首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The phototrophic purple non-sulfur bacterium Rhodomicrobium vannielii grew phototrophically (illuminated anaerobic conditions) on a variety of aromatic compounds (in the presence of CO2). Benzoate was universally photocatabolized by all five strains of R. vannielii examined, and benzyl alcohol was photocatabolized by four of the five strains. Catabolism of benzyl alcohol by phototrophic bacteria has not been previously reported. Other aromatic substrates supporting reasonably good growth of R. vannielii strains were the methoxylated benzoate derivatives vanillate (4-hydroxy-3-methoxybenzoate) and syringate (4-hydroxy-3,5-dimethoxybenzoate). However, catabolism of vanillate and syringate led to significant inhibition of bacteriochlorophyll synthesis in R. vannielii cells, eventually causing cultures to cease growing. No such effect on photopigment synthesis in cells grown on benzoate or benzyl alcohol was observed. Along with a handful of other species of anoxygenic phototrophic bacteria, the ability of the species R. vannielii to photocatabolize aromatic compounds indicates that this organism may also be ecologically significant as a consumer of aromatic derivatives in illuminated anaerobic habitats in nature.  相似文献   

2.
Anaerobic degradation of toluene by a denitrifying bacterium   总被引:12,自引:0,他引:12  
A denitrifying bacterium, designated strain T1, that grew with toluene as the sole source of carbon under anaerobic conditions was isolated. The type of agar used in solid media and the toxicity of toluene were determinative factors in the successful isolation of strain T1. Greater than 50% of the toluene carbon was oxidized to CO2, and 29% was assimilated into biomass. The oxidation of toluene to CO2 was stoichiometrically coupled to nitrate reduction and denitrification. Strain T1 was tolerant of and grew on 3 mM toluene after a lag phase. The rate of toluene degradation was 1.8 mumol min-1 liter-1 (56 nmol min-1 mg of protein-1) in a cell suspension. Strain T1 was distinct from other bacteria that oxidize toluene anaerobically, but it may utilize a similar biochemical pathway of oxidation. In addition, o-xylene was transformed to a metabolite in the presence of toluene but did not serve as the sole source of carbon for growth of strain T1. This transformation was dependent on the degradation of toluene.  相似文献   

3.
Anaerobic degradation of toluene by a denitrifying bacterium.   总被引:12,自引:11,他引:1       下载免费PDF全文
A denitrifying bacterium, designated strain T1, that grew with toluene as the sole source of carbon under anaerobic conditions was isolated. The type of agar used in solid media and the toxicity of toluene were determinative factors in the successful isolation of strain T1. Greater than 50% of the toluene carbon was oxidized to CO2, and 29% was assimilated into biomass. The oxidation of toluene to CO2 was stoichiometrically coupled to nitrate reduction and denitrification. Strain T1 was tolerant of and grew on 3 mM toluene after a lag phase. The rate of toluene degradation was 1.8 mumol min-1 liter-1 (56 nmol min-1 mg of protein-1) in a cell suspension. Strain T1 was distinct from other bacteria that oxidize toluene anaerobically, but it may utilize a similar biochemical pathway of oxidation. In addition, o-xylene was transformed to a metabolite in the presence of toluene but did not serve as the sole source of carbon for growth of strain T1. This transformation was dependent on the degradation of toluene.  相似文献   

