首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 78 毫秒
1.
Mutagenicity, carcinogenicity and teratogenicity of zinc   总被引:1,自引:0,他引:1  
Zinc is a common element in the human environment and constitutes an important trace element intervening in many biological processes. Toxicity of zinc is low; zinc deficiency represents, however, a hazard for human health. Zinc is not mutagenic and has little, if any, clastogenic properties. Zinc can induce tumours but only following local application, and does not represent a carcinogenic risk to man. It is still uncertain whether zinc can cause malignant transformation but zinc is needed for cellular proliferation of existing tumours and tumour growth is retarded by zinc deficiency. Zinc is not teratogenic; it can, in fact, avert teratogenicity of other agents. Conversely, zinc deficiency may be harmful to the developing organism.  相似文献   

2.
A wide variety of symptoms is associated with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection, and these symptoms can overlap with other conditions and diseases. Knowing the distribution of symptoms across diseases and individuals can support clinical actions on timelines shorter than those for drug and vaccine development. Here, we focus on zinc deficiency symptoms, symptom overlap with other conditions, as well as zinc effects on immune health and mechanistic zinc deficiency risk groups. There are well-studied beneficial effects of zinc on the immune system including a decreased susceptibility to and improved clinical outcomes for infectious pathogens including multiple viruses. Zinc is also an anti-inflammatory and anti-oxidative stress agent, relevant to some severe Coronavirus Disease 2019 (COVID-19) symptoms. Unfortunately, zinc deficiency is common worldwide and not exclusive to the developing world. Lifestyle choices and preexisting conditions alone can result in zinc deficiency, and we compile zinc risk groups based on a review of the literature. It is also important to distinguish chronic zinc deficiency from deficiency acquired upon viral infection and immune response and their different supplementation strategies. Zinc is being considered as prophylactic or adjunct therapy for COVID-19, with 12 clinical trials underway, highlighting the relevance of this trace element for global pandemics. Using the example of zinc, we show that there is a critical need for a deeper understanding of essential trace elements in human health, and the resulting deficiency symptoms and their overlap with other conditions. This knowledge will directly support human immune health for decreasing susceptibility, shortening illness duration, and preventing progression to severe cases in the current and future pandemics.  相似文献   

3.
Many studies have shown that zinc deficiency could decrease the response to insulin. In genetically diabetic animals, a low zinc status has been observed, contrary to induced diabetic animals. The zinc status of human patients depends on the type of diabetes and the age. Zinc supplementation seems to have beneficial effects on glucose homeostasis. However, the mechanism of insulin resistance secondary to zinc depletion is yet unclear. More studies are therefore necessary to document better zinc metabolism in diabetes mellitus, and the antioxidant activity of zinc on the insulin receptor and the glucose transporter.  相似文献   

4.
Intrauterine and postnatal zinc restriction may result in an adverse environment for the development of cardiovascular and renal systems. This study evaluated the effects of moderate zinc deficiency during fetal life, lactation, and/or postweaning growth on systolic blood pressure, renal function, and morphology in adult life. Female Wistar rats received low (8 ppm) or control (30 ppm) zinc diets from the beginning of pregnancy up to weaning. After weaning, male offspring of each group of mothers were fed low or control zinc diet. Systolic blood pressure, creatinine clearance, proteinuria, renal morphology, renal apoptosis. and renal oxidative stress state were evaluated after 60 days. Zinc deficiency during pre- and postweaning growth induced an increase in systolic blood pressure and a decrease in the glomerular filtration rate associated with a reduction in the number and size of nephrons. Activation of renal apoptosis, reduction in catalase activity, glutathione peroxidase activity, and glutathione levels and increase in lipid peroxidation end products could explain these morphometric changes. Zinc deficiency through pre- and postweaning growth induced more pronounced renal alteration than postweaning zinc deficiency. These animals showed signs of renal fibrosis, proteinuria, increased renal apoptosis, and higher lipid peroxidation end products. A control diet during postweaning growth did not totally overcome renal oxidative stress damage, apoptosis, and fibrosis induced by zinc deficiency before weaning. In conclusion, zinc deficiency during a critical period of renal development and maturation could induce functional and morphological alterations that result in elevated blood pressure and renal dysfunction in adult life.  相似文献   

5.
Zinc deficiency impairs the metabolism of thyroid hormones, androgens, and above all growth hormones. In view of their important role in growth, it is not surprising to find growth disorders associated with zinc deficiency. Stunted growth linked to zinc deficiency is found during gestation, and also in the newborn and children up to adolescence. Depending on the country, 5–30% of children suffer from moderate zinc deficiency, responsible for small-for-age height. Zinc supplementation has proven effective in many studies, mainly in children where zinc deficiency has first been found. Finally, zinc supplementation makes it possible in certain cases to overcome resistance to growth hormone treatment.  相似文献   

