975) J. Biol. Chem. 250, 7219-7224). Upon further increase of [Ca2+] k2 decreases and k7-12 increase, in parallel with the inhibition of ATPase activity and with the Ca2+ binding to the low affinity gamma sites.  相似文献   

12.
Bovine cardiac troponin C was modified by N-(1-pyrene)maleimide at Cys-35 and Cys-84; the Ca2+-induced conformational changes were followed by measuring pyrene fluorescence. In isolated troponin C, the saturation of Ca2+, Mg2+-sites leads to a simultaneous increase in the pyrene monomer as well as to a decrease in the pyrene excimer fluorescence, whereas the saturation of Ca2+-specific sites results in a slight decrease in the fluorescence of pyrene monomer. Troponin T does not influence the dependence of pyrene-troponin C fluorescence on Ca2+ concentration. Within the equimolar complex of troponin C and troponin I, the saturation of Ca2+, Mg2+-sites has no effect on pyrene fluorescence, whereas the saturation of Ca2+-specific sites leads to a simultaneous decrease of both pyrene monomer and pyrene excimer fluorescence. It is supposed that troponin I diminishes the conformational changes in troponin C that are induced by the saturation of Ca2+, Mg2+-sites and enhances the conformational changes induced by the saturation of Ca2+-specific sites of troponin C.  相似文献   

13.
Ca2+-Transporting ATPase of rabbit skeletal muscle sarcoplasmic reticulum contains several SH groups which are reactive with N-ethylmaleimide (MalNEt) at pH 7.0. The location of the one which is most reactive with MalNEt (SHN, Kawakita et al. J. Biochem. 87, 609 (1980)) was identified on the amino acid sequence of the ATPase. SHN was labeled by reacting sarcoplasmic reticulum membranes with [14C] MalNEt to a labeling density of 1 mol/mol ATPase. [14C]MalNEt-labeled membranes were digested with thermolysin and 14C-labeled SHN peptides were fractionated by Sephadex LH-20 chromatography to give two major peaks of radioactivity. [14C]-MalNEt-labeled peptides were further purified to homogeneity by C18-reversed phase HPLC. Two radioactive peptides containing modified cysteine (Cys), Leu-Gly-Cys-Thr-Ser and Val-Cys-Lys-Met, were finally obtained in roughly equal amounts and in reasonable recovery. Both of these sequences were found in the amino acid sequence of Ca2+-transporting ATPase (Brandl et al. Cell 44, 597 (1986)), and Cys344 and Cys364 were identified as the targets of MalNEt-modification. Thus, 0.5 mol/mol ATPase of each Cys residue actually reacted rapidly with MalNEt under the conditions leading to SHN-modification. Modification of either one with MalNEt may negatively affect the reactivity of the other. Both of the highly reactive SH groups are located in the neighborhood of Asp351, the phosphorylation site of ATPase.  相似文献   

14.
Purified preparations of Ca2+-dependent ATPase were lipid-deleted and incorporated into egg lecithin (EL) and dipalmitoyl lecithin (DPL) liposomes. The temperature dependences of the catalytic activity and of molecular mobility of the spin label (N-1-hydroxyl-2,2,6,6-tetramethyl-4-piperidyl) maleimide linked to a highly reactive SH-group in the vicinity of the active center (15-16 A) and of the fatty acid spin probe (6-doxylpalmitate) located in the protein-lipid moiety were compared. The molecular mobility of the spin label was measured by the saturation transfer method; that of the spin probe was estimated from the maximal splitting value. It was found that the catalytic activity of DPL is correlated with the molecular mobility of the hydrophobic part of ATPase, while that of EL with the segment flexibility in the vicinity of the active center.  相似文献   

