首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 130 毫秒
1.
旨在构建HSV-1HF株的扩增子载体,研究其在不同血清型HSV辅助下的包装通用性。经酶切HF株的BAC-HSV-1,获得oriS和pac元件并测序。以pSilencer2.0-U6为骨架,以DsRed为报告基因构建HSV-1HF株的扩增子载体,利用脂质体2000转染扩增子载体至Vero细胞,分别应用HSV-1HF株和HSV-2HG52辅助HSV-1扩增子载体进行包装,待产生细胞病变效应后取上清,再次感染Vero细胞,观察Vero细胞内红色荧光蛋白表达情况。本研究首次构建了HSV-1HF株的扩增子载体,鉴定了HSV-1HF株oriS和pac元件,HSV-1HF株扩增子载体可以被HSV-1HF株和HSV-2HG52株包装并扩增。  相似文献   

2.
HSV-1是一种嗜神经病毒,能引起一系列神经系统严重症状,然而目前抗HSV-1药物易反弹、不能完全清除潜伏的病毒。ICP4对HSV复制、转录起主要调节作用,决定着溶细胞型感染或潜伏状态的平衡点。为了探寻新的抗病毒策略,本课题以HSV-1ICP4基因为靶点,设计合成2对siRNA,并构建重组真核慢病毒表达质粒pL-KO-puror-hU6-siRNA,通过脂质体转染和嘌呤霉素筛选建立靶向ICP4的4个siRNA单克隆细胞系,Real-timePCR法检测细胞系中ICP4的mRNA表达水平,TCID50法检测siRNA对HSV-1病毒复制能力的影响。结果显示靶向siRNA能有效抑制单克隆细胞系中的ICP4表达,并且抑制ICP4的表达后HSV-1病毒复制能力明显减弱,表明靶向ICP4的siRNA对HSV-1复制有明显抑制作用,且多位点siRNA联合干扰对病毒复制有协同抑制效果,有望应用于生物抗病毒药物的制备。  相似文献   

3.
目的:在大肠杆菌中表达1型单纯疱疹病毒(HSV-1)囊膜糖蛋白gD,纯化重组蛋白并对其免疫活性进行鉴定。方法:将HSV-1 gD基因克隆入原核表达载体p ET-28b,利用异丙基-B-D-硫代吡喃半乳糖苷(IPTG)诱导重组质粒转化的大肠杆菌,探讨IPTG浓度、诱导时间、诱导温度对重组蛋白表达的影响;盐酸胍裂解变性包涵体,镍柱亲和层析法纯化gD蛋白,并对纯化后的蛋白进行透析复性;Western blot和ELISA检测gD蛋白的免疫活性。结果:酶切和测序结果表明gD基因克隆入p ET-28b载体。该重组质粒转化的大肠杆菌经IPTG诱导后重组蛋白主要以包涵体形式存在,大小约40k Da。gD蛋白诱导表达的最佳条件为0.5mmol/L IPTG于37℃诱导8h。镍柱亲和层析法纯化获得的gD蛋白总量为3.1mg/L,透析复性后获得的gD蛋白总量为1.3mg/L,复性率为41.37%。Western blot及ELISA检测表明表达的gD蛋白具有免疫活性。结论:在大肠杆菌中表达并纯化获得具有免疫活性的HSV-1 gD蛋白,为进一步制备HSV-1诊断试剂和预防疫苗奠定了基础。  相似文献   

