首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Expression of TRAIL and TRAIL receptors in normal and malignant tissues   总被引:11,自引:0,他引:11  
TRAIL, tumor necrosis factor-related apoptosis-inducing ligand, is a member of the TNF family of proteins.Tumour cells were initially found to have increased sensitivity to TRAIL compared with normal cells, raising hopes that TRAIL would prove useful as an anti-tumor agent. The production of reliable monoclonal antibodies against TRAIL and its receptors that can stain fixed specimens will allow a thorough analysis of their expression on normal and malignant tissues. Here we report the generation of monoclonal antibodies against TRAIL and its four membrane-bound receptors(TR1-4), which have been used to stain a range of normal and malignant cells, as routinely fixed specimens. Low levels of TRAIL expression were found to be limited mostly to smooth muscle in lung and spleen as well as glial cells in the cerebellum and follicular cells in the thyroid. Expression of the TRAIL decoy receptors (TR3 and 4) was not as widespread as indicated by Northern blotting, suggesting that they may be less important for the control of TRAIL cytotoxicity than previously thought. TR1 and TR2 expression increases significantly in a number of malignant tissues,but in some common malignancies their expression was low, or patchy, which may limit the therapeutic role of TRAIL.Taken together, we have a panel of monoclonal antibodies that will allow a better assessment of the normal role of TRAIL and allow assessment of biopsy material, possibly allowing the identification of tumors that may be amenable to TRAIL therapy.  相似文献   

2.
Chen K  Li D  Jiang YH  Yao WJ  Wang XJ  Wei XC  Gao J  Xie LD  Yan ZY  Wen ZY  Chien S 《Cell research》2004,14(2):161-168
The cDNA fragment of human TRAIL (TNF-related apoptosis inducing ligand) was cloned into RevTet-On, a Tetregulated and high-level gene expression system. The gene expression system was constructed in a human leukemic cell line: Jurkat. By using RevTet-On TRAIL gene expression system in Jurkat as a cell model, we studied the influence of TRAIL gene on the changes of cellular apoptosis before and after the TRAIL gene expression, which was induced by adding tetracycline derivative doxycycline (Dox). The results indicated that the cellular apoptosis ratio was largely dependent on the TRAIL gene expression level. Moreover, it was found that the apoptosis-inducing TRAIL could cause significant changes in the biophysical properties of Jurkat cells. The cell surface charge density decreased, the membrane fluidity declined, the elastic coefficients K1 increased, and the proportion of α-helix in membrane protein secondary structure decreased. Thus, the apoptosis-inducing TRAIL gene caused significant changes on the biomechanic properties of Jurkat cells.  相似文献   

3.
The apoptotic ligand TNF-related apoptosis-inducing ligand (TRAIL) is believed to be a promising candidate for cancer gene therapy, yet gene therapy strategies to tackle this disease systemically are often impaired by inefficient delivery of the vector to the tumor tissue. Mesenchymal stem cells (MSCs) have been shown to home to tumor sites and could potentially act as a shield and vehicle for an anti tumor gene therapy vector. Here, we used an adenoviral vector expressing TRAIL to transduce MSCs and studied the apoptosis-inducing activity of these TRAIL-carrying MSCs on esophageal cancer cell Eca-109. Our results showed that, in vitro, TRAIL-expressing MSCs were able to inhibit proliferation and induce apoptosis in Eca-109 cells by an MTT assay, co-culture experiments and flow cytometry analysis. In vivo, TRAIL-expressing MSCs also displayed an ability to inhibit tumor growth in an Eca-109 xenograft mouse model. Together, our findings indicated that the gene therapy strategy of MSCs-based TRAIL gene delivery has a wide potential value for improving the treatment of esophageal cancer.  相似文献   

4.
Plants exploit several types of cell surface receptors for perception of extracellular signals, of which the extracellular leucine-rich repeat (eLRR)-containing receptors form the major class. Although the function of most plant eLRR receptors remains unclear, an increasing number of these receptors are shown to play roles in innate immunity and a wide variety of developmental processes. Recent efforts using domain swaps, gene shuffling analyses, site-directed mutagenesis, interaction studies, and crystallographic analyses resulted in the current knowledge on ligand binding and the mechanism of activation of plant eLRR receptors. This review provides an overview of eLRR receptor research, specificallysummarizing the recent understanding of interactions among plant eLRR receptors, their co-receptors and corresponding ligands. The functions of distinct eLRR receptor domains, and their role in structure, ligand perception and multimeric complex formation are discussed.  相似文献   

