首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
2.
Varshavsky A  Turner G  Du F  Xie Y 《Biological chemistry》2000,381(9-10):779-789
Eukaryotes contain a highly conserved multienzyme system which covalently links a small protein, ubiquitin, to a variety of intracellular proteins that bear degradation signals recognized by this system. The resulting ubiquitin-protein conjugates are degraded by the 26S proteasome, an ATP-dependent protease. Pathways that involve ubiquitin play major roles in a huge variety of processes, including cell differentiation, cell cycle, and responses to stress. In this article we briefly review the design of the ubiquitin system, and describe two recent advances, the finding that ubiquitin ligases interact with specific components of the 26S proteasome, and the demonstration that peptides accelerate their uptake into cells by activating the N-end rule pathway, one of several proteolytic pathways of the ubiquitin system.  相似文献   

3.
Conjugate ubiquitin was previously found in the nucleus, cytoplasm, and membranes of eukaryotic cells while the enzymes of the ubiquitin-conjugating system appear to be cytoplasmic. We have prepared the mitochondrial fraction from rabbit brain by discontinuous density gradient ultracentrifugation and by Western blotting, using a specific antibody against conjugate ubiquitin, showing that it contains ubiquitin conjugates in a very wide molecular weight range. Electron microscopy and measurement of specific enzyme markers show that this fraction not only contains mitochondria but also some endoplasmic reticulum vesicles. Immunostaining with anti-ubiquitin IgG followed by immunodecoration with colloidal gold particles provides evidence for the presence of conjugate ubiquitin both in mitochondria and in the endoplasmic reticulum. Furthermore, this "mitochondrial fraction" shows a pronounced ATP-dependent ability to conjugate 125I-ubiquitin into a number of endogenous proteins as evidenced by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. Addition of E1, E2, and E3, the enzymes of the ubiquitin conjugating system purified from rabbit reticulocytes, does not further increase this ubiquitination nor incorporate 125I-ubiquitin into additional protein bands. The same mitochondrial fraction is not able to carry out any ATP-dependent degradation of 125I-albumin; however, it contains an isopeptidase activity able to release the covalently incorporated 125I-ubiquitin and is also able to conjugate 125I-ubiquitin to exogenous proteins as oxidized RNase. By affinity chromatography on ubiquitin-agarose of fraction II of a crude Triton X-100 extract of the mitochondrial fraction, several proteins corresponding in Mr to the E1 and E2s enzymes were obtained. These proteins were also able to form specific ubiquitin-thiol ester bounds on sodium dodecyl sulfate-polyacrylamide gels and to support 125I-ubiquitin conjugation to oxidized RNase. Detergent fractionation of the mitochondrial fraction provided evidence for a possible localization of the ubiquitin conjugating activity in the mitochondrial external membrane and endoplasmic reticulum. The presence of an active ubiquitin protein conjugating system in mitochondria and endoplasmic reticulum may be related to the turnover of organelle proteins as well as to specific cell functions such as import of proteins into mitochondria and ubiquitination of externally oriented membrane-bound proteins.  相似文献   

4.
To investigate the existence of a ubiquitin-dependent protein degradation system in the brain, the proteolytic activity of the cerebral cortex was examined. The soluble extract of rat cerebral cortex degraded 125I-radiolabeled lysozyme in an ATP-dependent manner. The ATP-dependent proteolysis was suppressed with iodoacetamide, which inhibits ubiquitin conjugation, and was abolished by blocking of the amino residues of lysozyme. These results suggest the participation of ubiquitination in the proteolytic activity. An ATP-dependent 125I-ubiquitin-conjugating activity was detected in fraction II from the cerebral cortex. The presence of ATP-dependent proteolytic activity which acted preferentially on ubiquitinated lysozyme was demonstrated, using ubiquitin-125I-lysozyme conjugates as a substrate. The proteinase had a molecular mass of 1500 kDa and displayed nucleotide dependence and sensitivity to various proteinase inhibitors similar to those of the 26S proteinase complex found in reticulocytes. Dialysis of the soluble fraction caused a decrease in the proteolytic activity of ATP-dependent and preferential for ubiquitin-lysozyme conjugates and a reciprocal increase in the ATP-independent free 125I-lysozyme-degrading activity which was scarcely detected before dialysis. The former ATP-dependent proteolytic activity may play a physiological role in the brain.  相似文献   

