首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bursicon is the main regulator of post molting and post eclosion processes during arthropod development. The active Bursicon hormone is a heterodimer of Burs-α and Burs-β. However, adult midguts express Burs-α to regulate the intestinal stem cell niche. Here, we examined the potential expression and function of its heterodimeric partner, Burs-β in the adult midgut. Unexpectedly, our evidence suggests that Burs-β is not significantly expressed in the adult midgut. burs-β mutants displayed the characteristic developmental defects but showed wild type-like adult midguts, thus uncoupling the developmental and adult phenotypes seen in burs-α mutants. Gain of function data and ex vivo experiments using a cAMP biosensor, demonstrated that Burs-α is sufficient to drive stem cell quiescence and to activate dLGR2 in the adult midgut.

Our evidence suggests that the post developmental transactivation of dLGR2 in the adult midgut is mediated by Burs-α and that the β subunit of Bursicon is dispensable for these activities.  相似文献   


2.
On the Antarctica continent the wingless midge, Belgica antarctica (Diptera, Chironomidae) occurs further south than any other insect. The digestive tract of the larval stage of Belgica that inhabits this extreme environment and feeds in detritus of penguin rookeries has been described for the first time. Ingested food passes through a foregut lumen and into a stomodeal valve representing an intussusception of the foregut into the midgut. A sharp discontinuity in microvillar length occurs at an interface separating relatively long microvilli of the stomodeal midgut region, the site where peritrophic membrane originates, from the midgut epithelium lying posterior to this stomodeal region. Although shapes of cells along the length of this non-stomodeal midgut epithelium are similar, the lengths of their microvilli increase over two orders of magnitude from anterior midgut to posterior midgut. Infoldings of the basal membranes also account for a greatly expanded interface between midgut cells and the hemocoel. The epithelial cells of the hindgut seem to be specialized for exchange of water with their environment, with the anterior two-thirds of the hindgut showing highly convoluted luminal membranes and the posterior third having a highly convoluted basal surface. The lumen of the middle third of the hindgut has a dense population of resident bacteria. Regenerative cells are scattered throughout the larval midgut epithelium. These presumably represent stem cells for the adult midgut, while a ring of cells, marked by a discontinuity in nuclear size at the midgut-hindgut interface, presumably represents stem cells for the adult hindgut.  相似文献   

3.
In this paper we have investigated the developmental–genetic steps that shape the entero-endocrine system of Drosophila melanogaster from the embryo to the adult. The process starts in the endoderm of the early embryo where precursors of endocrine cells and enterocytes of the larval midgut, as well as progenitors of the adult midgut, are specified by a Notch signaling-dependent mechanism. In a second step that occurs during the late larval period, enterocytes and endocrine cells of a transient pupal midgut are selected from within the clusters of adult midgut progenitors. As in the embryo, activation of the Notch pathway triggers enterocyte differentiation and inhibits cells from further proliferation or choosing the endocrine fate. The third step of entero-endocrine cell development takes place at a mid-pupal stage. Before this time point, the epithelial layer destined to become the adult midgut is devoid of endocrine cells. However, precursors of the intestinal midgut stem cells (pISCs) are already present. After an initial phase of symmetric divisions which causes an increase in their own population size, pISCs start to spin off cells that become postmitotic and express the endocrine fate marker, Prospero. Activation of Notch in pISCs forces these cells into an enterocyte fate. Loss of Notch function causes an increase in the proliferatory activity of pISCs, as well as a higher ratio of Prospero-positive cells.  相似文献   

4.
The Drosophila larval and adult midguts are derived from two populations of endodermal progenitors that separate from each other in the early embryo. As larval midgut cells differentiate into an epithelial layer, adult midgut progenitors (AMPs) remain as small clusters of proliferating, undifferentiated cells attached to the basal surface of the larval gut epithelium. During the first few hours of metamorphosis, AMPs merge into a continuous epithelial tube that overgrows the larval layer and differentiates into the adult midgut; at the same time, the larval midgut degenerates. As shown in this paper, there is a second, transient pupal midgut that develops from the AMPs at the beginning of metamorphosis and that intercalates between the adult and larval midgut epithelia. Cells of the transient pupal midgut form a multilayered tube that exhibits signs of differentiation, in the form of septate junctions and rudimentary apical microvilli. Some cells of the pupal midgut develop as endocrine cells. The pupal midgut remains closely attached to the degenerating larval midgut cells. Along with these cells, pupal midgut cells are sequestered into the lumen where they form the compact “yellow body.” The formation of a pupal midgut has been reported from several other species and may represent a general feature of intestinal metamorphosis in insects.  相似文献   

