首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
Metals and Ca, Na and K were examined in human teeth taken from inhabitants of two towns Sosnowiec and Katowice in the south of Poland (n = 170 samples) during 1993/1994. They are located in Upper Silesia, a heavily industrialised and urbanised region of Poland. The concentrations of Pb, Mn, Fe, Cd, Cu, Ni, Co, Zn and Cr were determined by AAS, and Na, Ca and K by flame photometer. Variations in the Pb/Fe, Pb/Mn, Pb/Ca and Cd/Ca ratios of elements in human teeth were examined. Influence of age, sex type of teeth on concentrations of elements for inhabitants from the two different towns (Katowice and Sosnowiec) and on levels of ratios of the elements were analysed using one-way ANOVA. Cluster Analysis was used to investigate relationships among metals. The smallest duster distances were obtained for: Ca-Fe, Mn-Cd and Na-Co, which indicated the strongest relation between elements in teeth for the investigated population living in a heavily industrialised and urbanised region.  相似文献   

2.
We investigated how the K/Ca, Na/Ca, Mg/Ca, and Sr/Ca ratios of powders ground from Porites coral skeletons are changed by cumulative chemical treatments to the powders: first with distilled/deionized water (DDW), next with 30?% H2O2 and then with 0.004?mol?l?1 HNO3. The K/Ca, Na/Ca, and Mg/Ca ratios were decreased with the DDW treatment and then increased with the H2O2 and HNO3 treatments; the Sr/Ca ratio was slightly decreased through the cumulative treatments, suggesting fine-scale (tens of ??m or less) elemental heterogeneities in the skeleton??K, Na, and Mg are significantly enriched at the skeletal surface and also at the center of calcification (COC); in contrast, the heterogeneity of Sr is very small. We suggest that the principal mechanisms of K incorporation into coral skeleton are (1) ion incorporation into lattice defects/distortions and (2) ion adsorption onto crystal discontinuities (including crystal?Corganic matter interfaces) as forms of K+ and KSO4 ?. Furthermore, we measured the element/Ca ratios of a modern Porites coral skeleton along its growth direction at 2-mm intervals. Results showed that all the element/Ca ratios displayed annual cycles, that the K/Ca and Na/Ca ratios covaried with each other, and that the annual-minimum K/Ca and Na/Ca ratios coincided with the annual high-density band in the skeleton. It is unclear what environmental factors may cause the covarying annual cycles of the K/Ca and Na/Ca ratios; however, as a possible explanation, the cycles may be due not to environmental factors, but to a combined effect of (1) the K and Na enrichment at the COC, (2) annual bands of high- and low-density skeleton, and (3) mm-scale element/Ca measurements along the skeletal growth direction. This kind of effect on geochemical proxies of which the concentrations significantly differ between the COC and surrounding skeleton may generate false or distorted paleoenvironmental signals.  相似文献   

3.
Contribution of Na/Ca transport to the resting membrane potential   总被引:1,自引:1,他引:0       下载免费PDF全文
Relations are derived that describe the combined effects of electrodiffusion, the Na/K pump, and Na/Ca transport by carrier on the resting membrane potential. Equations are derived that apply to both steady-state and non-steady-state conditions. Some example calculations from the equations are plotted at different permeability coefficient ratios, PK:PCa:PNa. The equations predict a depolarizing action of Na/Ca transport when more than two Na ions per Ca ion are transported by the carrier. For all permeability ratios examined, a steady state for Ca ions is achieved with at most a few millivolts of depolarization.  相似文献   