5.
In eukaryotes, a major route for ATP-dependent protein breakdown proceeds through covalent intermediates of target proteins destined for degradation and the highly conserved, 76 amino acid protein ubiquitin. In rabbit reticulocytes, it has been shown that hemin effectively inhibits this pathway by blocking the catabolism of ubiquitin-protein conjugates [KI = 25 microM (Haas, A. L., & Rose, I. A. (1981) Proc. Natl. Acad. Sci. U.S.A. 78, 6845-6848)]. Here, we demonstrate that hemin is also an effective inhibitor of the ubiquitin-dependent proteolytic pathway in both a higher plant, oats (Avena sativa), and yeast (Saccharomyces cerevisiae). Hemin inhibits all stages of the pathway in vitro, including ATP-dependent formation of ubiquitin-protein conjugates, disassembly of conjugates by ubiquitin-protein lyase(s) (or isopeptidases), and degradation of ubiquitin-protein conjugates by ATP-dependent protease(s). Using ubiquitin-125I-lysozyme conjugates synthesized in vitro as substrates, we determined the specific effects of hemin on the rates of disassembly and degradation separately. The concentration of hemin required for half-maximal inhibition of both processes was identical in each species, approximately 60 microM in oats and approximately 50 microM in yeast. Similar inhibitory effects were observed when two hemin analogues, mesoheme or protoporphyrin IX, were employed. These results demonstrate that the effect of hemin on ubiquitin-dependent proteolysis is not restricted to erythroid cells and as a result hemin may be a useful tool in studies of this pathway in all eukaryotic cells. These results also question models where hemin serves as a specific negative modulator of proteolysis in erythroid cells.  相似文献   

6.
Degradation of intracellular proteins via the ubiquitin- and ATP-dependent proteolytic pathway involves several steps. In the initial event, ubiquitin, an abundant 76-residue polypeptide is covalently linked to the protein substrate in an ATP-requiring reaction. Proteins marked by ubiquitin are selectively proteolyzed in a reaction that also requires ATP. Ubiquitin conjugation to proteins appears also to be involved in regulation of cell cycle and cell division, and probably in the regulation of gene expression at the level of chromatin structure. We have previously shown (Ciechanover, A., Wolin, S. L., Steitz, J. A., and Lodish, H. F. (1985) Proc. Natl. Acad. Sci. U. S. A. 82, 1341-1345) that transfer RNA is an essential component of the ubiquitin pathway. Ribonucleases strongly and specifically inhibited the degradation of 125I-labeled bovine serum albumin, while tRNA purified from reticulocyte extract could restore the proteolytic activity. Specifically, pure tRNAHis isolated by immunoprecipitation with human autoimmune serum could restore the proteolytic activity. Here we demonstrate that tRNA is required for conjugation of ubiquitin to some but not all proteolytic substrates of the ubiquitin mediated pathway. Conjugation of 125I-labeled ubiquitin to reduced carboxymethylated bovine serum albumin, alpha-lactalbumin, and soybean trypsin inhibitor was strongly and specifically inhibited by ribonucleases. Consequently, the ATP-dependent degradation of these substrates in the cell-free ubiquitin-dependent reticulocyte system was inhibited as well. Addition of tRNA to the ribonuclease inhibited system (following inhibition of the ribonuclease) restored both the conjugation activity and the ubiquitin- and ATP-dependent degradation of these substrates. Conjugation of ubiquitin to some endogenous reticulocyte proteins was also inhibited by ribonucleases and could be restored by the addition of tRNA. In striking contrast, the conjugation of radiolabeled ubiquitin to lysozyme, oxidized RNase A, alpha-casein, and beta-lactoglobulin was not affected by the ribonuclease treatment, and the degradation of these substrates was significantly accelerated by the ribonucleases. These findings indicate that there are at least two distinct ubiquitin conjugation systems. One requires tRNA, and the other is tRNA independent. These pathways, however, must share some common component(s) of the system, since the inhibition of one system accelerates the other. The possible function of tRNA in the selective conjugation reaction and the possible role of the two distinct ubiquitin marking mechanisms are discussed.  相似文献   