5.
6.
7.
By radioreceptor binding studies with iodinated TGF-β1,it has been shown that an undifferentiated ES-5 cell expresses approximately 3270 receptors with a dissociation constant Kd-130pM,but after the induction of differentiation by retinoic acid and dBcAMP,the receptor number of a differentiated RA-ES-5 cell was increased about 80% and the Kd was also increased to 370 pM.Furthermore,more direct evidence supporting the expression of TGF-β type I and type Ⅱ receptors in both ES-5 and RA-ES-5 cells has come from dot blot hybridization of cellular mRNA with cDNA probes for type I and type Ⅱ receptors.Meanwhile,mRNA expression level of types I and Ⅱ receptors in R-ES-5 cells were higher than that in ES-5 cells.Down-regulation of TGF-β receptors with a significant decrease in the rate of cell proliferation in both cells,was found by employing a pretreatment with neutralizing antibody to TGF-β1.The possible role of receptors for TGF-β in cell differentiation is discussed here.  相似文献   

8.
Immunological tolerance to self is essential for maintaining the integrity of the organ systems, and its breakdown may lead to the development of autoimmune diseases. Tolerance to self is maintained through several mechanisms, which include negative selection, functional inactivation (anergy) and suppression of autoreactive lymphocytes. However, only negative selection permanently removes autoreactive cells through apoptosis. While it has long been known that negative selection requires a T cell receptor (TCR) signal, it is unclear whether a death ligand signal is also involved. TRAIL, the tumor necrosis factor (TNF)-related apoptosis-inducing ligand, is a newly described member of the TNF family. Unlike other death ligands of  相似文献   

9.
IL-16 is a ligand and chemotactic factor for CD4 T cells. IL-16 inhibits the CD3 mediated lymphocyte activation and proliferation. The effects of IL-16 on the target cells are dependent on the cell type, the presence of co-activators etc. To understand the regulation function and mechanism of IL-16 on target cells, we used a 130 a.a. recombinant IL-16 to study its effects on the growth of Jurkat T leukemia cells in vitro. We found that the rIL-16 stimulated the proliferation of Jurkat cells at low dose (10^-9M), but inhibited the growth of the cells at higher concentration (10^-5M). Results showed that 10^-5 M of rIL-16 treatment induced an enhanced apoptosis in Jurkat cells. The treatment blocked the expression of FasL, but up-regulated the c-myc and Bid expression in the cells. Pre-treatment of PKC inhibitor or MEK1 inhibitor markedly increased or decreased the rIL-16 induced growth-inhibiting effects on Jurkat cells, respectively.The results suggested that the rIL-16 might be a regulator for the growth or apoptosis of Jurkat cells at a dose-dependent manner. The growth-inhibiting effects of rIL-16 might be Fas/FasL independent, but,associated with the activation of PKC, up-regulated expression of c-Myc and Bid, and the participation of the ERK signal pathway in Jurkat cells.  相似文献   

10.
Bcl-2 is an anti-apoptotic oncoprotein and its protein levels are inversely correlated with prognosis in many cancers.However, the role of Bcl-2 in the progression of prostate cancer is not clear. Here we report that Bcl-2 is required for theprogression of LNCaP prostate cancer cells from an androgen-dependent to an androgen-independent growth stage. ThemRNA and protein levels of Bcl-2 are significantly increased in androgen-independent prostate cancer cells. shRNA-medi-ated gene silencing of Bcl-2 in androgen-independent prostate cancer cells promotes UV-induced apoptosis and suppressesthe growth of prostate tumors in vivo. Growing androgen-dependent cells under androgen-deprivation conditions resultsin formation of androgen-independent colonies; and the transition from androgen-dependent to androgen-independentgrowth is blocked by ectopic expression of the Bcl-2 antagonist Bax or Bcl-2 shRNA. Thus, our results demonstratethat Bcl-2 is not only critical for the survival of androgen-independent prostate cancer cells, but is also required for theprogression of prostate cancer cells from an androgen-dependent to an androgen-independent growth stage.  相似文献   