6.
7.
Apoptosis may underlie the pathology of zinc-deficient skin   总被引:2,自引:0,他引:2  
The trace element zinc is essential for the survival and function of all cells. Zinc deficiency, whether nutritional or genetic, is fatal if left untreated. The effects of zinc deficiency are particularly obvious in the skin, seen as an erythematous rash, scaly plaques, and ulcers. Electron microscopy reveals degenerative changes within keratinocytes. Despite the well-documented association between zinc deficiency and skin pathology, it is not clear which cellular processes are most sensitive to zinc deficiency and could account for the typical pathological features. We used the cultured HaCaT keratinocyte line to obtain insight into the cellular effects of zinc deficiency, as these cells show many characteristics of normal skin keratinocytes. Zinc deficiency was induced by growing cells in the presence of the zinc chelator, TPEN, or by growth in zinc-deficient medium. Growth of cells in zinc-deficient medium resulted in a 44% reduction of intracellular zinc levels and a 75% reduction in the activity of the zinc-dependent enzyme, 5'-nucleotidase, relative to the control cells. Over a period of 7 days of exposure to zinc-deficient conditions, no changes in cell viability and growth, or in the cytoskeletal and cell adhesion systems, were found in HaCaT cells. At 7 days, however, induction of apoptosis was indicated by the presence of DNA fragmentation and expression of active caspase-3 in cells. These results demonstrate that apoptosis is the earliest detectable cellular change induced by zinc deficiency in HaCaT keratinocytes. Our observations account for many of the features of zinc deficiency, including the presence of degenerate nuclei, chromatin aggregates and abnormal organization of keratin, that may represent the later stages of apoptosis. In summary, a major causal role for apoptosis in the pathology of zinc deficiency in the skin is proposed. This role is consistent with the previously unexplained diverse range of degenerative cellular changes seen at the ultrastructural level in zinc-deficient keratinocytes.  相似文献   

8.
9.
Hypozincemia is prevalent in severe acute respiratory syndrome coronavirus-2 (SARS-COV-2)-infected patients and has been considered as a risk factor in severe coronavirus disease-2019 (COVID-19). Whereas zinc might affect SARS-COV-2 replication and cell entry, the link between zinc deficiency and COVID-19 severity could also be attributed to the effects of COVID-19 on the body metabolism and immune response. Zinc deficiency is more prevalent in the elderly and patients with underlying chronic diseases, with established deleterious consequences such as the increased risk of respiratory infection. We reviewed the expected effects of zinc deficiency on COVID-19-related pathophysiological mechanisms focusing on both the renin–angiotensin and kinin-kallikrein systems. Mechanisms and effects were extrapolated from the available scientific literature. Zinc deficiency alters angiotensin-converting enzyme-2 (ACE2) function, leading to the accumulation of angiotensin II, des-Arg9-bradykinin and Lys-des-Arg9-bradykinin, which results in an exaggerated pro-inflammatory response, vasoconstriction and pro-thrombotic effects. Additionally, zinc deficiency blocks the activation of the plasma contact system, a protease cascade initiated by factor VII activation. Suggested mechanisms include the inhibition of Factor XII activation and limitation of high-molecular-weight kininogen, prekallikrein and Factor XII to bind to endothelial cells. The subsequent accumulation of Factor XII and deficiency in bradykinin are responsible for increased production of inflammatory mediators and marked hypercoagulability, as typically observed in COVID-19 patients. To conclude, zinc deficiency may affect both the renin–angiotensin and kinin-kallikrein systems, leading to the exaggerated inflammatory manifestations characteristic of severe COVID-19.  相似文献   

10.
Zinc is necessary for growth and cells' division. Its deficiency may seriously affect antioxidant defense system and is usually related to renal failure, gastrointestinal diseases and alcoholism. It is very important to know zinc status in dialyzed patients and to prevent hypo- or hyperzincemia. Serum samples from 89 patients with chronic terminal renal failure on regular hemodialysis were withdrawn for the estimation of zinc concentrations immediately before and after dialysis. Serum zinc concentrations showed to be highly dependent on hemodialysis. In 57 (64%) patients, serum zinc concentrations decreased, sometimes from very high to normal values. In remaining 32 (36%) patients serum zinc concentrations tended to increase, but remained within normal range. Zinc supplementation may be recommended only in the patients with proven zinc deficiency, but for all chronic renal failure patients it is questionable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号