4.
1型单纯疱疹病毒(HSV-1)作为溶瘤病毒和病毒载体的研究已有很长的历史.本研究利用细菌人工染色体技术建立了一种HSV-1载体系统.首先,将HSV-1内部反向重复序列(internal inverted repeat sequences,IR)两侧的片段克隆入p KO5获得穿梭质粒p KO5/BN,其电转含p HSVBAC的大肠杆菌后筛选获得删除IR区重组DNA的p HSVΔIR-BAC.p HSVΔIR-BAC转染Vero细胞获得删除IR区的重组病毒HSVΔIR(MH1001).上述p KO5/BN和含p HSVΔIR-BAC的大肠杆菌构成了HSV-1载体系统.利用该系统获得了表达绿色荧光蛋白EGFP的重组病毒HSVΔIR/EGFP(MH1002).MH1001和MH1002在感染的Vero细胞中增殖水平略低于野生型HSV-1,但无显著差异;Western印迹检测表明,重组病毒早期蛋白质ICP0、ICP4、ICP8、ICP22、ICP27在感染细胞中的表达水平下降;免疫荧光及激光共聚焦检测表明,重组病毒与野生型病毒均存在于细胞质中.以上结果表明,删除IR区的重组HSV-1保留了复制能力,能够携载并表达外源基因,建立的HSV-1载体系统可用于构建携载外源基因的复制型重组HSV-1.  相似文献   

5.
单纯疱疹病毒糖蛋白D的表达及免疫学鉴定   总被引:1,自引:0,他引:1  
单纯疱疹病毒(herpes simplex virus,HSV)是TORCH综合征的病原体之一.新生儿可通过宫内、产道和出生后等多种途径感染,大部分患儿呈现症状,如皮炎、角膜炎、口唇疱疹,也可发生涉及多个器官的播散性感染,严重者出现疱疹性脑膜炎,并常导致婴幼儿死亡.目前尚无全身用的特效药物和有效的防范措施.HSV包膜糖蛋白D(glycoprotein D,gD)是极为保守的免疫原性蛋白,在体内可诱导高滴度的中和抗体,因此gD基因成为近些年来诊断研究的靶基因.本文尝试将gD蛋白在酵母菌中表达,并分析其抗原性,为建立快速易行的重组抗原诊断试剂盒奠定基础.此外,利用该表达系统表达的HSV gD蛋白,可为HSV基因工程重组疫苗的研制提供依据,对优生优育、提高人口出生质量具有重要的理论及实际意义.  相似文献   

6.
单纯疱疹病毒 (Herpes simplex virus,HSV) 包膜糖蛋白D (glycoprotein D,gD) 是HSV的结构蛋白之一,具有重要抗原表位,是目前疫苗研究的热点。为了分离纯化HSV gD1糖蛋白胞外区片段并对其生物学活性进行分析,本研究将化学合成的gD1胞外区基因片段克隆至真核表达载体pCEP4,重组质粒转染HEK293细胞进行瞬时表达,产物经Western blotting检测后用亲和层析法进行分离纯化,ELISA检测其抗原性。以纯化的重组蛋白作为抗原免疫小鼠,ELISA测血清特异性抗体效价以评价其免疫原性。构建的重组质粒经测序显示基因序列完全正确。表达产物的Western blotting分析发现,在相对分子量约46 kDa处有外源蛋白表达,与预期蛋白带一致。用Ni柱得到了纯化的重组gD1蛋白,ELISA检测显示其具有良好的抗原性,免疫小鼠7周后血清中抗体效价达到5×103。重组gD1蛋白的抗原性及免疫原性分析为HSV检测试剂和基因重组亚单位疫苗的研制提供了实验依据。  相似文献   

7.
目的:在非洲绿猴肾细胞(Vero细胞)中表达2型单纯疱疹病毒(HSV-2)毒力蛋白感染细胞多肽34.5(ICP34.5),并检测其对Vero细胞活性的影响。方法:PCR扩增HSV-2的ICP34.5基因,连接至pEGFP-C2载体,并对重组真核表达载体pEGFP-ICP34.5进行双酶切测序验证;将重组子瞬时转染Vero细胞,RT-PCR检测其在mRNA水平的表达,荧光倒置显微镜观察融合蛋白的表达,MTT法检测细胞活性。结果:经双酶切和测序验证表明pEGFP-ICP34.5构建成功,转染细胞后经RT-PCR验证有目的基因的转录,荧光显微镜下观察到融合蛋白在转染的Vero细胞中表达,MTT法检测结果证实重组质粒可以抵消空质粒对细胞的损伤作用。结论:构建了pEGFP-ICP34.5真核表达载体,其能在Vero细胞中高效表达,并能抵消空质粒对细胞的损伤作用。  相似文献   