5.
The adult Drosophila midgut is thought to arise from an endodermal rudiment specified during embryogenesis. Previous studies have reported the presence of individual cells termed adult midgut precursors (AMPs) as well as “midgut islands” or “islets” in embryonic and larval midgut tissue. Yet the precise relationship between progenitor cell populations and the cells of the adult midgut has not been characterized. Using a combination of molecular markers and directed cell lineage tracing, we provide evidence that the adult midgut arises from a molecularly distinct population of single cells present by the embryonic/larval transition. AMPs reside in a distinct basal position in the larval midgut where they remain through all subsequent larval and pupal stages and into adulthood. At least five phases of AMP activity are associated with the stepwise process of midgut formation. Our data shows that during larval stages AMPs give rise to the presumptive adult epithelium; during pupal stages AMPs contribute to the final size, cell number and form. Finally, a genetic screen has led to the identification of the Ecdysone receptor as a regulator of AMP expansion.  相似文献   

6.
Programmed cell death is involved with the degeneration/remodeling of larval tissues and organs during holometabolous development. The midgut is a model to study the types of programmed cell death associated with metamorphosis because its structure while degenerating is a substrate for the formation of the adult organ. Another model is the salivary glands from dipteran because their elimination involves different cell death modes. This study aimed to investigate the models of programmed cell death operating during midgut replacement and salivary gland histolysis in Bradysia hygida. We carried out experiments of real‐time observations, morphological analysis, glycogen detection, filamentous‐actin localization, and nuclear acridine orange staining. Our findings allow us to establish that an intact actin cytoskeleton is required for midgut replacement in B. hygida and nuclear condensation and acridine orange staining precede the death of the larval cells. Salivary glands in histolysis present cytoplasmic blebbing, nuclear retraction, and acridine orange staining. This process can be partially reproduced in vitro. We propose that the larval midgut death involves autophagic and apoptotic features and apoptosis is a mechanism involved with salivary gland histolysis.  相似文献   

7.
The fine structure of the alimentary canal, especially the midgut and hindgut of Lepidocampa weberi (Diplura: Campodeidae) is described. The general organization of the canal is similar to that of Campodea. The midgut epithelium is composed of columnar apical microvillated cells. Each nucleus contains a single intranuclear crystal. Close to the pyloric region, the posterior midgut cells are devoid of microvilli and intranuclear crystals. There is no special pyloric chamber as in Protura or pyloric cuticular ring as in Collembola but a morphological transformation from midgut to hindgut cells. Eight globular Malpighian papillae, consisting of distal microvillated cells and flat proximal cells, open into the gut lumen via ducts formed by hindgut cells. The structure of the hindgut is complicated and can be divided into three segments. The anterior hindgut cells have an irregular shape and compact cytoplasm. A striking interdigitation between the large bottle-shaped epithelial cells and longitudinal muscle cells occurs in the middle segment of the hindgut. The thick cuticle gives rise to long spikes projecting into the gut lumen. The posterior hindgut cells possess the morphological features for water reabsorption. Some hypotheses are advanced about the function of the different regions of the gut.  相似文献   

8.
In two archaeognathans, Lepismachilis notata and Machilis hrabei, the midgut epithelium and processes of its regeneration and degeneration have been described at the ultrastructural level. In both analysed species, the midgut epithelium is composed of epithelial and regenerative cells (regenerative nests). The epithelial cells show distinct regionalization in organelles distribution with the basal, perinuclear, and apical regions being distinguished. Degeneration of epithelial cells proceeds in a necrotic way (continuous degeneration) during the entire life of adult specimens, but just before each moult degeneration intensifies. Apoptosis has been observed. Regenerative cells fulfil the role of midgut stem cells. Some of them proliferate, while the others differentiate into epithelial cells. We compared the organisation of the midgut epithelium of M. hrabei and L. notata with zygentoman species, which have just been described.  相似文献   

9.
Hou L  Wang JX  Zhao XF 《Amino acids》2011,40(3):953-961
Midgut remodeling is a complex physiological process in holometabolous insects. During midgut remodeling, the larval midgut is decomposed by apoptosis or autophagy during metamorphosis, and the degraded larval midgut is partially absorbed as nutrients by the imaginal midgut for its formation. The molecular mechanism involved in this process is not clear. Here, we found that a Rab protein, which we have named HaRab32, is related to the organogenesis of insect imaginal midgut. Results show that HaRab32 is up-regulated in epidermis and midgut during metamorphosis. Its expression could be up-regulated by 20E. Immunohistochemistry shows Rab32 is distributed in the epithelium of the imaginal midgut during metamorphosis. Knockdown of HaRab32 by RNA interference disturbs the formation of the imaginal midgut. These data imply HaRab32 plays important roles in midgut remodeling by participating in the imaginal midgut formation.  相似文献   

