首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alzheimer’s disease (AD) and a rare inherited disorder of cholesterol transport, Niemann-Pick type C (NPC) share several similarities including aberrant APP processing and increased Aβ production. Previously, we have shown that the AD-like phenotype in NPC model cells involves cholesterol-dependent enhanced APP cleavage by β-secretase and accumulation of both APP and BACE1 within endocytic compartments. Since retrograde transport of BACE1 from endocytic compartments to the trans-Golgi network (TGN) is regulated by the Golgi-localized γ-ear containing ADP ribosylation factor-binding protein 1 (GGA1), we analyzed in this work a potential role of GGA1 in the AD-like phenotype of NPC1-null cells. Overexpression of GGA1 caused a shift in APP processing towards the non-amyloidogenic pathway by increasing the localization of APP at the cell surface. However, the observed effect appear to be independent on the subcellular localization and phosphorylation state of BACE1. These findings show that the AD-like phenotype of NPC model cells can be partly reverted by promoting a non-amyloidogenic processing of APP through the upregulation of GGA1 supporting its preventive role against AD.  相似文献   

2.
β-Amyloid (Aβ) peptides are generated from the successive proteolytic processing of the amyloid precursor protein (APP) by the β-APP cleaving enzyme (BACE or β-secretase) and the γ-secretase complex. Initial cleavage of APP by BACE leads into the amyloidogenic pathway, causing or exacerbating Alzheimer's disease. Therefore, their intracellular traffic can determine how easily and frequently BACE has access to and cleaves APP. Here, we have used polarized Madin-Darby canine kidney (MDCK) cells stably expressing APP and BACE to examine the regulation of their polarized trafficking by retromer, a protein complex previously implicated in their endosome-to-Golgi transport. Our data show that retromer interacts with BACE and regulates its postendocytic sorting in polarized MDCK cells. Depleting retromer, inhibiting retromer function, or preventing BACE interaction with retromer, alters trafficking of BACE, which thereby increases its localization in the early endocytic compartment. As a result, this slows endocytosis of apically localized BACE, promoting its recycling and apical-to-basolateral transcytosis, which increases APP/BACE interaction and subsequent cleavage of APP toward generation and secretion of Aβ peptides.  相似文献   

3.
Inhibition of β-secretase (BACE1) is a key therapeutic approach in Alzheimer's disease (AD), as BACE1 initiates amyloid-β (Aβ) cleavage from the β-amyloid precursor protein (APP). As Aβ reductions in mice lacking one BACE1 allele diverged considerably between studies we investigated the effect of BACE1 knock-out in more detail. With both BACE1 alleles the Swedish mutation (APP23 mice) increased APP processing and shifted it towards the β-secretase pathway as compared with non-mutated APP expressed at a similar level (APP51/16 mice). This effect was much smaller then observed in cell culture. An about 50% decrease in BACE1 enzyme activity resulted in a sub-proportional Aβ reduction with the Swedish mutation (-20%) and even less for non-mutated APP (-16%). In wild-type mice, the Aβ reduction may be even further diminished. Other metabolites of the β-secretase pathway decreased accordingly while the alternative α-secretase pathway increased. Complete BACE1 deletion strongly enhanced these changes. The remaining Aβ signal also described by others can be explained by assay cross-reactivity with other APP metabolites supporting BACE1 as the major β-secretase. Our data indicate that BACE1 is in excess over APP at the cleavage site(s). Alterations in APP expression or substrate properties, therefore, quantitatively change its cleavage and Aβ generation.  相似文献   

