首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
餐厨垃圾资源化利用技术研究现状及展望   总被引:1,自引:0,他引:1       下载免费PDF全文
餐厨垃圾产生量大、成分复杂、具有"危害性"和"资源性"的双重属性,随着垃圾分类工作的推进,将餐厨垃圾作为一种生物资源回收其中的资源和能源的研究受到了越来越多的关注。本文介绍了餐厨垃圾的成分特性及预分选方法,对餐厨垃圾厌氧消化、好氧堆肥、生物饲料、昆虫养殖、热处理技术及生物炼制生产高附加值化学品等主要的资源化利用途径进行了分析,并对餐厨垃圾收集及资源化过程中产生的恶臭气体、废水污染问题及处理方法进行了介绍。最后指出餐厨垃圾厌氧消化、昆虫养殖、好氧堆肥及生物饲料技术工业化利用过程中的设备运行的稳定性及其废水和臭气的控制问题仍需进一步的研究。餐厨垃圾热处理过程如何进一步降低能耗及开发高附加值的功能炭材料是未来的重要发展方向,餐厨垃圾生物炼制生产高附加值化学品是实现餐厨垃圾高值化利用的有效途径,也是替代传统化工路线生产化学品的重要路径。总之,采用多技术耦合是实现餐厨垃圾"减量化、无害化、资源化"的有效手段,也是发展我国循环经济发展的必然要求。  相似文献   

2.
餐厨废弃物资源化利用的微生物技术研究进展   总被引:4,自引:0,他引:4  
简单介绍餐厨废弃物的特征和危害,综述微生物技术处理餐厨废弃物资源化的途径,如发酵提取生物降解塑料技术、厌氧发酵处理技术、微生物堆肥技术、微生物农药技术、微生物产电技术,介绍利用复合微生物菌剂降解餐厨废弃物的研究进展,分析这一新技术的发展趋势。  相似文献   

3.
餐厨垃圾高温好氧生物减量菌种的筛选及特性   总被引:1,自引:1,他引:0  
吉雨霁  王娜  杨宁  史吉平  刘莉 《微生物学通报》2022,49(11):4513-4524
【背景】随着餐厨垃圾产生量的逐步提高,如何实现其快速降解,成为餐厨垃圾处理亟待解决的问题。餐厨垃圾的高温好氧生物减量技术是一种可以快速降解餐厨垃圾的有效方法。【目的】筛选能够适应餐厨垃圾环境且具有高效降解餐厨垃圾中有机物能力的菌株,以提高餐厨垃圾的降解效率和减量效果。【方法】采用温度梯度耐受性实验和餐厨垃圾浸出液高油高盐耐受性实验进行菌种初筛,并利用产酶培养基复筛及餐厨垃圾生物减量实验验证。【结果】通过初筛、复筛和功能验证,最终获得4株生物减量效果优良的菌株N3-1、C7、N3-3和G6-1,其对餐厨垃圾挥发性固体(volatile solid,VS)的降解率分别为36.95%、33.23%、32.83%和31.91%,是对照组的3.02、2.71、2.68和2.61倍。经鉴定,这4株菌分别属于热嗜油地芽孢杆菌(Geobacillus thermoleovorans)、史氏芽孢杆菌(Bacillus smithii)、热解木糖地芽孢杆菌(Geobacillus caldoxylosilyticus)和立陶宛地芽孢杆菌(Geobacillus lituanicus)。【结论】筛选出的4株菌均具有较强的餐厨垃圾原料适应性和高效的生物降解能力,为开发餐厨垃圾高温好氧复合菌剂奠定了基础,并为实现餐厨垃圾减量化、无害化处理和资源化利用提供了技术支持。  相似文献   