11.
Apo2L/TRAIL and its death and decoy receptors   总被引:43,自引:0,他引:43  
Apo2 ligand or tumour necrosis factor-related apoptosis-inducing ligand (Apo2L/TRAIL) is one of the several members of the tumour necrosis factor (TNF) gene superfamily that induce apoptosis through engagement of death receptors (DRs). Apo2L/TRAIL interacts with an unusually complex receptor system of two DRs and three decoys. This protein has garnered intense interest as a potential candidate for cancer therapy because as a trimer it selectively induces apoptosis in many transformed cells but not in normal cells. While much of the early characterisation of Apo2L/TRAIL and its receptors relied on overexpression studies, recent work using untransfected cells has clarified how endogenous proteins transmit apoptotic signals from this ligand. In this review, we focus on the apoptotic signalling pathways stimulated by Apo2L/TRAIL and summarise what is known about its physiological role.  相似文献   

12.
Factors that regulate the induction of apoptosis of tumour cells are potential candidates for therapeutic intervention for the majority of cancers. Studying modifiers of apoptotic responses, such as members of the tumour necrosis factor receptor superfamily, may give clues as to how induction of apoptosis in tumours could be maximized to enhance the benefit of treatment regimes. Tumour necrosis factor‐related apoptosis‐inducing ligand (TRAIL) is a promising anti‐tumour molecule since its activity is specific for tumour cell populations. TRAIL binds to death receptors, inducing apoptosis in susceptible cells. The mechanisms which determine whether tumour cells are susceptible to TRAIL are unclear, and several mechanisms have been proposed, including expression of osteoprotegerin (OPG), decoy receptors, and factors that affect intracellular signalling of pro‐apoptotic molecules, such as c‐FLIP. Here we show that experiments to modulate the activity of one of these factors, OPG, by over‐expression and also by stable knockdown of OPG expression, alters the TRAIL sensitivity of PC3 prostate cancer cells. However we show that some observed effects, which appear to support the hypothesis that OPG prevents TRAIL‐induced apoptosis of tumour cells, may be due to variation of the TRAIL response of sub‐clones of tumour cells, even within a cloned population. These results highlight potential limitations of experiments designed to test contribution of factors affecting intrinsic apoptosis susceptibility using cloned tumour cell populations. J. Cell. Biochem. 104: 1452–1464, 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

13.
Recombinant, soluble TNF-related apoptosis-inducing ligand (TRAIL) is currently being developed as a promising natural immune molecule for trial in cancer patients because it selectively induces apoptosis in transformed or stressed cells but not in most normal cells. In cancer patients, phase 1 and 2 clinical trials using agonistic mAbs that engage the human TRAIL receptors DR4 and DR5 have also provided encouraging results. It is now evident that TRAIL suppresses autoimmune disease in various experimental animal models, suggesting that the therapeutic value of recombinant TRAIL and agonistic DR4 and DR5 mAbs might also extend to the suppression of autoimmune disease. This review provides an insight into our current understanding of the role(s) of TRAIL in disease, with a specific focus on cancer and autoimmunity. We also emphasize biological agents and drugs that sensitize tumour cells to TRAIL-mediated apoptosis and discuss the potential molecular basis for their sensitization.  相似文献   

14.
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the tumor necrosis factor super-family and signals via two death receptors, TRAIL-R1 and TRAIL-R2, and two decoy receptors, TRAIL-R3 and TRAIL-R4, differently expressed in normal and cancer cells. TRAIL is mainly studied for its capacity to induce apoptosis preferentially in cancer cells. TRAIL is expressed in a variety of human tissues, in particular in the lymphoid system, suggesting a strong physiological role in the innate immunity. This review will focus on TRAIL gene structure and regulation, protein folding, tissue expression and molecular signalling. Finally, the potential use of TRAIL as anticancer treatment alone or in combination therapy as well as the use of drugs which signal via TRAIL and its receptors will be analyzed.  相似文献   

15.
A subset of tumour necrosis factor receptor family members is involved in death transducing signals and is, therefore, referred as the "death receptors." Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis in many tumour cells but only rarely in normal cells. Five distinct receptors have been described for TRAIL: TRAIL R1 (DR4), TRAIL R2 (DR5, TRICK), TRAIL R3 (TRID, DcR1), TRAIL R4 (TRUNDD, DcR2), and osteoprotegerin. In the Eighth International Workshop on Human Leukocyte Differentiation Antigens, 10 monoclonal antibodies (mAbs) reported to be specific for TRAIL or for TRAIL receptors were submitted. In the present study, the mAb specificity was determined by ELISA. Using these mAbs, investigation on the expression of TRAIL and TRAIL receptors was performed. Some of them were able to modulate TRAIL induced programmed cell death.  相似文献   