7.
Ubiquitin-mediated proteolysis is a major pathway for selective protein degradation in eukaryotic cells. This proteolysis pathway involves the processive covalent attachment of ubiquitin to proteolytic substrates and their subsequent degradation by a specific ATP-dependent protease complex. We have cloned the genes and characterized the function of ubiquitin-conjugating enzymes (UBCs) from the yeast Saccharomyces cerevisiae. UBC1, UBC4 and UBC5 enzymes were found to mediate selective degradation of short-lived and abnormal proteins. These enzymes have overlapping functions and constitute a UBC subfamily essential for growth. UBC1 is specifically required at early stages of growth after germination of spores. UBC4 and UBC5 enzymes generate high molecular weight ubiquitin-protein conjugates and comprise a major ubiquitin-conjugation activity in yeast cells. Moreover, these enzymes are central components of the cellular stress response.  相似文献   

8.
Ubiquitin protein conjugates are commonly detected in neuronal brain inclusions of patients with neurodegenerative disorders. The failure to eliminate the ubiquitin-protein deposits in the degenerating neurons may result from changes in the activity of the ubiquitin/ATP-dependent proteolytic pathway. This proteolytic pathway plays a major role in the degradation of short lived, abnormal and denatured proteins. Cadmium is a potent cell poison and is known to affect the ubiquitin pathway and to cause oxidative stress. Increases in protein mixed-disulfides (Pr-SSG) and decreases in glutathione (GSH) are often used as markers of oxidative stress. To investigate the relationship between the ubiquitin pathway and cellular glutathione (GSH), we treated HT4 cells (a mouse neuronal cell line) and rat mesencephalic primary cultures with different concentrations of the heavy metal. We observed marked increases in Pr-SSG as well as decreases in GSH, after exposure of HT4 cells or primary mesencephalic cultures to Cd2+. Furthermore, our results show that Cd2+ induced the accumulation of ubiquitinated proteins. Detection was by Western blotting of total cell extracts probed with antibodies that recognize ubiquitin-protein conjugates. These results suggest that the ubiquitin-pathway is closely involved in the cell response to cadmium-mediated oxidative stress. Abbreviations: GSH – glutathione; GSSG – glutathione disulfide; Pr-SSG – protein mixed disulfides.  相似文献   

9.
Posttranslational modification by ubiquitination marks defective or outlived intracellular proteins for proteolytic degradation by the 26S proteasome. The ATP-dependent, covalent ligation and formation of polyubiquitin chains on substrate proteins requires the presence and activity of a set of ubiquitin activating and conjugating enzymes. While protein ubiquitination typically occurs in the cell cytosol or nucleus, defective mammalian spermatozoa become ubiquitinated on their surface during post-testicular sperm maturation in the epididymis, suggesting an active molecular mechanism for sperm quality control. Consequently, we hypothesized that the bioactive constituents of ubiquitin-proteasome pathway were secreted in the mammalian epididymal fluid (EF) and capable of ubiquitinating extrinsic substrates. Western blotting indeed detected the presence of the ubiquitin-activating enzyme E1 and presumed E1-ubiquitin thiol-ester intermediates, ubiquitin-carrier enzyme E2 and presumed E2-ubiquitin thiol-ester intermediates and the ubiquitin C-terminal hydrolase PGP 9.5/UCHL1 in the isolated bovine EF. Thiol-ester assays utilizing recombinant ubiquitin-activating and ubiquitin-conjugating enzymes, biotinylated substrates, and isolated bovine EF confirmed the activity of the ubiquitin activating and conjugating enzymes within EF. Ubiquitinated proteins were found to be enriched in the defective bull sperm fraction and appropriate proteasomal deubiquitinating and proteolytic activities were measured in the isolated EF by specific fluorescent substrates. The apocrine secretion of cytosolic proteins was visualized in transgenic mice and rats expressing the enhanced green fluorescent protein (eGFP) under the direction of ubiquitin-C promoter. Accumulation of eGFP, ubiquitin and proteasomes was detected in the apical blebs, the apocrine secretion sites of the caput epididymal epithelia of both the rat and mouse epididymal epithelium, although region-specific differences exist. Secretion of eGFP and proteasomes continued during the prolonged culture of the isolated rat epididymal epithelial cells in vitro. This study provides evidence that the activity of the ubiquitin system is not limited to the intracellular environment, contributing to a greater understanding of the sperm maturation process during epididymal passage.  相似文献   