15.
Sarcoplasmic reticulum (SR) isolated from rabbit skeletal muscle was solubilized with a nonionic detergent, dodecyl octaethyleneglycol monoether (C12E8), at a weight ratio of detergent to protein of greater than 10, so that the Ca2+, Mg2+ dependent ATPase existed mainly in a monomeric form (7). The solubilized ATPase was reacted with 10 microM N-1-P or 5 microM DACM in the presence of 5 mM CaCl2, 0.4 M KCl, 20% glycerol and 50 mM TES at pH 7.5 and 20 degrees C. Under these conditions, about 1 mol of N-1-P was incorporated into 10(5) g SR protein on 10 min incubation and 1 mol of DACM was incorporated into the same amount of SR on 5 min incubation. Analysis of the tryptic digest of the N-1-P- or DACM-labeled. ATPase on SDS polyacrylamide gel revealed that almost all the fluorescence was associated with the 30K m.w. subfragment of the ATPase protein. Even when the amount of the probe incorporated into SR-ATPase was increased from 1 to 3 mol per 10(5) g SR protein, all was incorporated into the 30K subfragment. Both the activities of formation and decomposition of the phosphorylated intermediate (EP) were unaffected by these modifications. When the separately labeled ATPases were mixed together in the presence of C12E8 and the detergent was removed by incubation with Bio-Beads SM-2, a significant amount of fluorescence energy transfer was observed between N-1-P and DACM. However, energy transfer did not occur when the labeled ATPases were mixed after removal of C12E8.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The kinetics and extent of the fluorescence change induced by Ca2+ interaction with the Ca2+-ATPase from sarcoplasmic reticulum have been compared by stopped flow fluorimetry for three preparations: sarcoplasmic reticulum; purified ATPase in membrane vesicles; and solubilized, delipidated ATPase. The kinetics of Ca2+ release and binding for both purified preparations could be described by a single exponential as has been observed for sarcoplasmic reticulum. The rate and extent of the fluorescence change for the solubilized and membrane-associated preparations are shown to be quite similar to those of the sarcoplasmic reticulum. From these results, it is concluded that all of the Ca2+-induced fluoescence change in sarcoplasmic reticulum originates from the Ca2+-ATPase. In addition, since the change in fluorescence is probably result of a conformational change in the ATPase during the Ca2+ pumping cycle, the results provide additional evidence that monomeric Ca2+-ATPase may be capable of Ca2+ transport since the delipidated preparation is monomeric under the conditions used for these experiments. Finally, it is concluded that phospholipid bilayer is not essential for this conformational change.  相似文献   

17.
One of the low molecular weight components of myosin, g2, was isolated by alkali treatment of myosin and was chemically modified with a spin label reagent, 4-maleimido-2,2,6,6-tetramethylpiperidinooxyl. The label on g2 showed a rather weakly immobilized ESR spectrum and it was clearly affected by Ca2+; the half-maximal change was at around pCa 4. The spin-labeled g2 was incorporated into myosin by exchange with the intrinsic g2 of myosin in 0.6 M KSCN or 4 M LiC1. The label on g2 became strongly immobilized on association with myosin. Under the conditions used, ESR spectral change due to Ca2+ occurred at two different concentration ranges, which were as low as pCa 8 and at around pCa 4. Phosphorylated g2 was isolated from myosin after the protein kinase [EC 2.1.1.37]-catalyzed phosphorylation of myosin and it was also modified with the maleimide label. Dephosphorylation of the phosphorylated g2 was performed using E. coli alkaline phosphatase [EC 3.1.3.1]. The effects of Ca2+ on the ESR spectra of phosphorylated and dephosphorylated g2 were investigated on the state associated with myosin. A change in the ESR spectrum from strongly immobilized to weakly immobilized states was observed with both g2 chains on the addition of Ca2+. However, the effective concentration ranges of Ca2+ were quite different; around pCa 4 for the phosphorylated g2 and around pCa 8 for the dephosphorylated g2. The results indicate that g2 undergoes a conformational change at physiological levels of Ca2+ sufficient to saturate troponin, but it does not do so after phosphorylation.  相似文献   

18.
(1) Sulfhydryl reactivity and electron spin resonance spectra of nitroxide maleimide spin labels, covalently attached to sarcoplasmic reticulum ATPase, were examined on both detergent-solubilized and membranous material. Monomeric and oligomeric ATPases were prepared by the use of dodecyloctaethylene glycol monoether as a solubilizing detergent. (2) Immediately after solubilization, the reaction curve of nonomeric ATPase with 5,5'-dithiobis(2-nitrobenzoate) was characterized by positive cooperativity (S-shaped as a function of time). In contrast, the SH reactivity of both oligomeric and membranous ATPases obeyed usual first-order kinetics and could be analyzed in terms of three classes of reactive site. All enzymatically active ATPase preparations responded to addition of ADP with a decrease in SH reactivity. During enzymatic inactivation of monomeric ATPase, the SH-modification rate was dramatically enhanced with loss of cooperative features. Ca2+ removal from the high-affinity sites stimulated SH reactivity before inactivation had taken place. (3) ESR spectroscopy indicated less motional constraints on monomeric than on oligomeric and membranous ATPases. Arrhenius plots of ESR spectral parameters suggest a conformational transition in both membranous and solubilized ATPases at about 22 degrees C. The transition was also present in EGTA-, but not in heat-inactivated ATPase. Although SH reactivity of monomeric ATPase was dramatically enhanced by EGTA inactivation, the results of ESR, circular dichroism and analytical ultracentrifugation experiments indicate limited conformational changes induced by EGTA treatment. (4) The data indicate marked differences in the properties of monomeric ATPase on the one hand and oligomeric and membranous enzymes on the other hand. They are consistent with previous functional evidence for the presence of ATPase in an associated state in the membrane (M?ller, J.V., Lind, K.E. and Andersen, J.P. (1980) J. Biol. Chem. 255, 1912-1920).  相似文献   