4.
The transport stoichiometry is an essential property of antiporter and symporter transport proteins. In this study, we determined the transport stoichiometry of the retinal cone potassium-dependent Na/Ca exchanger (NCKX) expressed in sodium-loaded cultured insect cells. The Na/Ca and Rb/Ca coupling ratios were obtained by direct measurements of the levels of (86)Rb and (45)Ca uptake and sodium release associated with reverse Na/Ca exchange. Rb/Ca coupling ratios of 0.98 [standard deviation (SD) of 0.12, 15 observations] and 0.92 (SD of 0.12, 13 observations) were obtained for the chicken and human retinal cone NCKX, respectively. Na/Ca coupling ratios of 4.11 (SD of 0.24, 10 observations) and 3.98 (SD of 0.34, 15 observations) were obtained for the chicken and human retinal cone NCKX, respectively, whereas a lower average coupling ratio of 3.11 (SD of 0.34, 10 observations) was obtained with cells expressing the bovine Na/Ca exchanger (NCX1). These results are consistent with a 4Na/1Ca + 1K stoichiometry for retinal cone NCKX. High Five cells expressing full-length dolphin rod NCKX, Caenorhabditis elegans NCKX, or bovine rod NCKX from which the two large hydrophilic loops were removed all showed a significant calcium-dependent (86)Rb uptake, whereas no calcium-dependent (86)Rb uptake was observed in cells expressing bovine NCX1. The calcium dependence of (45)Ca uptake yielded values between 1 and 2.5 microM for the external calcium dissociation constant of the different NCKX proteins studied here.  相似文献   

5.
In order to assess and compare the species-specific mineral metabolism of various plants, we raised eight selected species from different families under identical nutritional conditions. Five different nutrient solutions with varying Ca/K ratios were used. After two months of growth, the leaves were harvested, arranged according to age, and analyzed with respect to their K, Ca, and Mg contents. The ion ratios, the changes of ion contents with increasing age, the differences in water- and acid-soluble Ca (calcium oxalate), and the dependence of ion uptake on variations of ion concentrations in the solutions revealed a species-specific (“physiotypic”) feature of mineral metabolism. These features are discussed taking into consideration the ecological demands of the investigated species, and assuming that the physiological peculiarities of a species should affect its ecological behavior.  相似文献   

6.
Rapeseed (Brassica napus) is a crop relatively tolerant to salt and sodium. Our objective was to study the interactions between Na, K and Ca and their relationship with its yield under the isolated effects of soil salinity or sodicity.Two experiments were carried out using pots filled with the Ah horizon of a Typic Natraquoll. There were three salinity levels (2.3 dS m-1; 6.0 dS m-1 and 10.0 dS m-1) and three sodicity levels, expressed as sodium adsorption ratios (SAR: 12; 27 and 44). The soil was kept near field capacity.As soil salinity increased, the K/Na and Ca/Na ratios in the tissues decreased markedly but yields and aerial biomass production were not affected. As soil SAR value increased, the K/Na and Ca/Na ratios in plants and K-Na and Ca-Na selectivities decreased. Plants could not maintain their Ca concentration in soil with a high SAR. The grain yield and biomass production diminished significantly in the highest SAR treatment. Our results are consistent with those showing detrimental osmotic effects of salts in Brassica napus. Conversely, under sodicity, the K/Na and Ca/Na ratios in plant tissues decreased considerably, in accordance with grain and biomass production. These results show that the effects of sodicity are different from those of salinity.  相似文献   

7.
Summary A study conducted in pots to evaluate the effect of different Mg/Ca ratios (2, 4, 8 and 16) and electrolyte concentrations (20 and 80 meq/l) at SAR 10 in irrigation water on the nutrient uptake and yield of wheat crop in two soils revealed that the average grain and dry matter yields of wheat decreased significantly with an increase in Mg/Ca ratio in irrigation water, but the magnitude of decrease was greater at higher electrolyte concentration than at lower electrolyte concentration. The concentration of Na in both straw and grain of wheat increased and that of K decreased with an increase in Mg/Ca ratio and electrolyte concentration of irrigation water, which led to higher Na/Ca and Na/K ratios in the plant. Further, the concentration of Ca and Mg both in straw as well as in grain increased with increasing electrolyte concentration of the irrigation water. An increasing proportion of Mg in saline irrigation water resulted in decreased concentration of Ca and increased concentration of Mg in both straw and grain of wheat crop. It was also noticed that the increasing proportion of Mg over Ca in the poor quality irrigation water increased the P content of both straw and grain of wheat crop.  相似文献   