10.
A soluble ATP-dependent system for protein degradation has been demonstrated in reticulocyte lysates, but not in extracts of nucleated cells. We report that extracts of undifferentiated murine erythroleukemia (MEL) cells contain a labile ATP-stimulated proteolytic system. The addition of ATP to MEL cell extracts at alkaline pH enhances degradation of endogenous cell proteins and various radiolabeled exogenous polypeptides from 2-15-fold. Nonhydrolyzable ATP analogs had no effect. In reticulocytes, one role of ATP in proteolysis is for ubiquitin conjugation to protein substrates. MEL cells also contain ubiquitin and extracts can conjugate 125I-ubiquitin to cell proteins; however, this process in MEL cells seems unrelated to protein breakdown. After removal of ubiquitin from these extracts by DEAE- or gel chromatography, the stimulation of proteolysis by ATP was maintained and readdition of purified ubiquitin had no further effect. In addition, these extracts degraded in an ATP-dependent fashion casein whose amino groups were blocked and could not be conjugated to ubiquitin. After gel filtration or DEAE-chromatography of the MEL cell extracts (unlike those from reticulocytes), we isolated a high molecular weight (600,000) ATP-dependent proteolytic activity, which exhibits many of the properties of energy-dependent proteolysis seen in crude cell extracts. For example, both the protease and crude extracts are inhibited by hemin and N-ethylmaleimide and both hydrolyze casein, globin, and lysozyme rapidly and denatured albumin relatively slowly. The protease, like the crude extracts, is also stimulated by UTP, CTP, and GTP, although not as effectively as ATP. Also, nonhydrolyzable ATP analogs and pyrophosphate do not stimulate the protease. Thus, some mammalian cells contain a cytosolic proteolytic pathway that appears independent of ubiquitin and involves and ATP-dependent protease, probably similar to that found in Escherichia coli or mitochondria.  相似文献   

11.
The highly conserved protein ubiquitin is involved in several cellular processes in eukaryotes as a result of its covalent ligation to a variety of target proteins. Here, we describe the purification of several enzymatic activities involved in ubiquitin-protein conjugate formation and disassembly from wheat germ (Triticum vulgare) by a combination of ubiquitin affinity chromatography and anion-exchange high performance liquid chromatography. Using this procedure, ubiquitin activating enzyme (E1), several distinct ubiquitin carrier proteins (E2s) with molecular masses of 16, 20, 23, 23.5, and 25 kilodaltons, and a ubiquitin-protein hydrolase (isopeptidase) were isolated. Purified E1 formed a thiol ester linkage with 125I-ubiquitin in an ATP-dependent manner and transferred bound ubiquitin to the various purified E2s. The ubiquitin protein hydrolase fraction was sensitive to hemin, and in an ATP-independent reaction, was capable of removing the ubiquitin moiety from both ubiquitin 125I-lysozyme conjugates (ε-amino or isopeptide linkage) and the ubiquitin 52-amino acid extension protein fusion (α-amino or peptide linkage). Using this procedure, wheat germ represents an inexpensive source from which enzymes involved in the ubiquitin pathway may be isolated.  相似文献   