4.
It has been suggested that cholesterol may modulate amyloid-β (Aβ) formation, a causative factor of Alzheimer’s disease (AD), by regulating distribution of the three key proteins in the pathogenesis of AD (β-amyloid precursor protein (APP), β-secretase (BACE1) and/or presenilin 1 (PS1)) within lipid rafts. In this work we tested whether cholesterol accumulation upon NPC1 dysfunction, which causes Niemann Pick type C disease (NPC), causes increased partitioning of APP into lipid rafts leading to increased CTF/Aβ formation in these cholesterol-rich membrane microdomains. To test this we used CHO NPC1−/− cells (NPC cells) and parental CHOwt cells. By sucrose density gradient centrifugation we observed a shift in fl-APP/CTF compartmentalization into lipid raft fractions upon cholesterol accumulation in NPC vs. wt cells. Furthermore, γ-secretase inhibitor treatment significantly increased fl-APP/CTF distribution in raft fractions in NPC vs. wt cells, suggesting that upon cholesterol accumulation in NPC1-null cells increased formation of APP-CTF and its increased processing towards Aβ occurs in lipid rafts. Our results support that cholesterol overload, such as in NPC disease, leads to increased partitioning of APP/CTF into lipid rafts resulting in increased amyloidogenic processing of APP in these cholesterol-rich membranes. This work adds to the mechanism of the cholesterol-effect on APP processing and the pathogenesis of Alzheimer’s disease and supports the role of lipid rafts in these processes.  相似文献   

5.
Assemblies of β-amyloid (Aβ) peptides are pathological mediators of Alzheimer's Disease (AD) and are produced by the sequential cleavages of amyloid precursor protein (APP) by β-secretase (BACE1) and γ-secretase. The generation of Aβ is coupled to neuronal activity, but the molecular basis is unknown. Here, we report that the immediate early gene Arc is required for activity-dependent generation of Aβ. Arc is a postsynaptic protein that recruits endophilin2/3 and dynamin to early/recycling endosomes that traffic AMPA receptors to reduce synaptic strength in both hebbian and non-hebbian forms of plasticity. The Arc-endosome also traffics APP and BACE1, and Arc physically associates with presenilin1 (PS1) to regulate γ-secretase trafficking and confer activity dependence. Genetic deletion of Arc reduces Aβ load in a transgenic mouse model of AD. In concert with the finding that patients with AD can express anomalously high levels of Arc, we hypothesize that Arc participates in the pathogenesis of AD.  相似文献   

6.
Zhi P  Chia PZ  Chia C  Gleeson PA 《IUBMB life》2011,63(9):721-729
The main component of the amyloid plaques found in the brains of those with Alzheimer's disease (AD) is a polymerized form of the β-amyloid peptide (Aβ) and is considered to play a central role in the pathogenesis of this neurodegenerative disorder. Aβ is derived from the proteolytic processing of the amyloid precursor protein (APP). Beta site APP-cleaving enzyme, BACE1 (also known as β-secretase) is a membrane-bound aspartyl protease responsible for the initial step in the generation of Aβ peptide and is thus a prime target for therapeutic intervention. Substantive evidence now indicates that the processing of APP by BACE1 is regulated by the intracellular sorting of the enzyme and, moreover, perturbations in these intracellular trafficking pathways have been linked to late-onset AD. In this review, we highlight the recent advances in the understanding of the regulation of the intracellular sorting of BACE1 and APP and illustrate why the trafficking of these cargos represent a key issue for understanding the membrane-mediated events associated with the generation of the neurotoxic Aβ products in AD.  相似文献   

7.
The β site APP cleaving enzyme 1 (BACE1) is the rate-limiting β-secretase enzyme in the amyloidogenic processing of APP and Aβ formation, and therefore it has a prominent role in Alzheimer's disease (AD) pathology. Recent evidence suggests that the prion protein (PrP) interacts directly with BACE1 regulating its β-secretase activity. Moreover, PrP has been proposed as the cellular receptor involved in the impairment of synaptic plasticity and toxicity caused by Aβ oligomers. Provided that common pathophysiologic mechanisms are shared by Alzheimer's and Creutzfeldt-Jakob (CJD) diseases, we investigated for the first time to the best of our knowledge a possible association of a common synonymous BACE1 polymorphism (rs638405) with sporadic CJD (sCJD). Our results indicate that BACE1 C-allele is associated with an increased risk for developing sCJD, mainly in PRNP M129M homozygous subjects with early onset. These results extend the very short list of genes (other than PRNP) involved in the development of human prion diseases; and support the notion that similar to AD, in sCJD several loci may contribute with modest overall effects to disease risk. These findings underscore the interplay in both pathologies of APP, Aβ oligomers, ApoE, PrP and BACE1, and suggest that aging and perhaps vascular risk factors may modulate disease pathologies in part through these key players.  相似文献   