4.
Anaerobic degradation of alkylbenzenes with side chains longer than that of toluene was studied in freshwater mud samples in the presence of nitrate. Two new denitrifying strains, EbN1 and PbN1, were isolated on ethylbenzene and n-propylbenzene, respectively. For comparison, two further denitrifying strains, ToN1 and mXyN1, were isolated from the same mud with toluene and m-xylene, respectively. Sequencing of 16SrDNA revealed a close relationship of the new isolates to Thauera selenatis. The strains exhibited different specific capacities for degradation of alkylbenzenes. In addition to ethylbenzene, strain EbN1 utilized toluence, but not propylbenzene. In contrast, propylbenzene-degrading strain PbN1 did not grow on toluene, but was able to utilize ethylbenzene. Strain ToN1 used toluene as the only hydrocarbon substrate, whereas strain mXyN1 utilized both toluene and m-xylene. Measurement of the degradation balance demonstrated complete oxidation of ethylbenzene to CO2 by strain EbN1. Further characteristic substrates of strains EbN1 and PbN1 were 1-phenylethanol and acetophenone. In contrast to the other isolates, strain mXyN1 did not grow on benzyl alcohol. Benzyl alcohol (also m-methylbenzyl alcohol) was even a specific inhibitor of toluene and m-xylene utilization by strain mXyN1. None of the strains was able to grow on any of the alkylbenzenes with oxygen as electron acceptor. However, polar aromatic compounds such as benzoate were utilized under both oxic and anoxic conditions. All four isolates grew anaerobically on crude oil. Gas chromatographic analysis of crude oil after growth of strain ToN1 revealed specific depletion of toluene.  相似文献   

5.
Enzyme induction studies with Sphingomonas aromaticivorans F199 demonstrated that both toluene and naphthalene induced expression of both naphthalene and toluene catabolic enzymes. However, neither aromatic compound induced expression of all the enzymes required for complete mineralization of either naphthalene or toluene. Activity measurements in combination with gene sequence analyses indicate that growth on either aromatic substrate in the absence of the other is, therefore, sub-optimal and is predicted to lead to the build-up of metabolites due to imbalance in toluene or naphthalene catabolic enzyme activities. Growth on toluene may be further inhibited by the co-expression of two toluene catabolic pathways, as predicted from gene sequence analyses. One of these pathways may potentially result in the formation of a dead-end intermediate, possibly benzaldehyde. In contrast, either p-cresol or benzoate can support high levels of growth. Analyses of promoter region sequences on the F199 aromatic catabolic plasmid, pNL1, suggest that additional regulatory events are modulated through the interaction of BphR with Sigma54 type promoters and through the binding of a regulator upstream of p-cresol catabolic genes and xylM. We hypothesize that the unusual gene clustering in strain F199 is optimized for simultaneous degradation of multiple aromatic compound classes, possibly in response to the heterogeneous composition of aromatic structures in the fossil organic matter present in the deep Atlantic Coastal Plain sediments from which this bacterium was isolated. Received 26 April 1999/ Accepted in revised form 16 August 1999  相似文献   

6.
Various alkylbenzenes were depleted during growth of an anaerobic, sulfate-reducing enrichment culture with crude oil as the only source of organic substrates. From this culture, two new types of mesophilic, rod-shaped sulfate-reducing bacteria, strains oXyS1 and mXyS1, were isolated with o-xylene and m-xylene, respectively, as organic substrates. Sequence analyses of 16S rRNA genes revealed that the isolates affiliated with known completely oxidizing sulfate-reducing bacteria of the delta subclass of the class Proteobacteria. Strain oXyS1 showed the highest similarities to Desulfobacterium cetonicum and Desulfosarcina variabilis (similarity values, 98.4 and 98.7%, respectively). Strain mXyS1 was less closely related to known species, the closest relative being Desulfococcus multivorans (similarity value, 86.9%). Complete mineralization of o-xylene and m-xylene was demonstrated in quantitative growth experiments. Strain oXyS1 was able to utilize toluene, o-ethyltoluene, benzoate, and o-methylbenzoate in addition to o-xylene. Strain mXyS1 oxidized toluene, m-ethyltoluene, m-isoproyltoluene, benzoate, and m-methylbenzoate in addition to m-xylene. Strain oXyS1 did not utilize m-alkyltoluenes, whereas strain mXyS1 did not utilize o-alkyltoluenes. Like the enrichment culture, both isolates grew anaerobically on crude oil with concomitant reduction of sulfate to sulfide.  相似文献   