16.
17.
Induction of apoptosis in cancer cells with chemotherapy and radiation treatment is a major strategy in cancer therapy at present. Nevertheless, innate or acquired resistance has been an obstacle for conventional clinical therapy. TNF-related apoptosis inducing ligand (TRAIL/Apo-2L) is a typical member of the TNF ligand family that induces apoptosis through activating the death receptors. In recent years, considerable attention has been focused on the potential benefits of TRAIL in cancer therapy, as the majority of cancer cells are sensitive to TRAIL-induced apoptosis, while most normal cells are TRAIL-resistant. Furthermore, the use of TRAIL in combination with chemotherapeutic agents or irradiation strengthens its apoptotic effects. In this review, we will discuss the regulation mechanism of TRAIL-induced apoptosis and the molecular basis of the synergies created by its use in combination with chemotherapeutic agents and irradiation. We also analyze in detail that TRAIL may be cytotoxic, as this is a potential obstacle to its development for being used in cancer therapy.  相似文献   

18.
Resistance of normal cells to tumour necrosis factor related apoptosis inducing ligand (TRAIL) induced apoptosis is believed to be mediated by expression of two decoy receptors. Here we show that the expression and localisation of TRAIL receptors (TRAIL-Rs) vary between different cells and that resistance to TRAIL is mediated by different mechanisms. The decoy receptor, TRAIL-R3, appeared important in protection of endothelial cells, whereas lack of surface death receptor expression and as yet unknown intracellular inhibitor(s) of apoptosis downstream of caspase-3 may play a major role in protection of melanocytes and fibroblasts from TRAIL induced apoptosis, respectively. Differential subcellular location of decoy receptors may be an important determinant of their effectiveness in different types of normal cells.  相似文献   

19.
Multiple myeloma (MM) remains an incurable disease despite improvements to available treatments and efforts to identify new drug targets. Consequently new approaches are urgently required. We have investigated the potential of native tumour necrosis factor-related apoptosis-inducing ligand (TRAIL), in combination with doxorubicin, to induce apoptotic cell death in phenotypically distinct populations of myeloma cells in vitro and in vivo. The cytotoxic potential of TRAIL alone, and in combination with DOX, was assessed in vitro in purified CD138(+) and CD138(-) cells from the MM cell lines and samples from patients with MM. Mouse xenografts obtained by implanting CD138(-) MM cells were used to assess the efficacy of TRAIL, alone and in combination with DOX, in vivo. CD138(-) cells were shown to be more resistant to the cytotoxic activity of TRAIL than CD138(+) cells and have reduced expression of TRAIL death receptors. This resistance results in preferential killing of CD 138(+) cells during exposure of MM culture to TRAIL. Furthermore, prolonged exposure results in the appearance of TRAIL-resistant CD138(-) cells. However, when TRAIL is combined with doxorubicin, this results in complete eradication of MM cells in vivo. Most importantly, this treatment successfully eliminates CD138(-) cells implicated in tumour initiation and growth maintenance. These findings may explain the failure of current therapies and offer a promising new approach in the quest to cure MM and disseminated cancers.  相似文献   

20.
Abdominal aortic aneurysm (AAA) is commonly associated with atherosclerosis. Human AAA tissue displays cells undergoing all stages of apoptosis. Tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) induces apoptosis in tumour cells but not in normal cells. It has death receptors and decoy receptors. An inhibitor of TRAIL, osteoprotegerin (OPG), is involved in osteogenesis and vascular calcification. We investigated TRAIL and its receptors in AAA compared within normal aorta (NA). Both qualitative and quantitative analyses of calcification in AAA walls were determined using Von Kossa staining and pre-operation computer tomography (CT) scans. There was a significant difference in calcification level at different locations in the AAA wall (p <0.05). Apoptosis was confirmed in AAA by TUNEL assay. A significant difference in TRAIL and its receptor expression was observed between normal aortae and AAA (p<0.05). Significant differences were also observed between tissues displaying different extents of calcification for TRAIL mRNA (p<0.05) by RT-PCR examination and OPG protein (p<0.01) by protein blotting examination. We propose that this pattern of expression of TRAIL and its receptors may contribute to AAA formation and calcification in the AAA wall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号