19.
Ca2+ release from heavy sarcoplasmic reticulum (SR) vesicles was induced by 2 mM caffeine, and the amount (A) and the rate constant (k) of Ca2+ release were investigated as a function of the extent of Ca2+ loading. Under both passive and active loading conditions, the A value increased monotonically in parallel to Ca2+ loading. On the other hand, k sharply increased at partial Ca2+ loading, and upon further loading, it decreased to a lower level. Since most of the intravesicular calcium appears to be bound to calsequestrin both under passive and under active loading conditions, these results suggest that the kinetic properties of induced Ca2+ release show significant variation depending upon how much calcium has been bound to calsequestrin at the time of the induction of Ca2+ release. An SR membrane segment consisting of the junctional face membrane (jfm) and attached calsequestrin (jfm-calsequestrin complex) was prepared. The covalently reacting thiol-specific conformational probe N-[7-(dimethylamino)-4-methyl-3-coumarinyl]maleimide (DACM) was incorporated into several proteins of the jfm, but not into calsequestrin. The fluorescence intensity of DACM increased with Ca2+. Upon dissociation of calsequestrin from the jfm by salt treatment, the DACM fluorescence change was abolished, while upon reassociation of calsequestrin by dilution of the salt it was partially restored. These results suggest that the events occurring in the jfm proteins are mediated via the attached calsequestrin rather than by a direct effect of Ca2+ on the jfm proteins. We propose that the [Ca2+]-dependent conformational changes of calsequestrin affect the jfm proteins and in turn regulate the Ca2+ channel functions.  相似文献   

20.
The Ca2+-binding component of troponin (TnC) and its proteolytic fragments containing Ca2+-binding sites I-III (TH1) or sites III and IV (TR2C) have been labeled with the fluorescent probes dansylaziridine (DANZ) at methionine 25 or 5-(iodoacetamidoethyl)amino-naphthalene-1-sulfonic acid (AEDANS) at cysteine-98. These probes report binding of Ca2+ to the low and high affinity sites, respectively. Fluorescence changes as a function of [Ca2+] were measured for the free peptides, their complexes with troponin I + troponin T, and these complexes bound to actin-tropomyosin in the presence of Mg2+ and ATP with and without myosin. An apparent Hill coefficient of 1.0-1.1 has been obtained for the Ca2+-induced fluorescence changes in TnC, its fragments, and their ternary complexes regardless of the label used. When a ternary complex containing appropriately labeled TnC or its fragment is bound to the actin-tropomyosin complex, the Hill coefficient for the titration of the low affinity sites increases to 1.5-1.6 and further increases to greater than 2 in the presence of myosin. To interpret the apparent Hill coefficients, we used a model containing two binding sites and a single reporter of the conformational change. Hill coefficients between 1.0 and 1.2 can be obtained for the fluorescence change without true cooperativity in metal binding, depending on the mechanism of the fluorescence change; i.e. the contribution of the singly or doubly occupied species to the fluorescence change. A Hill coefficient between 1.2 and 2, however, always indicates cooperativity in binding independently of the mechanism. Thus, our finding that fluorescence titrations of Ca2+ binding to TnCDANZ bound to actin-tropomyosin exhibit a Hill coefficient of 1.5 in the absence of myosin and 2.4 in its presence indicates the existence of true positive cooperativity in metal binding to sites I and II. No cooperativity was observed for AEDANS-labeled complexes that reflect Ca2+-binding to the high affinity sites. Plots of the Ca2+ dependence of myosin ATPase activity activated by actin-tropomyosin in the presence of any of the troponin complexes used had apparent Hill coefficients of approximately 4. The higher value suggests cooperative interactions in the activation of ATPase beyond those involved in Ca2+-binding to the Ca2+-specific sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号