7.
We characterized bacteria from contaminated aquifers for their ability to utilize aromatic hydrocarbons under hypoxic (oxygen-limiting) conditions (initial dissolved oxygen concentration about 2 mg/l) with nitrate as an alternate electron acceptor. This is relevant to current intense efforts to establish favorable conditions forin situ bioremediation. Using samples of granular activated carbon slurries from an operating groundwater treatment system, we isolated bacteria that are able to use benzene, toluene, ethylbenzene, orp-xylene as their sole source of carbon under aerobic or hypoxic-denitrifying conditions. Direct isolation on solid medium incubated aerobically or hypoxically with the substrate supplied as vapor yielded 103 to 105 bacteria ml–1 of slurry supernatant, with numbers varying little with respect to isolation substrate or conditions. More than sixty bacterial isolates that varied in colony morphology were purified and characterized according to substrate utilization profiles and growth condition (i.e., aerobic vs. hypoxic) specificity. Strains with distinct characteristics were obtained using benzene compared with those isolated on toluene or ethylbenzene. In general, isolates obtained from direct selection on benzene minimal medium grew well under aerobic conditions but poorly under hypoxic conditions, whereas many ethylbenzene isolates grew well under both incubation conditions. We conclude that the conditions of isolation, rather than the substrate used, will influence the apparent characteristic substrate utilization range of the isolates obtained. Also, using an enrichment culture technique, we isolated a strain ofPseudomonas fluorescens, designated CFS215, which exhibited nitrate dependent degradation of aromatic hydrocarbons under hypoxic conditions.Abbreviations BTEX benzene, toluene, ethylbenzene, andp-xylene - HPLC high performance liquid chromatography - GAC granular activated carbon  相似文献   

8.
Two kinds of phenol-degrading denitrifying bacteria, Azoarcus sp. strain CC-11 and spiral bacterial strain CC-26, were isolated from the same enrichment culture after 1 and 3 years of incubation, respectively. Both strains required ferrous ions for growth, but strain CC-26 grew better than strain CC-11 grew under iron-limited conditions, which may have resulted in the observed change in the phenol-degrading bacteria during the enrichment process. Strain CC-26 grew on phenol, benzoate, and other aromatic compounds under denitrifying conditions. Phylogenetic analysis of 16S ribosomal DNA sequences revealed that this strain is most closely related to a Magnetospirillum sp., a member of the alpha subclass of the class Proteobacteria, and is the first strain of a denitrifying aromatic compound-degrading bacterium belonging to this group. Unlike previously described Magnetospirillum strains, however, this strain did not exhibit magnetotaxis. It grew on phenol only under denitrifying conditions. Other substrates, such as acetate, supported aerobic growth, and the strain exhibited microaerophilic features.  相似文献   

9.
A new sulfate-reducing bacterium was enriched and isolated from marine sediment with phenol as sole electron donor and carbon source. Strain Ph01 grew well in defined media without growth factors. Further aromatic compounds oxidized by strain Ph01 were benzoate, phenylacetate, 2-hydroxybenzoate, 4-hydroxybenzoate, 4-hydroxyphenylacetate, p-cresol, indole, anthranilic acid, and phenylalanine. Various fatty acids, alcohols and dicarboxylic acids were also utilized by strain Ph01. Sulfate and thiosulfate served as electron acceptors and were reduced to H2S. Stoichiometric measurements with strain Ph01 showed complete oxidation of phenol to CO2. Cytochromes and menaquinone MK-7(H2) were present; desulfoviridin could not be detected. Strain Ph01 is described as type strain of the new species Desulfobacterium phenolicum.In further marine enrichments with 4-hydroxybenzoate, 4-hydroxyphenylacetate, p-cresol or o-cresol as substrates and sulfate as electron acceptor a variety of morphologically different sulfate-reducing bacteria developed. However, since the new isolate strain Ph01 was able to degrade all these aromatic compounds (except o-cresol) no further studies with the enrichment cultures were carried out.  相似文献   

10.
A new strain of the green sulfur bacteria was isolated from the monimolimnion of Buchensee (near Radolfzell, Lake Constance region, FRG). Single cells were rod-shaped, nonmotile and contained gas vacuoles. Typical net-like colonies were formed by ternary fission of the cells. As photosynthetic pigments bacteriochlorophylls a, e, isorenieratene and -isorenieratene were present. Sulfide, sulfur and thiosulfate were used as electron donors during anaerobic phototrophic growth. Besides carbon dioxide, acetate and propionate could serve as carbon sources under mixotrophic conditions in the light. Like all other members of the green sulfur bacteria, the new bacterium is strictly anaerobic and obligately phototrophic. The possession of gas vacuoles and the formation of net-like colonies and the guanine plus cytosine content of the DNA (47.9 mol% G+C) are typical characteristics of the genus Pelodictyon. Because of its photosynthetic pigments which differ from those of Pelodictyon clathratiforme, strain BU 1 represents a new species, P. Phaeoclathratiforme sp. nov.  相似文献   