12.
The sea urchin embryo is a closed metabolic system in which embryogenesis is accompanied by significant protein degradation. We report results which are consistent with a function for the ubiquitinmediated proteolytic pathway in selective protein degradation during embryogenesis in this system. Quantitative solid- and solution-phase immunochemical assays, employing anti-ubiquitin antibodies, showed that unfertilized eggs of Strongylocentrotus purpuratus have a high content of unconjugated ubiquitin ( ca . 8 × 108 molecules), and also contain abundant conjugates involving ubiquitin and maternal proteins. The absolute content of ubiquitin in the conjugated form increases about 13-fold between fertilization and the pluteus larva stage; 90% or more of embryonic ubiquitin molecules are conjugated to embryonic proteins in hatched blastulae and later-stage embryos. Qualitatively similar results were obtained with embryos of Lytechinus variegatus . The results of pulse-labeling and immunoprecipitation experiments indicate that synthesis of ubiquitin in S. purpuratus is developmentally regulated, with an overall increase in synthetic rate of 12-fold between fertilization and hatching. Regulation is likely to occur at the level of translation, since others have shown that levels of ubiquitin-encoding mRNA remain virtually constant in echinoid embryos during this developmental interval. The sea urchin embryo should be a useful system for characterizing the role of ubiquitination in embryogenesis.  相似文献   

13.
A cDNA encoding a ubiquitin-conjugating enzyme designated UbcP4 in fission yeast was isolated. Disruption of its genomic gene revealed that it was essential for cell viability. In vivo depletion of the UbcP4 protein demonstrated that it was necessary for cell cycle progression at two phases, G2/M and metaphase/anaphase transitions. The G2 arrest of UbcP4-depleted cells was dependent upon chk1, which mediates checkpoint pathway. UbcP4-depleted cells arrested at metaphase had condensed chromosomes but were defective in separation. However, septum formation and cytokinesis were not restrained during the metaphase arrest. Overexpression of UbcP4 specifically rescued the growth defect of cut9ts cells at a restrictive temperature. cut9 encodes a component of the anaphase-promoting complex (APC) which is required for chromosome segregation at anaphase and moreover is defined as cyclin-specific ubiquitin ligase. Cdc13, a mitotic cyclin in fission yeast, was accumulated in the UbcP4-depleted cells. These results strongly suggested that UbcP4 is a ubiquitin-conjugating enzyme working in conjunction with APC and mediates the ubiquitin pathway for degradation of "sister chromatid holding protein(s)" at the onset of anaphase and possibly of mitotic cyclin at the exit of mitosis.  相似文献   

14.
The claw muscles of large-clawed decapod crustaceans undergoa programmed atrophy in preparation for molting, or ecdysis.This is mediated by five cytosolic proteinases organized intotwo proteolytic pathways: calcium-dependent and ubiquitin/proteasome-dependent.The calcium-dependent system consists of four calcium-dependentcysteine proteinases (CDPs I, IIa, IIb, and III; native masses310, 125, 195, and 59 kDa, respectively) that completely degrademyofibrillar proteins and are activated in atrophic muscles.Immunological analysis shows that the active-site sequence inCDP IIa (60-kDa subunit mass) is similar to that in mammalianCDPs (calpains), and that CDP IIb is homologous to a calpain-likegene isolated from Drosophila cDNA libraries. Increased intracellullarCa2+ stimulates proteolysis in situ, indicating CDPs play animportant role in muscle protein catabolism. The ubiquitin/proteasome-dependentsystem involves the ATP-dependent conjugation of multi-ubiquitinchains to protein by ubiquitin-conjugating enzymes. This actsas a signal for substrate degradation by the 26S proteasome,a multi-subunit complex consisting of a 20S proteasome catalytic"core" and two PA700 (19S) regulatory complexes. PolyubiquitinmRNA, ubiquitin-protein conjugates, and 20S proteasome are elevatedabout 5-, 8-, and 2-fold, respectively, during atrophy. A heat-inducedform of the 20S proteasome hydrolyzes myosin, troponin, andtropomyosin to large fragments in vitro. Biochemical studiesidentified the branched-chain amino acid-preferring (BrAAP)activity, one of six distinct catalytic components in the complex,as the activity that carries out these initial cleavages. Theseresults indicate that the ubiquitin/proteasome pathway is involved,but its precise role remains to be resolved.  相似文献   