8.
目的:筛选高效沉默HSV-1UL30基因的siRNA,研究siRNA沉默UL30基因后对HSV-1繁殖的影响。方法:设计并化学合成12对靶向UL30基因的siRNA,与pEGFP-N1-Fi融合表达质粒共转染VERO细胞,流式细胞术筛选高效抑制Fi-EGFP融合蛋白的siRNA,实时荧光定量PCR检测siRNA对感染细胞内UL30mRNA表达的抑制效果,CPE法和空斑减数实验评价siRNA对HSV-1繁殖的抑制效果。结果:共转染实验筛选出高效抑制Fi-EGFP融合蛋白的siRNA4、siRNA10及siRNA8,这3对siRNA均能显著降低感染细胞内UL30mRNA的表达水平及病变细胞释放到培养上清的子代病毒滴度,siRNA4和siRNA10在感染后36h对HSV-1的繁殖有明显的抑制效果,其病斑分别比对照组减少61.17%、51.46%(P〈0.05),siRNA4、siRNA10及siRNA8组最终形成的空斑直径分别比对照组减小29.94%、23.49%、21.69%(P〈0.01)。结论:筛选到高效抑制UL30的3对siRNAs,siRNA4及siRNA10在病斑形成早期对HSV-1的繁殖有明显的抑制效果,说明siRNA4、siRNA10及siRNA8均能延缓病斑的扩大和病斑数目的增长,对病毒的繁殖有一定的抑制效果。  相似文献   

9.
目的:研究单纯疱疹病毒Ⅱ型(HSV-2)潜伏相关转录体(LAT)开放读码框1(ORF1)的表达特点及其对Vero细胞活性的影响.方法:双酶切和测序验证本实验室构建的HSV-2 LAT ORF1真核表达载体pEGFP-ORF1,并以转染试剂盒Xfect介导其转染至Vero细胞,通过RT-PCR和绿色荧光蛋白检验其在细胞中的表达,用MTT法进行细胞活性分析.结果:重组质粒表达的融合蛋白主要集中细胞核,而空质粒表达的绿色荧光蛋白在细胞核和细胞质中分布均匀;重组质粒对Vero细胞没有损伤作用.结论:HSV-2 LAT ORF1影响了绿色荧光蛋白的分布,可降低空质粒对细胞的损伤作用;其作用位点可能主要定位在细胞核中,为阐明HSV-2 LAT ORF1在潜伏复发中的功能奠定了实验基础.  相似文献   

10.
目的:克隆HSV-1 UL30 cDNA并测序,构建pEGFP-N1-Fi融合表达载体,为靶向UL30基因的siRNA的设计和筛选奠定基础。方法:从感染HSV-1 F株的病变VERO细胞提取总RNA,二次PCR扩增出UL30cDNA并克隆至pEGFP-N1质粒,测序鉴定序列;将UL30cDNA4个小片段亚克隆至pEGFP-N1-Fi融合表达质粒,转染VERO细胞,荧光显微镜观察融合蛋白表达情况。结果:成功克隆出UL30 cDNA,序列对比显示与基因库中的HSV-1株UL30序列同源性为99.4%;成功构建pEGFP-N1-Fi融合表达载体并实现Fi-EGFP融合蛋白的表达。结论:成功克隆出UL30cDNA,成功构建pEGFP-N1-Fi融合表达载体,为靶向UL30基因的siRNA的设计和筛选奠定基础。  相似文献   