8.
β-Site APP-cleaving enzyme (BACE1) cleaves the amyloid precursor protein (APP) at the β-secretase site to initiate the production of Aβ peptides. These accumulate to form toxic oligomers and the amyloid plaques associated with Alzheimer's disease (AD). An increase of BACE1 levels in the brain of AD patients has been mostly attributed to alterations of its intracellular trafficking. Golgi-associated adaptor proteins, GGA sort BACE1 for export to the endosomal compartment, which is the major cellular site of BACE1 activity. BACE1 undergoes recycling between endosome, trans-Golgi network (TGN), and the plasma membrane, from where it is endocytosed and either further recycled or retrieved to the endosome. Phosphorylation of Ser498 facilitates BACE1 recognition by GGA1 for retrieval to the endosome. Ubiquitination of BACE1 C-terminal Lys501 signals GGA3 for exporting BACE1 to the lysosome for degradation. In addition, the retromer mediates the retrograde transport of BACE1 from endosome to TGN. Decreased levels of GGA proteins and increased levels of retromer-associated sortilin have been associated with AD. Both would promote the co-localization of BACE1 and the amyloid precursor protein in the TGN and endosomes. Decreased levels of GGA3 also impair BACE1 degradation. Further understanding of BACE1 trafficking and its regulation may offer new therapeutic approaches for the treatment of Alzheimer's disease.  相似文献   

9.
Alzheimer's disease (AD) is characterized by progressive accumulation of misfolded proteins, which form senile plaques and neurofibrillary tangles, and the release of inflammatory mediators by innate immune responses. β-Amyloid peptide (Aβ) is derived from sequential processing of the amyloid precursor protein (APP) by membrane-bound proteases, namely the β-secretase, BACE1, and γ-secretase. Membrane trafficking plays a key role in the regulation of APP processing as both APP and the processing secretases traffic along distinct pathways. Genome wide sequencing studies have identified several AD susceptibility genes which regulate membrane trafficking events. To understand the pathogenesis of AD it is critical that the cell biology of APP and Aβ production in neurons is well defined. This review discusses recent advances in unravelling the membrane trafficking events associated with the production of Aβ, and how AD susceptible alleles may perturb the sorting and transport of APP and BACE1. Mechanisms whereby inflammation may influence APP processing are also considered.  相似文献   

10.
Proteolytic processing of the amyloid-β precursor protein (APP) and generation of amyloid-β peptide (Aβ) are key events in Alzheimer's disease (AD) pathogenesis. Cell biological and genetic evidence has implicated the low-density lipoprotein and sorting receptor LR11/SorLA in AD through mechanisms related to APP and Aβ production. Defining the cellular pathway(s) by which LR11 modulates Aβ production is critical to understanding how changes in LR11 expression affect the development of Aβ pathology in AD progression. We report that the LR11 ectodomain is required for LR11-mediated reduction of Aβ and that mutagenesis of the LR11 Golgi-localizing, γ-adaptin ear homology domain, ADP-ribosylation factor (GGA)-binding motif affects the endosomal distribution of LR11, as well as LR11's effects on APP traffic and Aβ production. Targeted small interfering RNA (siRNA) knockdown studies of GGA1, GGA2, and GGA3 indicate a surprising degree of specificity toward GGA1, suggesting that GGA1 is a candidate regulator of LR11 traffic. Additional siRNA knockdown experiments reveal that GGA1 is necessary for both LR11 and β-site APP-cleaving enzyme-1 (BACE1) modulation of APP processing to Aβ. Mutagenesis of BACE1 serine 498 to alanine enhances BACE1 targeting to LR11-positive compartments and nullifies LR11-mediated reduction of Aβ. On basis of these results, we propose that GGA1 facilitates LR11 endocytic traffic and that LR11 modulates Aβ levels by promoting APP traffic to the endocytic recycling compartment.  相似文献   