10.
A polyclonal antibody against the allatostatin BLAST-3 (AGSDGRLYSFGL-NH2) of the cockroach Blattella germanica (L.) (Dictyoptera, Blattellidae) has been raised and characterized, and an ELISA (enzyme-linked immunosorbent assay) for allatostatin quantification has been developed. Allatostatin contents in brain, midgut and haemolymph have been measured in females of B. germanica during the first gonadotropic cycle. Brain allatostatin content increases steadily from adult emergence to the formation of the first ootheca. The values range from 2 ng/brain on the day of adult emergence to 25 ng/brain when the insect forms the ootheca 8 days later. In the midgut, the pattern is similar but the values are about half those of the brain. Allatostatin concentrations in the haemolymph after HPLC separation are in the nanomolar range. The occurrence of allatostatins in the haemolymph suggests that these peptides can act through a humoral pathway, as well as via nerves. The allatostatin content of both brain and midgut are high while the female is transporting the ootheca, which suggests that these peptides could be related to the low metabolic status characterising the period of oothecal transport.  相似文献   

11.

Background  

The carpenter ant Camponotus floridanus harbors obligate intracellular mutualistic bacteria (Blochmannia floridanus) in specialized cells, the bacteriocytes, intercalated in their midgut tissue. The diffuse distribution of bacteriocytes over the midgut tissue is in contrast to many other insects carrying endosymbionts in specialized tissues which are often connected to the midgut but form a distinct organ, the bacteriome. C. floridanus is a holometabolous insect which undergoes a complete metamorphosis. During pupal stages a complete restructuring of the inner organs including the digestive tract takes place. So far, nothing was known about maintenance of endosymbionts during this life stage of a holometabolous insect. It was shown previously that the number of Blochmannia increases strongly during metamorphosis. This implicates an important function of Blochmannia in this developmental phase during which the animals are metabolically very active but do not have access to external food resources. Previous experiments have shown a nutritional contribution of the bacteria to host metabolism by production of essential amino acids and urease-mediated nitrogen recycling. In adult hosts the symbiosis appears to degenerate with increasing age of the animals.  相似文献   

12.
Signal peptidase complexes (SPCs) are conserved from bacteria to human beings, and are typically composed of four to five subunits. There are four genes encoding SPC proteins in the red flour beetle, Tribolium castaneum. To understand their importance to insect development, double‐stranded RNA for each SPC gene was injected into red flour beetles at the early larval and adult stages. Knockdown of all four signal peptidase genes was lethal to larvae. Moreover, larvae had difficulty with old cuticle ecdysis. Knockdown of TcSPC12 alone did not affect pupal or adult development. When TcSPC12, TcSPC18, and TcSPC25 were knocked down in larvae, the melanization of hemocytes and midguts was observed. When knocked down in larvae and adults, TcSPC18 induced severe cell apoptosis in midguts, and the adult midgut lost the ability to maintain crypts after knockdown of TcSPC18, indicating its importance to midgut cell proliferation and differentiation. Knockdown of TcSPC22 or TcSPC25 also resulted in many apoptotic cells in the midguts. However, TcSPC12 appeared to be unimportant for midgut development. We conclude that TcSPC18 is essential for maintaining the adult midgut crypts.  相似文献   

13.
Summary By use of the artificial substrate leucyl--naphthylamide, aminopeptidase was localised in the midgut cells of the haematophagous insect Rhodnius prolixus before and at various times up to 25 days after a meal of rabbit blood. The enzyme was primarily associated with the membranes of the microvilli, with extracellular membrane layers and with the lysosomes of the midgut cells. Aminopeptidase activity was also detected on the rough endoplasmic reticulum and at the periphery of intracellular storage vesicles. The absence of aminopeptidase on the microvilli of the crop supports the conclusion that the crop is not involved in the digestion of blood-meal proteins and that protein digestion is restricted to the intestine. The sites of localisation are in accordance with models for the spatial separation of digestive enzymes in the midgut of several non-haematophagous insects, and this suggests that aminopeptidase plays a major role in the terminal digestion of the blood meal. The changes in enzyme localisation during the digestive period correlate with previously described cycles of digestive-enzyme activity and changes in midgut ultrastructure. A model for blood protein digestion in R. prolixus is described.  相似文献   