11.
Herpes simplex virus (HSV) glycoprotein gD is a major component of the virion envelope and is thought to play an important role in the initial stages of viral infection and stimulates the production of high titers of neutralizing antibodies. We assumed that gD plays an essential role in virus replication, and so to complement viruses with mutations in the gD gene we constructed a cell line, denoted VD60, which is capable of expressing high levels of gD after infection with HSV. A recombinant virus, designated F-gD beta, in which sequences encoding gD and a nonessential glycoprotein, gI, were replaced by Escherichia coli beta-galactosidase sequences, was selected on the basis that it produced blue plaques on VD60 cell monolayers under agarose overlays containing 5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside (X-Gal). F-gD beta was able to replicate normally on complementing VD60 cells. However, F-gD beta was unable to form plaques on noncomplementing Vero cells. Virions lacking gD were produced in normal amounts by Vero cells infected with F-gD beta, and the virus particles were distributed throughout the cytoplasm and on the cell surface, suggesting that gD is not essential for HSV envelopment and egress. Virions lacking gD were able to bind to cells, but were unable to initiate synthesis of viral early polypeptides. Plaque production of F-gD beta particles lacking gD was enhanced by polyethylene glycol treatment, suggesting that gD is essential for penetration of HSV into cells. Other HSV glycoproteins have been implicated in the entry of virus into cells, and thus this process appears to involve multiple interactions at the cell surface.  相似文献   

12.
Herpes simplex virus (HSV) glycoprotein D (gD) plays an essential role in the entry of virus into cells. HSV mutants unable to express gD were constructed. The mutants can be propagated on VD60 cells, which supply the viruses with gD; however, virus particles lacking gD were produced in mutant-infected Vero cells. Virus particles with or without gD adsorbed to a large number (greater than 4 x 10(4] of sites on the cell surface; however, virions lacking gD did not enter cells. Cells pretreated with UV-inactivated virions containing gD (approximately 5 x 10(3) particles per cell) were resistant to infection with HSV type 1 (HSV-1) and HSV-2. In contrast, cells pretreated with UV-inactivated virions lacking gD could be infected with HSV-1 and HSV-2. If infectious HSV-1 was added prior to UV-inactivated virus particles containing gD, the infectious virus entered cells and replicated. Therefore, virus particles containing gD appear to block specific cell surface receptors which are very limited in number. Particles lacking gD are presumably unable to interact with these receptors, suggesting that gD is an essential receptor-binding polypeptide.  相似文献   

13.
During viral entry, herpes simplex virus (HSV) glycoprotein D (gD) interacts with a specific cellular receptor such as nectin-1 (PRR1/HveC/CD111) or the herpesvirus entry mediator A (HVEM/HveA). Nectin-1 is involved in cell-to-cell adhesion. It is located at adherens junctions, where it bridges cells through homophilic or heterophilic interactions with other nectins. Binding of HSV gD prevents nectin-1-mediated cell aggregation. Since HSV gD affects the natural function of nectin-1, we further investigated the effects of gD expression on nectin-1 during HSV infection or in transfected cells. We also studied the importance of the interaction between nectin-1 and the cytoplasmic protein afadin for HSV entry and spread as well as the effects of infection on this interaction. In these investigations, we used a panel of cells expressing nectin-1 or nectin-1-green fluorescent protein fusions as the only mediators of HSV entry. During HSV infection, nectin-1 localization at adherens junction was dramatically altered in a manner dependent on gD expression. Nectin-1 and gD colocalized at cell contact areas between infected and noninfected cells and at the edges of plaques. This specific accumulation of gD at junctions was driven by expression of nectin-1 in trans on the surface of adjacent cells. Reciprocally, nectin-1 was maintained at junctions by the trans expression of gD in the absence of a cellular natural ligand. Our observations indicate that newly synthesized gD substitutes for nectin-1 of infected cells at junctions with noninfected cells. We propose that gD attracts and maintains the receptor at junctions where it can be used for virus spread.  相似文献   