11.
A bacterium, designated F199, utilized toluene, naphthalene, dibenzothiophene, salicylate, benzoate, p-cresol, and all isomers of xylene as a sole carbon and energy source. This bacterium was isolated from Middendorf sediments, a Cretaceous age formation that underlies the Southeast Coastal Plain in South Carolina, at a depth of approximately 410 m. F199 is a gram-positive, irregular-shaped bacterium that has a varied cell morphology that is dependent on culture medium type and growth stage. F199 required microaerobic conditions (40 to 80 μM O2) for growth on hydrocarbons, glucose, acetate, and lactate in mineral salts medium but not for growth on rich media. [14C]naphthalene mineralization by F199 was induced by either naphthalene or toulene; however, [14C]toluene mineralization by this strain was induced by toluene but not naphthalene. F199 was also found to harbor two plasmids larger than 100 kb. Restricted F199 plasmid and genomic DNA did not hybridize with toluene (pWW0) or naphthalene (NAH7) catabolic plasmid DNA probes. The presence in the Middendorf formation of bacteria with the capacity for degrading a variety of aromatic compounds suggests that indigenous microorganisms may have potential for in situ degradation of organic contaminants.  相似文献   

12.
Diverse microorganisms have been described to degrade petroleum hydrocarbons anaerobically. Strains able to utilize n-alkanes do not grow with aromatic hydrocarbons, whereas strains able to utilize aromatic hydrocarbons do not grow with n-alkanes. To investigate this specificity in more detail, three anaerobic n-alkane degraders (two denitrifying, one sulfate-reducing) and eight anaerobic alkylbenzene degraders (five denitrifying, three sulfate-reducing) were incubated with mixtures of n-alkanes and toluene. Whereas the toluene degradationers formed only the characteristic toluene-derived benzylsuccinate and benzoate, but no n-alkane-derived metabolites, the n-alkane degraders formed toluene-derived benzylsuccinate, 4-phenylbutanoate, phenylacetate and benzoate besides the regular n-alkane-derived (1-methylalkyl)succinates and methyl-branched alkanoates. The co-metabolic conversion of toluene by anaerobic n-alkane degraders to the level of benzoate obviously follows the anaerobic n-alkane degradation pathway with C-skeleton rearrangement and decarboxylation rather than the β-oxidation pathway of anaerobic toluene metabolism. Hence, petroleum-derived aromatic metabolites detectable in anoxic environments may not be exclusively formed by genuine alkylbenzene degraders. In addition, the hitherto largely unexplored fate of fumarate hydrogen during the activation reactions was examined with (2,3-(2) H(2) )fumarate as co-substrate. Deuterium was completely exchanged with hydrogen at the substituted carbon atom (C-2) of the succinate adducts of n-alkanes, whereas it is retained in toluene-derived benzylsuccinate, regardless of the type of enzyme catalysing the fumarate addition reaction.  相似文献   

13.
The purple nonsulfur bacterium Rhodobacter capsulatus strain B10 grew phototrophically on the aromatic compound hippurate (N-benzoyl-L-glycine) and related benzoyl amino acids. Absorption spectra, extraction, and GC/MS analysis of culture supernatants showed that hippurate was stoichiometrically converted to benzoate and glycine, with the latter used as a carbon or nitrogen source for growth. This conclusion was supported by detection of the enzyme hippuricase in permeabilized intact cells. Chemotrophic growth on hippurate by Rba. capsulatus, either at full or reduced oxygen tensions, was not observed. The type strain of Rhodobacter sphaeroides as well as four strains of Rhodopseudomonas palustris also grew phototrophically on hippurate, while several other aromatic-degrading species of purple bacteria did not.  相似文献   