4.
赵薇  孙一桢  张文宇  梁赛 《生态学报》2016,36(22):7208-7216
我国生活垃圾产量大但处理能力不足,产生多种环境危害,对其资源化利用能够缓解环境压力并回收资源。为探讨生活垃圾资源化利用策略,综合生命周期评价与生命周期成本分析方法,建立生态效率模型。以天津市为例,分析和比较焚烧发电、卫生填埋-填埋气发电、与堆肥+卫生填埋3种典型生活垃圾资源化利用情景的生态效率。结果表明,堆肥+卫生填埋情景具有潜在最优生态效率;全球变暖对总环境影响贡献最大,而投资成本对经济影响贡献最大。考虑天津市生活垃圾管理现状,建议鼓励发展生活垃圾干湿组分分离及厨余垃圾堆肥的资源化利用策略。  相似文献   

5.
餐厨垃圾中含有丰富的营养物质,经生物转化过程可以合成对人类有用的化学品。某些产油微生物可以处理餐厨垃圾生产油脂,同时合成高附加值代谢产物如多不饱和脂肪酸、角鲨烯和类胡萝卜素等。这不仅能够降低生产成本,而且提高了产物的经济价值,具有极大的工业化应用潜力。文中主要概括了目前餐厨垃圾的处理研究现状,综述了产油微生物发酵餐厨垃圾生产油脂的研究进展,并结合笔者的工作对未来该领域的发展进行了总结与展望,以期为今后的相关研究提供有益借鉴。  相似文献   

6.
餐厨垃圾厌氧消化处理主要过程的微生物群落结构分析   总被引:2,自引:0,他引:2  
【背景】厌氧消化是我国餐厨垃圾处理的主要方法,微生物在其处理过程中起到关键作用,但是目前对其不同工艺单元微生物群落结构的研究较少。【目的】通过分析各工艺单元的微生物多样性与群落结构,为改进餐厨垃圾资源化处理技术、提高资源利用效率提供科学依据。【方法】采集某餐厨垃圾处理厂油水分离、厌氧发酵、沼渣脱水等3个工艺单元产生的废液样品,采用16S rRNA基因高通量测序技术,研究其菌群组成、丰度、优势菌群及其与环境因子的相关性。【结果】初始油水分离样品中的微生物群落种类相对较少,而经厌氧发酵和沼渣脱水处理后样品中的微生物群落种类较丰富。在门水平上,厚壁菌门(Firmicutes)在各单元样品中所占平均比例最高,为81.1%,其次为拟杆菌门(Bacteroidetes)和绿弯菌门(Chloroflexi),分别占15.81%和4.59%;在属水平上,相对丰度较高的菌属为乳酸菌属(Lactobacillus)、互营单胞菌属(Syntrophomonas)等。餐厨垃圾处理过程中的部分菌属可能具有资源-环境双重属性,例如在沼渣脱水单元相对丰度高达32.67%的假单胞菌属(Pseudomonas),该菌属中既存在少部分致病菌或条件致病菌,也具有生产聚羟基脂肪酸酯的功能菌。影响各组样品微生物群落组成结构最显著的因子是p H值,其次是总糖的含量。【结论】研究明确了典型餐厨垃圾厌氧消化处理工艺单元的微生物群落结构和多样性,并提出了优化处理工艺、强化资源利用效率的建议。  相似文献   

7.
餐厨垃圾厌氧消化产沼气过程中酶学表征   总被引:3,自引:0,他引:3  
厌氧消化产沼气被认为是餐厨垃圾资源化利用的有效方式之一,其实质是在多种微生物综合作用下的生物化学过程.本文研究了在促进和抑制性因子作用下,餐厨垃圾厌氧发酵的酶学过程,对其中的脱氢酶和水解酶(β-葡萄糖苷酶,BAA-蛋白水解酶,碱性磷酸酶)活性变化进行了分析.研究表明,与空白对照组相比添加酵母粉后脱氢酶的最高活性提高了8...  相似文献   