14.
Cells that express glycoprotein D (gD) of herpes simplex virus type 1 (HSV-1) resist infection by HSV-1 and HSV-2 because of interference with viral penetration. The results presented here show that both HSV-1 and HSV-2 gD can mediate interference and that various HSV-1 and HSV-2 strains differ in sensitivity to this interference. The relative degree of sensitivity was not necessarily dependent on whether the cell expressed the heterologous or homologous form of gD but rather on the properties of the virus. Marker transfer experiments revealed that the allele of gD expressed by the virus was a major determinant of sensitivity to interference. Amino acid substitutions in the most distal part of the gD ectodomain had a major effect, but substitutions solely in the cytoplasmic domain also influenced sensitivity to interference. In addition, evidence was obtained that another viral gene(s) in addition to the one encoding gD can influence sensitivity to interference. The results indicate that HSV-1 and HSV-2 gD share determinants required to mediate interference with infection by HSV of either serotype and that the pathway of HSV entry that is blocked by expression of cell-associated gD can be cleared or bypassed through subtle alterations in virion-associated proteins, particularly gD.  相似文献   

15.
Guo Y  Guo H  Zhang L  Xie H  Zhao X  Wang F  Li Z  Wang Y  Ma S  Tao J  Wang W  Zhou Y  Yang W  Cheng J 《Journal of virology》2005,79(22):14392-14403
Hepatitis B virus (HBV) causes acute and chronic hepatitis and hepatocellular carcinoma. Small interfering RNA (siRNA) and lamivudine have been shown to have anti-HBV effects through different mechanisms. However, assessment of the genome-wide effects of siRNA and lamivudine on HBV-producing cell lines has not been reported, which may provide a clue to interrogate the HBV-cell interaction and to evaluate the siRNA's side effect as a potential drug. In the present study, we designed seven siRNAs based on the conserved HBV sequences and tested their effects on the expression of HBV genes following sorting of siRNA-positive cells. Among these seven siRNAs, siRNA-1 and siRNA-7 were found to effectively suppress HBV gene expression. We further addressed the global gene expression changes in stable HBV-producing cells induced by siRNA-1 and siRNA-7 by use of human genome-wide oligonucleotide microarrays. Data from the gene expression profiling indicated that siRNA-1 and siRNA-7 altered the expression of 54 and 499 genes, respectively, in HepG2.2.15 cells, which revealed that different siRNAs had various patterns of gene expression profiles and suggested a complicated influence of siRNAs on host cells. We further observed that 18 of these genes were suppressed by both siRNA-1 and siRNA-7. Interestingly, seven of these genes were originally activated by HBV, which suggested that these seven genes might be involved in the HBV-host cell interaction. Finally, we have compared the effects of siRNA and lamivudine on HBV and host cells, which revealed that siRNA is more effective at inhibiting HBV expression at the mRNA and protein level in vitro, and the gene expression profile of HepG2.2.15 cells treated by lamivudine is totally different from that seen with siRNA.  相似文献   

16.
Virion glycoproteins gB, gD, and gH/gL play essential roles for herpes simplex virus (HSV) entry. The function of gD is to interact with a cognate receptor, and soluble forms of gD block HSV entry by tying up cell surface receptors. Both gB and the nonessential gC interact with cell surface heparan sulfate proteoglycan (HSPG), promoting viral attachment. However, cells deficient in proteoglycan synthesis can still be infected by HSV. This suggests another function for gB. We found that a soluble truncated form of gB bound saturably to the surface of Vero, A431, HeLa, and BSC-1 cells, L-cells, and a mouse melanoma cell line expressing the gD receptor nectin-1. The HSPG analog heparin completely blocked attachment of the gC ectodomain to Vero cells. In contrast, heparin only partially blocked attachment of soluble gB, leaving 20% of the input gB still bound even at high concentrations of inhibitor. Moreover, heparin treatment removed soluble gC but not gB from the cell surface. These data suggest that a portion of gB binds to cells independently of HSPG. In addition, gB bound to two HSPG-deficient cell lines derived from L-cells. Gro2C cells are deficient in HSPG, and Sog9 cells are deficient in HSPG, as well as chondroitin sulfate proteoglycan (CSPG). To identify particular gB epitopes responsible for HSPG-independent binding, we used a panel of monoclonal antibodies (MAbs) to gB to block gB binding. Only those gB MAbs that neutralized virus blocked binding of soluble gB to the cells. HSV entry into Gro2C and Sog9 cells was reduced but still detectable relative to the parental L-cells, as previously reported. Importantly, entry into Gro2C cells was blocked by purified forms of either the gD or gB ectodomain. On a molar basis, the extent of inhibition by gB was similar to that seen with gD. Together, these results suggest that soluble gB binds specifically to the surface of different cell types independently of HSPG and CSPG and that by doing so, the protein inhibits entry. The results provide evidence for the existence of a cellular entry receptor for gB.  相似文献   