14.
15.
The initial activation reactions of anaerobic oxidation of the aromatic hydrocarbons toluene and ethylbenzene were investigated in cell extracts of a toluene-degrading, sulfate-reducing bacterium, Desulfobacula toluolica, and in cell extracts of strain EbN1, a denitrifying bacterium capable of degrading toluene and ethylbenzene. Extracts of toluene-grown cells of both species catalysed the addition of fumarate to the methyl group of [phenyl-14C]-toluene and formed [14C]-labeled benzylsuccinate. Extracts of ethylbenzene-grown cells of strain EbN1 did not catalyse this reaction, but catalysed the formation of 1-phenylethanol and acetophenone from [methylene-14C]-ethylbenzene. Toluene-grown cells of D. toluolica and strain EbN1 synthesised highly induced polypeptides corresponding to the large subunits of benzylsuccinate synthase from Thauera aromatica. These polypeptides were absent in strain EbN1 after growth on ethylbenzene, although a number of different polypeptides were highly induced. Thus, formation of benzylsuccinate from toluene and fumarate appears to be the general initiating step in anaerobic toluene degradation by bacteria affiliated with the phylogenetically distinct β-subclass (strain EbN1 and T. aromatica) and δ-subclass (D. toluolica) of the Proteobacteria. Anaerobic ethylbenzene oxidation proceeds via a different pathway involving a two-step oxidation of the methylene group to an alcohol and an oxo group; these steps are most probably followed by a biotin-independent carboxylation reaction and thiolytic cleavage. Received: 16 March 1998 / Accepted: 27 June 1998  相似文献   

16.
A strictly anaerobic bacterium, strain OX39, was isolated with o-xylene as organic substrate and sulfate as electron acceptor from an aquifer at a former gasworks plant contaminated with aromatic hydrocarbons. Apart from o-xylene, strain OX39 grew on m-xylene and toluene and all three substrates were oxidized completely to CO2. Induction experiments indicated that o-xylene, m-xylene, and toluene degradation were initiated by different specific enzymes. Methylbenzylsuccinate was identified in supernatants of cultures grown on o-xylene and m-xylene, and benzylsuccinate was detected in supernatants of toluene-grown cells, thus indicating that degradation was initiated in all three cases by fumarate addition to the methyl group. Strain OX39 was sensitive towards sulfide and depended on Fe(II) in the medium as a scavenger of the produced sulfide. Analysis of the PCR-amplified 16S rRNA gene revealed that strain OX39 affiliates with the gram-positive endospore-forming sulfate reducers of the genus Desulfotomaculum and is the first hydrocarbon-oxidizing bacterium in this genus.  相似文献   

17.
Three strains of the phototrophic purple nonsulfur bacterium Rhodopseudomonas palustris were isolated from different environments and were evaluated for their aromatic degradative potential under phototrophic conditions. All three strains (PFR1, PNR4, and MRL1) utilized benzoate, 4-hydroxybenzoate, 4-aminobenzoate, 4-aminophenol, cinnamate, ferulate, phloroglucinol, and 4-dimethylaminobenzaldehyde in the absence of exogenous CO2. 4-Aminobenzoate and 4-aminophenol served as a carbon and nitrogen source for all the three strains. Utilization of 4-aminophenol was enhanced in the presence of 4-hydroxybenzoate. Salicylate was utilized by PFR1 and MRL1 strains, and phenol was utilized by the MRL1 strain only in the presence of exogenous CO2.  相似文献   