11.
Zhang M  Deng Y  Luo Y  Zhang S  Zou H  Cai F  Wada K  Song W 《Journal of neurochemistry》2012,120(6):1129-1138
Deposition of amyloid β protein (Aβ) in the brain is the hallmark of Alzheimer's disease (AD) pathogenesis. Beta-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1) is the β-secretase in vivo essential for generation of Aβ. Previously we demonstrated that BACE1 is ubiquitinated and the degradation of BACE1 is mediated by the ubiquitin-proteasome pathway (UPP). However the mechanism underlying regulation of BACE1 degradation by UPP remains elusive. Ubiquitin carboxyl-terminal hydrolase L1 (UCHL1) is a deubiquitinating enzyme highly specific to neuron, catalyzing the hydrolysis of ubiquitin conjugates from ubiquitinated substrates. UCHL1 regulates ubiquitin-dependent protein degradation. However, whether UCHL1 is particularly involved in the proteasomal degradation of BACE1 and what is the role of UCHL1 in AD pathogenesis remain elusive. To investigate the effect of UCHL1 on BACE1 degradation, HUCH cells, a UCHL1 stably over-expressed HEK293 cell line, was established. We found that inhibition of UCHL1 significantly increased BACE1 protein level in a time-dependent manner. Half life of BACE1 was reduced in HUCH cells compared with HEK. Over-expression of UCHL1 decreased APP C-terminal fragment C99 and Aβ levels in HUCH cells. Moreover, disruption of Uchl1 gene significantly elevated levels of endogenous BACE1, C99 and Aβ in the Uchl1-null gad mice. These results demonstrated that UCHL1 accelerates BACE1 degradation and affects APP processing and Aβ production. This study suggests that potentiation of UCHL1 might be able to reduce the level of BACE1 and Aβ in brain, which makes it a novel target for AD drug development.  相似文献   

12.
Alzheimer's disease (AD) is the most common form of dementia, however incurable so far. It is widely accepted that aggregated amyloid β (Aβ) peptides play a crucial role for the pathogenesis of AD, as they cause neurotoxicity and deposit as so-called Aβ plaques in AD patient brains. Aβ peptides derive from the amyloid precursor protein (APP) upon consecutive cleavage at the β- and γ-secretase site. Hence, mutations in the APP gene are often associated with autosomal dominant inherited AD. Almost thirty years ago, two mutations at the β-secretase site were observed in two Swedish families (termed Swedish APP (APPswe) mutations), which led to early-onset AD. Consequently, APPswe was established in almost every common AD mouse model, as it contributes to early Aβ plaque formation and cognitive impairments. Analyzing these APPswe-based mouse models, the aspartyl protease BACE1 has been evolving as the prominent β-secretase responsible for Aβ release in AD and as the most important therapeutic target for AD treatment. However, with respect to β-secretase processing, the very rare occurring APPswe variant substantially differs from wild-type APP. BACE1 dominates APPswe processing resulting in the release of Aβ1-x, whereas N-terminally truncated Aβ forms are scarcely generated. However, these N-terminally truncated Aβ species such as Aβ2-x, Aβ3-x and Aβ4-x are elevated in AD patient brains and exhibit an increased potential to aggregate compared to Aβ1-x peptides. Proteases such as meprin β, cathepsin B and ADAMTS4 were identified as alternative β-secretases being capable of generating these N-terminally truncated Aβ species from wild-type APP. However, neither meprin β nor cathepsin B are capable of generating N-terminally truncated Aβ peptides from APPswe. Hence, the role of BACE1 for the Aβ formation during AD might be overrepresented through the excessive use of APPswe mouse models. In this review we critically discuss the consideration of BACE1 as the most promising therapeutic target. Shifting the focus of AD research towards alternative β secretases might unveil promising alternatives to BACE1 inhibitors constantly failing in clinical trials due to ineffectiveness and harmful side effects.  相似文献   