8.
堆肥是有机固体废弃物处理与资源化的主要途径之一,包括矿化和腐殖化两个过程,且都和微生物活动有关。矿化过程会产生二氧化碳(CO2)等温室气体,是一个典型的温室气体释放过程。腐殖化过程则会产生稳定的腐殖质,则是优良的土壤改良剂。在堆肥稳定化的前提下,如何有效减少堆肥过程中的CO2释放,强化堆肥的腐殖化过程,增加作为优良土壤改良剂的腐殖质产量,对于发展低碳化堆肥技术,实现堆肥的资源化利用具有重要意义。本文选取水稻秸秆和餐厨垃圾作为堆肥原料,研究不同预处理对堆肥过程中矿化和腐殖化过程的影响,并探讨了不同预处理影响矿化和腐殖化过程的微生物机理。结果表明堆料加热预处理后,堆肥的矿化作用被明显削弱,总碳(TC)减量率仅为23.4%,并且最后形成了可观产量的稳定腐殖质(每kg堆料70 d后腐殖质含量为22.09 g±0.35 g,腐殖化系数达2.0),因此加热预处理后的堆肥过程在保证稳定腐殖质的产量前提下更低碳化。预处理通过影响堆料的性质和初始状态下堆料中微生物的种类和数量从而影响堆肥的矿化和腐殖化过程。活性微生物量与脱氢酶活性是矿化过程的主要决定因素,而多酚氧化酶活性主要影响堆肥的稳定腐殖化过程。  相似文献   

9.
本文就加强西安市餐厨垃圾管理提出了一些建议和对策,希望对实现西安市餐厨垃圾规范化管理和发展循环经济起到积极作用。  相似文献   

10.
黑水虻 Hermetia illucens 作为一种新型资源环境昆虫,其幼虫可以处理餐厨垃圾、畜禽粪便、蔬菜残体等各种有机废弃物。幼虫富含蛋白质和油脂,可以作为水产饲料的蛋白来源。本研究探索黑水虻幼虫处理餐厨垃圾过程中其养分组成与消化酶活性变化之间的关系。通过黑水虻幼虫自由取食餐厨垃圾,每日采集样品用于物质养分和消化酶活性的测定。结果显示:黑水虻幼虫粗蛋白含量呈现先下降后上升的变化规律,而幼虫总糖含量呈现先上升后下降的变化规律,粗脂肪含量维持上升的趋势。幼虫处理餐厨垃圾过程中,体内蛋白酶在初期迅速上升,第6天后逐渐下降,而淀粉酶呈现出先缓慢上升再迅速上升最后下降的变化规律。脂肪酶在黑水虻幼虫处理餐厨垃圾前期保持较高的活性然后缓慢下降。同时,通过相关性分析,黑水虻幼虫粗蛋白含量变化与蛋白酶活性没有相关性,而总糖与粗脂肪含量变化分别与淀粉酶、脂肪酶有相关性。因此,部分消化酶活性变化与黑水虻幼虫养分组成具有一定的联系,本研究结果为工厂化养殖黑水虻提供一定的理论基础。  相似文献   