15.
The process of cellular morphogenesis is highly conserved in eukaryotes and is dependent upon the function of proteins that are centrally involved in specification of the cell cycle. The human enhancer of invasion clone 10 (HEI10) protein was identified from a HeLa cell library based on its ability to promote yeast agar invasion and filamentation. Through two-hybrid screening, the mitotic cyclin B1 and an E2 ubiquitin-conjugating enzyme were isolated as HEI10-interacting proteins. Mutation of the HEI10 divergent RING finger motif (characteristic of E3 ubiquitin ligases) and Cdc2/cyclin binding and phosphorylation sites alter HEI10-dependent yeast phenotypes, including delay in G(2)/M transition. In vertebrates, the addition of HEI10 inhibits nuclear envelope breakdown and mitotic entry in Xenopus egg extracts. Mechanistically, HEI10 expression reduces cyclin B levels in cycling Xenopus eggs and reduces levels of the cyclin B ortholog Clb2p in yeast. HEI10 is itself a specific in vitro substrate of purified cyclin B/cdc2, with a TPVR motif as primary phosphorylation site. Finally, HEI10 is itself ubiquitinated in egg extracts and is also autoubiquitinated in vitro. These and other points lead to a model in which HEI10 defines a divergent class of E3 ubiquitin ligase, functioning in progression through G(2)/M.  相似文献   

16.
The ubiquitin-proteasome pathway (UPP) is the primary cytosolic proteolytic machinery for the selective degradation of various forms of damaged proteins. Thus, the UPP is an important protein quality control mechanism. In the canonical UPP, both ubiquitin and the 26S proteasome are involved. Substrate proteins of the canonical UPP are first tagged by multiple ubiquitin molecules and then degraded by the 26S proteasome. However, in noncanonical UPP, proteins can be degraded by the 26S or the 20S proteasome without being ubiquitinated. It is clear that a proteasome is responsible for selective degradation of oxidized proteins, but the extent to which ubiquitination is involved in this process remains a subject of debate. Whereas many publications suggest that the 20S proteasome degrades oxidized proteins independent of ubiquitin, there is also solid evidence indicating that ubiquitin and ubiquitination are involved in degradation of some forms of oxidized proteins. A fully functional UPP is required for cells to cope with oxidative stress and the activity of the UPP is also modulated by cellular redox status. Mild or transient oxidative stress up-regulates the ubiquitination system and proteasome activity in cells and tissues and transiently enhances intracellular proteolysis. Severe or sustained oxidative stress impairs the function of the UPP and decreases intracellular proteolysis. Both the ubiquitin-conjugating enzymes and the proteasome can be inactivated by sustained oxidative stress, especially the 26S proteasome. Differential susceptibilities of the ubiquitin-conjugating enzymes and the 26S proteasome to oxidative damage lead to an accumulation of ubiquitin conjugates in cells in response to mild oxidative stress. Thus, increased levels of ubiquitin conjugates in cells seem to be an indicator of mild oxidative stress.  相似文献   

17.
The eye lens has an active ubiquitin-protein conjugation system   总被引:4,自引:0,他引:4  
Using exogenous 125I-ubiquitin, ubiquitin-lens protein conjugation was observed with supernatants of cultured rabbit lens epithelial cells and lens cortex tissue. Conjugation was ATP-dependent with the greatest variety and amount of conjugates larger than 150 kDa. In vivo production of ubiquitin-protein conjugates in cultured rabbit and beef lens epithelial cells and rabbit lens tissues of different developmental age was established using immunological detection. There were limited similarities between conjugates found in youngest as opposed to oldest tissue. Cultured rabbit cells contained 27 pmol/mg free ubiquitin and 18 pmol/mg conjugated ubiquitin. Levels of free ubiquitin in lens tissue epithelium, cortex, and core were 36, 5, and 5 pmol/mg, respectively. There were only 2 pmol/mg conjugated ubiquitin in each of these tissues. Hydrolysis of 125I-ubiquitin was catalyzed by supernatants of cultured lens cells, beef and human lens tissues, and reticulocytes. Degradation was greatest in epithelial tissues, and least in core. This corroborates studies which show that proteolytic capabilities are attenuated in older tissue. Decreased initiation of proteolysis by ubiquitination as well as diminished proteolysis in older lens tissue may be related to the accumulation of damaged proteins in aging lens tissue.  相似文献   