18.
Cell-free extracts of Pseudomonas sp. strains KB 740 and K 172 both contained high levels of glutaryl-CoA dehydrogenase when grown anaerobically on benzoate or other aromatic compounds and with nitrate as electron acceptor. These aromatic compounds have in common benzoyl-CoA as the central aromatic intermediate of anerobic metabolism. The enzymatic activity was almost absent in cells grown aerobically on benzoate regardless whether nitrate was present. Glutaryl-CoA dehydrogenase activity was also detected in cell-free extracts of Rhodopseudomonas, Rhodomicrobium and Rhodocyclus after phototrophic growth on benzoate. Parallel to the induction of glutaryl-CoA dehydrogenase as measured with ferricenium ion as electron acceptor, an about equally high glutaconyl-CoA decarboxylase activity was detected in cell-free extracts. The latter activity was measured with the NAD-dependent assay, as described for the biotin-containing sodium ion pump glutaconyl-CoA decarboxylase from glutamate fermenting bacteria. Glutaryl-CoA dehydrogenase was purified to homogeneity from both Pseudomonas strains. The enzymes catalyse the decarboxylation of glutaconyl-CoA at about the same rate as the oxidative decarboxylation of glutaryl-CoA. The green enzymes are homotetramers (m=170 kDa) and contain 1 mol FAD per subunit. No inhibition was observed with avidin indicating the absence of biotin. The N-terminal sequences of the enzymes from both strains are similar (65%).  相似文献   

19.
A bacterium, Pseudomonas sp. strain C1S1, able to grow on 2,4,6-trinitrotoluene (TNT), 2,4- and 2,6-dinitrotoluene, and 2-nitrotoluene as N sources, was isolated. The bacterium grew at 30 degrees C with fructose as a C source and accumulated nitrite. Through batch culture enrichment, we isolated a derivative strain, called Pseudomonas sp. clone A, which grew faster on TNT and did not accumulate nitrite in the culture medium. Use of TNT by these two strains as an N source involved the successive removal of nitro groups to yield 2,4- and 2,6-dinitrotoluene, 2-nitrotoluene, and toluene. Transfer of the Pseudomonas putida TOL plasmid pWW0-Km to Pseudomonas sp. clone A allowed the transconjugant bacteria to grow on TNT as the sole C and N source. All bacteria in this study, in addition to removing nitro groups from TNT, reduced nitro groups on the aromatic ring via hydroxylamine to amino derivatives. Azoxy dimers probably resulting from the condensation of partially reduced TNT derivatives were also found.  相似文献   

20.
The capability of nitrate-reducing bacteria to degrade alkyltoluenes in the absence of molecular oxygen was investigated with the three isomers of xylene, ethyltoluene, and isopropyltoluene (cymene) in enrichment cultures inoculated with freshwater mud. Denitrifying enrichment cultures developed most readily (within 4 weeks) with p-cymene, a natural aromatic hydrocarbon occurring in plants, and with m-xylene (within 6 weeks). Enrichment of denitrifiers that utilized m-ethyltoluene and p-ethyltoluene was slow (within 8 and 12 weeks, respectively); no enrichment cultures were obtained with the other alkylbenzenes within 6 months. Anaerobic degradation of p-cymene, which has not been reported before, was studied in more detail. Two new types of denitrifying bacteria with oval cells, strains pCyN1 and pCyN2, were isolated; they grew on p-cymene (diluted in an inert carrier phase) and nitrate with doubling times of 12 and 16 h, respectively. Strain pCyN1, but not strain pCyN2, also utilized p-ethyltoluene and toluene. Both strains grew with some alkenoic monoterpenes structurally related to p-cymene, e.g., α-terpinene. In addition, the isolates utilized p-isopropylbenzoate, and mono- and dicarboxylic aliphatic acids. Determination of the degradation balance of p-cymene and growth with acetate and nitrate indicated the capacity for complete oxidation of organic substrates under anoxic conditions. Adaptation studies with cells of strain pCyN1 suggest the existence of at least two enzyme systems for anaerobic alkylbenzene utilization, one metabolizing p-cymene and p-ethyltoluene, and the other metabolizing toluene. Excretion of p-isopropylbenzoate during growth on p-cymene indicated that the methyl group is the site of initial enzymatic attack. Although both strains were facultatively aerobic, as revealed by growth on acetate under air, growth on p-cymene under oxic conditions was observed only with strain pCyN1. Strains pCyN1 and pCyN2 are closely related to members of the Azoarcus-Thauera cluster within the β-subclass of the Proteobacteria, as revealed by 16S rRNA gene sequence analysis. This cluster encompasses several described denitrifiers that oxidize toluene and other alkylbenzenes. Received: 15 July 1998 / Revision received: 29 July 1999 / Accepted: 2 August 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号