11.
Goal, Scope and Background The disposal phase of a product’s life cycle in LCA is often neglected or based on coarse indicators like ‘kilogram waste’. The goal of report No. 13 of the ecoinvent project (Doka 2003) is to create detailed Life Cycle Inventories of waste disposal processes. The purpose of this paper is to give an overview of the models behind the waste disposal inventories in ecoinvent, to present exemplary results and to discuss the assessment of long-term emissions. This paper does not present a particular LCA study. Inventories are compiled for many different materials and various disposal technologies. Considered disposal technologies are municipal incineration and different landfill types, including sanitary landfills, hazardous waste incineration, waste deposits in deep salt mines, surface spreading of sludges, municipal wastewater treatment, and building dismantling. The inventoried technologies are largely based on Swiss plants. Inventories can be used for assessment of the disposal of common, generic waste materials like paper, plastics, packaging etc. Inventories are also used within the ecoinvent database itself to inventory the disposal of specific wastes generated during the production phase. Inventories relate as far as possible to the specific chemical composition of the waste material (waste-specific burdens). Certain expenditures are not related to the waste composition and are inventoried with average values (process-specific burdens). Methods The disposal models are based on previous work, partly used in earlier versions of ecoinvent/ETH LCI data. Important improvements were the extension of the number of considered chemical elements to 41 throughout all disposal models and new landfill models based on field data. New inventories are compiled for waste deposits in deep salt mines and building material disposal. Along with the ecoinvent data and the reports, also Excel-based software tools were created, which allow ecoinvent members to calculate waste disposal inventories from arbitrary waste compositions. The modelling of long-term emissions from landfills is a crucial part in any waste disposal process. In ecoinvent long-term emissions are defined as emissions occurring 100 years after present. They are reported in separate emission categories. The landfill inventories include long-term emissions with a time horizon of 60’000 years after present. Results and Discussion As in earlier studies, the landfills prove to be generally relevant disposal processes, as also incineration and wastewater treatment processes produce landfilled wastes. Heavy metals tend to concentrate in landfills and are washed out to a varying degree over time. Long-term emissions usually represent an important burden from landfills. Comparisons between burdens from production of materials and the burdens from their disposal show that disposal has a certain relevance. Conclusion The disposal phase should by default be included in LCA studies. The use of a material not only necessitates its production, but also requires its disposal. The created inventories and user tools facilitate heeding the disposal phase with a similar level of detail as production processes. The risk of LCA-based decisions shifting burdens from the production or use phase to the disposal phase because of data gaps can therefore be diminished. Recommendation and Perspective Future improvements should include the modelling of metal ore refining waste (tailings) which is currently neglected in ecoinvent, but is likely to be relevant for metals production. The disposal technologies considered here are those of developed Western countries. Disposal in other parts of the World can differ distinctly, for logistic, climatic and economic reasons. The cross-examination of landfill models to LCIA soil fate models could be advantageous. Currently only chemical elements, like copper, zinc, nitrogen etc. are heeded by the disposal models. A possible extension could be the modelling of the behaviour of chemical compounds, like dioxins or other hydrocarbons.  相似文献   