13.
目的:探讨缺氧对稳定表达人淀粉样前体蛋白的HEK293细胞(HEK293-APP695)存活及相关蛋白表达的影响,为深入研究缺氧对阿尔茨海默病的调节作用提供稳定的细胞模型。方法:利用缺氧手套箱(0.3% O2)处理HEK293-APP695细胞,CCK-8法检测细胞的存活情况;Western blot检测缺氧条件下阿尔茨海默病(AD)相关蛋白APP、APP-CTFs和BACE1的表达变化。结果:缺氧处理后,HEK293-APP695细胞的存活率明显下降,APP表达降低,其剪切体APP-CTFs表达升高。结论:缺氧导致APP剪切的增多,抑制细胞的存活,提示缺氧可能通过影响BACE1的活性在AD的发病进程中起重要的调节作用。  相似文献   

14.
Amyloid-β (Aβ) peptide accumulation in the brain is central to the pathogenesis of Alzheimer's disease (AD). Aβ is produced through proteolytic processing of a transmembrane protein, β-amyloid precursor protein (APP), by β- and γ-secretases. Mounting evidence has demonstrated that alterations in APP cellular trafficking and localization directly impact its processing to Aβ. Members of the low-density lipoprotein receptor family, including LRP, LRP1B, SorLA/LR11, and apoER2, interact with APP and regulate its endocytic trafficking. Additionally, APP trafficking and processing are greatly affected by cellular cholesterol content. In this review, we summarize the current understanding of the roles of lipoprotein receptors and cholesterol in APP trafficking and processing and their implication for AD pathogenesis and therapy.  相似文献   

15.
The link between cholesterol and Alzheimer's disease has recently been revealed in Niemann–Pick type C disease. We found that NPC1?/? cells show decreased expression of APP at the cell surface and increased processing of APP through the β-secretase pathway resulting in increased C99, sAPPβ and intracellular Aβ40 levels. This effect is dependent on increased cholesterol levels, since cholesterol depletion reversed cell surface APP expression and lowered Aβ/C99 levels in NPC1?/? cells to the levels observed in wt cells. Finding that overexpression of C99, a direct γ-secretase substrate, does not lead to increased intracellular Aβ levels in NPC1?/? cells vs. CHOwt suggests that the effect on intracellular Aβ upon cholesterol accumulation in NPC1?/? cells is not due to increased APP cleavage by γ-secretase. Our results indicate that cholesterol may modulate APP processing indirectly by modulating APP expression at the cell surface and thus its cleavage by β-secretase.  相似文献   

16.

Background

The generation of the amyloid-β peptide (Aβ) through the proteolytic processing of the amyloid precursor protein (APP) is a central event in the pathogenesis of Alzheimer's disease (AD). Recent studies highlight APP endocytosis and localization to lipid rafts as important events favoring amyloidogenic processing. However, the precise mechanisms underlying these events are poorly understood. ApoER2 is a member of the low density lipoprotein receptor (LDL-R) family exhibiting slow endocytosis rate and a significant association with lipid rafts. Despite the important neurophysiological roles described for ApoER2, little is known regarding how ApoER2 regulates APP trafficking and processing.

Results

Here, we demonstrate that ApoER2 physically interacts and co-localizes with APP. Remarkably, we found that ApoER2 increases cell surface APP levels and APP association with lipid rafts. The increase of cell surface APP requires the presence of ApoER2 cytoplasmic domain and is a result of decreased APP internalization rate. Unexpectedly, ApoER2 expression correlated with a significant increase in Aβ production and reduced levels of APP-CTFs. The increased Aβ production was dependent on the integrity of the NPxY endocytosis motif of ApoER2. We also found that expression of ApoER2 increased APP association with lipid rafts and increased γ-secretase activity, both of which might contribute to increased Aβ production.