8.
The effects of extracellular K+ in relation to extracellular Ca2+ on acid production were studied. Studies were performed in vitro using isolated cells from rat stomachs, and acid production was indirectly determined by 14C-aminopyrine (AP) accumulation. In the absence of K+ in the incubation medium histamine-stimulated AP accumulation ratios were significantly decreased independently in the presence or absence of extracellular Ca2+. Under basal conditions, in the absence of extracellular Ca2+, increasing concentrations of extracellular K+ enhanced AP accumulation ratios to significantly higher than those found in the presence of Ca2+. In histamine-, cAMP-, and carbachol-stimulated parietal cells, high K+ concentrations increased AP accumulation significantly less in Ca(2+)-free than in Ca(2+)-containing media. High K+ also induced significantly both an increase in cytosolic free Ca2+ concentration and 45Ca2+ uptake. The present results confirmed the importance of K+ in gastric acid production and suggested a role for Ca2+ as a modulator of mechanisms of parietal cell stimulation.  相似文献   

9.
Maintaining cellular Na(+)/K(+) homeostasis is pivotal for plant survival in saline environments. However, knowledge about the molecular regulatory mechanisms of Na(+)/K(+) homeostasis in plants under salt stress is largely lacking. In this report, the Arabidopsis double mutants atrbohD1/F1 and atrbohD2/F2, in which the AtrbohD and AtrbohF genes are disrupted and generation of reactive oxygen species (ROS) is pronouncedly inhibited, were found to be much more sensitive to NaCl treatments than wild-type (WT) and the single null mutant atrbohD1 and atrbohF1 plants. Furthermore, the two double mutant seedlings had significantly higher Na(+) contents, lower K(+) contents, and resultant greater Na(+)/K(+) ratios than the WT, atrbohD1, and atrbohF1 under salt stress. Exogenous H(2)O(2) can partially reverse the increased effects of NaCl on Na(+)/K(+) ratios in the double mutant plants. Pre-treatments with diphenylene iodonium chloride, a widely used inhibitor of NADPH oxidase, clearly enhanced the Na(+)/K(+) ratios in WT seedlings under salt stress. Moreover, NaCl-inhibited inward K(+) currents were arrested, and NaCl-promoted increases in cytosolic Ca(2+) and plasma membrane Ca(2+) influx currents were markedly attenuated in atrbohD1/F1 plants. No significant differences in the sensitivity to osmotic or oxidative stress among the WT, atrbohD1, atrbohF1, atrbohD1/F1, and atrbohD2/F2 were observed. Taken together, these results strongly suggest that ROS produced by both AtrbohD and AtrbohF function as signal molecules to regulate Na(+)/K(+) homeostasis, thus improving the salt tolerance of Arabidopsis.  相似文献   

10.
The minimum calcium requirements, relative importance of buffering and optimum ratio of calcium to magnesium, calcium to sodium, and calcium to potassium ions were determined for laboratory populations ofBiomphalaria pfeifferi and related to suggested limiting factors for the natural distribution of this species. Snails were reared in a range of concentrations of both calcium bicarbonate and unbuffered calcium sulphate from 0.5 to 20 mg/l as Ca++ and also in a series of media with a constant concentration of 2 mg/l as Ca++ but with a range of Ca/Mg, Ca/Na and Ca/K ratios of 4.0 to 0.1. Shell growth, survivorship, fecundity, egg fertility, and the net reproductive rate were compared. In calcium bicarbonate cultures a concentration of 2mg/l Ca++ appeared to be the lower limit for the survival of laboratory populations but a concentration of 4 mg/l Ca++ was needed for a population to thrive. The calcium sulphate salt gave much poorer results, emphasizing the importance of the bicarbonate buffer. In the cationic ratio experiments the low Ca/Mg ratios proved to have the most damaging effects on snail populations but the effects of very low Ca/Na and Ca/K ratios could also be measured. A parallel experiment on the hatching rate of snail eggs, using similar experimental solutions, gave comparable results. The significance of these findings to snail ecology is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号