12.
Background, aim, and scope  Management of the medical waste produced in hospitals or health care facilities has raised concerns relating to public health, occupational safety, and the environment. Life cycle assessment (LCA) is a decision-supporting tool in waste management practice; but relatively little research has been done on the evaluation of medical waste treatment from a life cycle perspective. Our study compares the environmental performances of two dominant technologies, hazardous waste incineration (HWI) as a type of incineration technology and steam autoclave sterilization with sanitary landfill (AL) as a type of non-incineration technology, for specific medical waste of average composition. The results of this study could support the medical waste hierarchy. Materials and methods  This study implemented the ISO 14040 standard. Data on steam autoclave sterilization were obtained from an on-site operations report, while inventory models were used for HWI, sanitary landfill, and residues landfill. Background data were from the ecoinvent database. The comparative LCA was carried out for five alternatives: HWI with energy recovery efficiencies of 0%, 15%, and 30% and AL with energy recovery efficiencies of 0% and 10%. Results  The assumptions on the time frame for landfill markedly affect the impact category scores; however, the orders of preference for both time frames are almost the same. HWI with 30% energy recovery efficiency has the lowest environmental impacts for all impact categories, except freshwater ecotoxicity. Incineration and sanitary landfill processes dominate global warming, freshwater aquatic ecotoxicity, and eutrophication of incineration and non-incineration alternatives, respectively. Dioxin emissions contribute about 10% to human toxicity in HWI without energy recovery alternatives, and a perturbation analysis yielded identical results. As regards eutrophication, non-incineration treatments have an approximately sevenfold higher impact than incineration treatments. Discussion  The differences between short-term and long-term time frame assumptions mainly are decided by heavy metals dissolved in the future leachate. The high heat value of medical waste due to high contents of biomass, plastic, and rubber materials and a lower content of ash, results in a preference for incineration treatments. The large eutrophication difference between incineration and non-incineration treatments is caused by different N element transformations. Dioxin emission from HWI is not the most relevant to human toxicity; however, large uncertainties could exist. Conclusions  From a life cycle perspective, the conventional waste hierarchy, implying incineration with energy recovery is better than landfill, also applies to the case of medical waste. The sanitary landfill process is the key issue in non-incineration treatments, and HWI and the subsequent residues landfill processes are key issues in incineration treatments. Recommendations and perspectives  Integrating the medical waste hierarchy and constructing a medical waste framework require broader technologies to be investigated further, based on a life cycle approach. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
The safety and acceptability of many widely used solid waste management practices are of serious concern from the public health point of view. Such concern stems from both distrust of policies and solutions proposed by all tiers of government for the management of solid waste and a perception that many solid waste management facilities use poor operating procedures. Waste management practice that currently encompasses disposal, treatment, reduction, recycling, segregation and modification has developed over the past 150 years. Before that and in numerous more recent situations, all wastes produced were handled by their producers using simple disposal methods, including terrestrial dumping, dumping into both fresh and marine waters and uncontrolled burning. In spite of ever-increasing industrialisation and urbanisation, the dumping of solid waste, particularly in landfills, remains a prominent means of disposal and implied treatment. Major developments have occurred with respect to landfill technology and in the legislative control of the categories of wastes that can be subject to disposal by landfilling. Even so, many landfills remain primitive in their operation. Alternative treatment technologies for solid waste management include incineration with heat recovery and waste gas cleaning and accelerated composting, but both of these technologies are subject to criticism either by environmentalists on the grounds of possible hazardous emissions, failure to eliminate pathogenic agents or failure to immobilise heavy metals, or by landfill operators and contractors on the basis of waste management economics, while key questions concerning the effects of the various practices on public health and environmental safety remain unanswered. The probable and relative effects on both public health and environmental safety of tradition and modern landfill technologies will be evaluated with respect to proposed alternative treatment technologies.  相似文献   

14.
15.
Being opportunistic omnivores, wild pigs (Sus scrofa) readily feed on edible garbage. Given the presence of substantial volumes of edible food waste, large multi-county and regional municipal sanitary waste landfills constitute attractive forage resources for pigs, providing a year-round anthropogenic source of potentially high-quality forage. Our objective was to assess the effects that a large regional landfill has on the local pigs foraging in that facility's waste disposal cells. The landfill, located on the United States Department of Energy's Savannah River Site (SRS) in South Carolina, USA, became operational in 1998 and pigs began foraging there in 2001. By 2009 >100 pigs/night were observed foraging in the landfill, suggesting landfill establishment may have important consequences for population dynamics, public safety, and disease transmission. We evaluated changes in body mass, fetal litter size, numbers of pigs removed, and wild pig-vehicle collisions (WPVCs) before (1980–2000) and after (2001–2019) pigs began foraging in the landfill on SRS. Body mass during the after period increased to a greater extent for pigs in the vicinity of the landfill compared to pigs on the rest of SRS. Fetal litter size increased for pigs in the vicinity of the landfill, whereas it remained unchanged on the rest of SRS. Our density surrogate (number of pigs harvested) increased around the landfill during the after period by 2.9 times, whereas on the rest of the site it only increased by 53%. No WPVCs occurred adjacent to the landfill before 2001, but WPVCs increased along the 2 major roads bordering the landfill after 2001. Effects of sanitary waste landfills on wild pig populations scavenging there can present unique challenges to population management, control, public safety, and disease transmission. Potential approaches to address these challenges could be exclusion fencing to prevent access to the landfill's waste disposal cells or enhanced placement of waste cell covers to reduce access. © 2021 The Wildlife Society.  相似文献   