Conclusion

These findings show that ApoER2 negatively affects APP internalization. However, ApoER2 expression stimulates Aβ production by shifting the proportion of APP from the non-rafts to the raft membrane domains, thereby promoting β-secretase and γ-secretase mediated amyloidogenic processing and also by incrementing the activity of γ-secretase.  相似文献   

17.
Alzheimer disease is characterized by accumulation of the β-amyloid peptide (Aβ) generated by β- and γ-secretase processing of the amyloid precursor protein (APP). The intake of the polyunsaturated fatty acid docosahexaenoic acid (DHA) has been associated with decreased amyloid deposition and a reduced risk in Alzheimer disease in several epidemiological trials; however, the exact underlying molecular mechanism remains to be elucidated. Here, we systematically investigate the effect of DHA on amyloidogenic and nonamyloidogenic APP processing and the potential cross-links to cholesterol metabolism in vivo and in vitro. DHA reduces amyloidogenic processing by decreasing β- and γ-secretase activity, whereas the expression and protein levels of BACE1 and presenilin1 remain unchanged. In addition, DHA increases protein stability of α-secretase resulting in increased nonamyloidogenic processing. Besides the known effect of DHA to decrease cholesterol de novo synthesis, we found cholesterol distribution in plasma membrane to be altered. In the presence of DHA, cholesterol shifts from raft to non-raft domains, and this is accompanied by a shift in γ-secretase activity and presenilin1 protein levels. Taken together, DHA directs amyloidogenic processing of APP toward nonamyloidogenic processing, effectively reducing Aβ release. DHA has a typical pleiotropic effect; DHA-mediated Aβ reduction is not the consequence of a single major mechanism but is the result of combined multiple effects.  相似文献   

18.
Alzheimer's disease is characterized by the progressive accumulation of extracellular deposits of the amyloid β-peptide (Aβ) and intraneuronal aggregates of the microtubule associated protein tau. Strong genetic, biochemical and cell biological evidence indicates critical roles of Aβ in the initiation of the pathogenic process, while tau might mediate its toxicity and neurodegeneration. Aβ is generated by proteolytic processing of the amyloid precursor protein (APP) by β- and γ-secretases. Alternatively, APP can also be cleaved by α-secretase within the Aβ domain, thereby precluding subsequent production of Aβ. APP and the three secretases are integral membrane proteins and follow secretory and endocytic trafficking pathways. Thus, the membrane lipid composition could play important roles in trafficking and metabolism of Alzheimer's disease related proteins. Sphingolipids and especially complex gangliosides are abundant and characteristic components of neuronal membranes. Together with cholesterol, they confer unique characteristics to membrane domains, thereby regulating subcellular trafficking and signaling pathways. Thus, sphingolipids emerged to important modulators of biological processes including cell growth, differentiation, and senescence. Defects in sphingolipid catabolism are long known to cause severe lysosomal storage disorders, often characterized by neurological phenotypes. In recent studies it became evident that impaired sphingolipid metabolism could also be involved in Alzheimer's disease.  相似文献   

19.
Alzheimer's disease (AD), the most common age-associated dementing disorder, is pathologically manifested by progressive cognitive dysfunction concomitant with the accumulation of senile plaques consisting of amyloid-β (Aβ) peptide aggregates in the brain of affected individuals. Aβ is derived from a type I transmembrane protein, amyloid precursor protein (APP), by the sequential proteolytic events mediated by β-site APP cleaving enzyme 1 (BACE1) and γ-secretase. Multiple lines of evidence have implicated cholesterol and cholesterol-rich membrane microdomains, termed lipid rafts in the amyloidogenic processing of APP. In this review, we summarize the cell biology of APP, β- and γ-secretases and the data on their association with lipid rafts. Then, we will discuss potential raft targeting signals identified in the secretases and their importance on amyloidogenic processing of APP.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号