18.
The effect in reticulocyte lysates of proteins with blocked amino groups on the ATP-dependent degradation of casein and serum albumin was studied in order to assess the extent to which proteins with blocked and with free amino groups share common paths of proteolytic degradation. Completely acetylated or succinylated casein and acetylated or succinylated serum albumin (reduced and carboxymethylated), in addition to other amino-modified proteins, inhibited the ATP-dependent proteolysis of both casein and reduced carboxymethylated serum albumin. Inhibition of serum albumin degradation by acetylated serum albumin was competitive, whereas inhibition of casein degradation by acetylated casein was largely competitive with evidence of mixed kinetics. The different amino-blocked proteins studied, which were largely unfolded under assay conditions, were similarly effective as inhibitors on a weight basis, with Ki values in the range 0.2-0.6 mg/ml; there was no correlation between the ability of the blocked proteins to serve as proteolysis substrates and their effectiveness as inhibitors. Studies of the effects of acetylated proteins on the conjugation of ubiquitin to serum albumin and casein demonstrated that the acetylated proteins blocked formation of ubiquitin-albumin conjugates and of selected casein conjugates; the steady state concentration of selected conjugates of endogenous lysate proteins was increased in the presence of amino-blocked proteins. The results suggest that proteins with blocked amino groups, which cannot serve as substrates for ubiquitin conjugation, can compete for binding to those ubiquitin conjugation factors that recognize and ubiquitinate potential substrates of the ubiquitin pathway. The similar inhibitory properties of the different blocked proteins in turn suggest that a common factor in binding to these conjugation factors may be recognition of the polypeptide backbone.  相似文献   

19.
E F Wajnberg  J M Fagan 《FEBS letters》1989,243(2):141-144
Reticulocytes contain a soluble nonlysosomal proteolytic pathway that requires ATP and ubiquitin. Polyamines at physiological concentrations were found to inhibit rapidly the ATP-dependent proteolytic system in reticulocyte lysates; spermidine and putrescine inhibited this process by 26-72% and spermine by 71-96%. Spermine had little effect on the ATP-independent breakdown of oxidant-treated hemoglobin. By fractionating the ATP-dependent system, we show that polyamines inhibit the ATP-dependent degradation of ubiquitin-protein conjugates.  相似文献   

20.
Although protein breakdown in most cells seems to require metabolic energy, it has only been possible to establish a soluble ATP-dependent proteolytic system in extracts of reticulocytes and erythroleukemia cells. We have now succeeded in demonstrating in soluble extracts and more purified preparations from rabbit skeletal muscle a 12-fold stimulation by ATP of breakdown of endogenous proteins and a 6-fold stimulation of 125I-lysozyme degradation. However, it has still not been possible to demonstrate such large effects of ATP in similar preparations from liver. Nevertheless, after fractionation by DEAE-chromatography and gel filtration, we found that extracts from liver as well as muscle contain both the enzymes which conjugate ubiquitin to 125I-lysozyme and an enzyme which specifically degrades the ubiquitin-protein conjugates. When this proteolytic activity was recombined with the conjugating enzymes, ATP + ubiquitin-dependent degradation of many proteins was observed. This proteinase is unusually large, approx. 1500 kDa, requires ATP hydrolysis for activity and resembles the ubiquitin-protein-conjugate degrading activity isolated from reticulocytes. Thus the ATP + ubiquitin-dependent pathway is likely to be present in all mammalian cells, although certain tissues may contain inhibitory factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号