16.
The concept of eco-efficiency is increasingly being applied to judge the combined environmental and economic performance of product systems, processes, and/or companies. Ecoefficiency is often defined as the ratio of economic value added to environmental impact added. This definition is not appropriate for end-of-pipe treatment technologies because these technologies aim at improving the environmental performance of technical processes at the cost of financial expense. Therefore, an indicator for the assessment of end-of-pipe technologies has been proposed. This indicator, called environmental cost efficiency (ECE), is defined as the ratio of net environmental benefits to the difference in costs. ECE is applied to four end-of-pipe technologies for the treatment of municipal solid waste: sanitary landfill, mechanical-biological treatment, modern grate incineration, and a staged thermal process (pyrolysis and gasification). A life-cycle assessment was performed on these processes to quantify the net environmental benefit. Moreover, the approximate net costs (costs minus benefits) were quantified. The results show that, relative to grate incineration, sanitary landfills and mechanical-biological treatment are less costly but environmentally more harmful. We calculated the ECE for all combinations of technologies. The results indicate that the staged thermal process may be the most environmentally cost-efficient alternative to all other treatment technologies in the long run, followed by mechanical-biological treatment and grate incineration.  相似文献   

17.
This article presents the results of an experimental activity aimed at investigating the technical feasibility and the environmental performance of using municipal solid waste incineration bottom ash to produce glass frit for ceramic glaze (glaze frit). The process includes an industrial pretreatment of bottom ash that renders the material suitable for use in glaze frit production and allows recovery of aluminum and iron. The environmental performance of this treatment option is assessed with the life cycle assessment (LCA) methodology. The goal of the LCA study is to assess and compare the environmental impacts of two scenarios of end of life of bottom ash from municipal solid waste incineration (MSWI): landfill disposal (conventional scenario) and bottom ash recovery for glaze frit production (innovative scenario). The main results of the laboratory tests, industrial simulations, and LCA study are presented and discussed, and the environmental advantages of recycling versus landfill disposal are highlighted.  相似文献   

18.
Solid waste management is a serious ecological problem in Saudi Arabia due to rapid industrialization, population growth and urbanization. Recycling and sorting are in their infancy in Saudi Arabia and huge amounts of mixed household and industrial wastes are still dumped without any pre-treatment. Solid waste management techniques such as incineration, pyrolysis and gasification have high investment costs. Composting and vermicomposting of solid organic waste have been considered as an economically viable and sustainable waste management technologies. However, wastes often contain pollutants, such as heavy metals that are toxic to decomposer micro-organisms. Thus, heavy metals are a challenge for the successful biological treatments. Waste may also contain a mixture of organic pollutants that certain microbes, such as micro-algae are known to degrade. The present review paper focuses on understanding the role of vermicomposting as a management tool in mitigating solid organic wastes. It is noteworthy to mention that the microbes also play a pivotal role in the degradation process, wherein the enzymes secreted during the process aid in decomposition of complex molecules into simpler compounds. Also, the extracellular polymeric substance secreted by the earthworm under metal stress serves a source of nutrient for the bacteria to flourish. Henceforth the goal of discussion in present review shows the way forward in using vermicomposting as a novel approach in dealing with solid organic waste.  相似文献   

19.
The widespread application of conventional activated sludge treatment process has been employed to deal with a variety of municipal and industrial sewage. While the generation of waste activated sludge (WAS) was considerably huge, the management and disposal expenses were substantially costly. A promising process aimed for WAS reduction during the operation process is urgently needed. Thus, increasing attentions emphasizing on the improved or novel sludge reduction processes should be intensively recommended in the future. This review presents the current and emerging technologies for excess sludge minimization within the process of sewage treatment. The ultimate purpose of this paper is to guide or inspire researchers who are seeking feasible and promising technologies (or processes) to tackle the severe WAS problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号