17.
鸡传染性支气管炎病毒的RNA干扰   总被引:4,自引:0,他引:4  
为探讨短的双链RNA(siRNA)对鸡传染性支气管炎病毒(IBV)增殖的干扰作用,利用软件设计siRNA1280个,75%位于Pol基因内。通过同源比较和保守性分析,筛选到针对Pol、M、N基因的12个siRNA(每个基因3~4个)作为后选目的片段,分别在Vero细胞、9日龄SPF鸡胚上进行基因干扰试验。结果,来自Pol、N靶序列的2个siRNA在Vero细胞上及鸡胚上均对IBV增殖产生明显的干扰作用,并与siRNA剂量有一定相关性,依赖于与mRNA互补的负链siRNA存在。本研究首次证实IBV增殖过程中存在siRNA干扰现象,为利用RNA干扰(RNAi)技术控制IBV提供了新手段。  相似文献   

18.
siRNA对SARS冠状病毒复制的抑制作用   总被引:7,自引:0,他引:7  
为探讨siRNA在哺乳动物细胞中对SARS冠状病毒复制的抑制作用,针对BJ0 1株SARS冠状病毒复制酶基因(Pol)和刺突蛋白基因(S) ,设计4个siRNA ,并构建相应的siRNA表达载体及克隆细胞系.利用间接免疫荧光法及实时定量反转录PCR法,检测所设计的siRNA对SARS冠状病毒复制的抑制作用.结果表明,针对Pol基因的siRNA(psOe)在Vero细胞中可阻断BJ0 1株SARS病毒RNA的复制及其蛋白的表达.该结果为深入阐明SARS冠状病毒的致病机理及探讨SARS病毒防治新途径奠定了基础.  相似文献   

19.
Adjuvant activities of granulocyte-macrophage colony-stimulating factor (GM-CSF) and synthetic glucosaminyl-muramyl dipeptide (GMDP) were studied in immunization against type 1 herpes simplex virus (HSV1). Gene encoding the gD HSV1 protein (pDNAgD) was used as an immunogen. Gene encoding GM-CSF in pDNAGM-CSF plasmid, which was developed for eukaryotic expression, and GM-DP were used as immune response modulators. GMDP and plasmid DNA with inserted GM-CSF gene enhanced T-cell immune response to HSV1 after a single injection (pDNAGM-CSF) or 24 h before (GMDP) immunization with the gD HSV1 gene. Both adjuvants increased protective effect of DNA-immunization by a virus gene with 63 up to 100% after injection of two genes and up to 96% after the viral gene was inoculated 24 h after GMDP. These high effects indicate that further investigation of anti-HSV1 DNA-based vaccines used with genetic and peptide adjuvant is prospective.  相似文献   

20.
目的:设计并构建人RSRC1基因小干扰RNA(siRNA)的真核表达载体,并观察其沉默效果。方法:以人RSRC1基因的cDNA序列为靶标,设计含有小发卡结构的2条寡核苷酸序列,并将其克隆到siRNA表达载体pSliencer2.1-U6neo上,转化大肠杆菌DH5α菌株,抽提质粒,测序正确后将重组质粒转染人胚肾293T细胞,通过Western blot和荧光分析检测其抑制效果。结果:重组体测序成功后,Western blot分析证明构建的siRNA能有效抑制外源性及内源性RSRC1表达;将siRNA重组质粒和带GFP标签的RSRC1共转染293T细胞,荧光显微镜下GFP的亮度明显减弱。结论:获得了2条人RSRC1siRNA真核表达载体,均能有效地抑制RSRC1基因表达。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号