14.
15.
16.
A new species of microsporidium, Nolleria pulicis, is described and named here from the cat flea, Ctenocephalides felis. The genus Nolleria is created and placed within the family Chytridiopsidae. The family is slightly modified to accommodate certain features of intracellular development seen in N. pulicis, which is otherwise very similar to other species in the family Chytridiopsidae. Sporulation is described from ultrastructural analysis of infected midgut epithelial cells of adult C. felis. The term “multiple division by vacuolation” is proposed for describing sporogony as it occurs in this species and certain related species of microsporidia. The probable mode of transmission and apparent absence of merogony are discussed.  相似文献   

17.
Baud, A., Cuoc, C. and Alekseev, V. 222_. Ultrastructure of the digestive tract of Diacyclops thomasi (Cyclopoida, Copepoda) during different stages of encystment during a summer diapause. — Acta Zoologica (Stockholm) 85 : 181–189 Diacyclops thomasi ( Forbes, 1882 ) has a life cycle comprising a summer diapause with whole‐body encystment at the copepodid IV stage. Formed progressively, the cyst can indicate the extent of entry into diapause. In this study the ultrastructure of the midgut epithelium during encystment of CIV was compared with that of active CIV and females. In active individuals two well‐differentiated epithelial cell types were observed: vacuolar cells (B‐cells), and cells without vacuoles but with more densely packed microvilli and abundant rough endoplasmic reticulum and mitochondria (F/R cells). In encysted specimens a striking transformation of the midgut epithelial layer was noted. Only inactive nuclei with highly concentrated euchromatin and encircled by a thin rim of hyaloplasm were observed. Compartments of both urosome and especially cephalothorax displayed large lipid‐rich lacunae. At the beginning of encystment, the midgut epithelium showed an intermediate state. Changes in ultrastructure observed in the midgut epithelium of D. thomasi clearly reflect different stages of diapause, and represent clear evidence of profound reorganization, which is progressively induced by diapause in the organism.  相似文献   

18.
In Drosophila melanogaster transformants, the alcohol dehydrogenase (Adh) genes from D. affinidisjuncta and D. grimshawi show similar levels of expression except in the adult midgut where the D. affinidisjuncta gene is expressed about 10- to 20-fold more strongly. To study the arrangement of cis-acting sequences responsible for this regulatory difference, homologous restriction sites were used to create a series of chimeric genes that switched fragments from the 5 and 3 flanking regions of these two genes. Chimeric genes were introduced into the germ-line of D. melanogaster, and Adh gene expression was analyzed by measuring RNA levels. Various gene fragments in the promoter region and elsewhere influence expression in the adult midgut and in whole larvae and adults. Comparison of these results with earlier studies involving chimeras between the D. affinidisjuncta and D. hawaiiensis genes indicates that expression in the adult midgut is influenced by multiple regulatory sequences and that distinct arrangements of regulatory sequences can result in similar levels of expression both in the adult midgut and in the whole organism.  相似文献   

19.
The development of the Malpighian tubules is studied in Cloeon dipterum through all stages from the youngest larva to the adult. The Malpighian tubules are found to be outgrowths of the posterior part of the endodermal midgut and not of the ectodermal hindgut. In the adult the part of the intestine with the tubule openings becomes separated by an ingrowing fold of the epithelium from the anterior main part of the midgut that forms a large thin-walled and air-filled bladder. The characteristics of the developmental stages, which served to determine the age of the animals, are given.  相似文献   

20.
Katarzyna Siudeja 《Fly》2017,11(2):121-128
Somatic recombination is essential to protect genomes of somatic cells from DNA damage but it also has important clinical implications, as it is a driving force of tumorigenesis leading to inactivation of tumor suppressor genes. Despite this importance, our knowledge about somatic recombination in adult tissues remains very limited. Our recent work, using the Drosophila adult midgut has demonstrated that spontaneous events of mitotic recombination accumulate in aging adult intestinal stem cells and result in frequent loss of heterozygosity (LOH). In this Extra View article, we provide further data supporting long-track chromosome LOH and discuss potential mechanisms involved in the process. In addition, we further discuss relevant questions surrounding somatic recombination and how the mechanisms and factors influencing somatic recombination in adult tissues can be explored using the Drosophila midgut model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号