首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The number of mating partners an individual has within a population is a crucial parameter in sex allocation theory for simultaneous hermaphrodites because it is predicted to be one of the main parameters influencing sex allocation. However, little is known about the factors that determine the number of mates in simultaneous hermaphrodites. Furthermore, in order to understand the benefits obtained by resource allocation into the male function it is important to identify the factors that predict sperm‐transfer success, i.e. the number of sperm a donor manages to store in a mate. In this study we experimentally tested how social group size (i.e. the number of all potential mates within a population) and density affect the number of mates and sperm‐transfer success in the outcrossing hermaphroditic flatworm Macrostomum lignano. In addition, we assessed whether these parameters covary with morphological traits, such as body size, testis size and genital morphology. For this we used a method, which allows tracking sperm of a labelled donor in an unlabelled mate. We found considerable variation in the number of mates and sperm‐transfer success between individuals. The number of mates increased with social group size, and was higher in worms with larger testes, but there was no effect of density. Similarly, sperm‐transfer success was affected by social group size and testis size, but in addition this parameter was influenced by genital morphology. Our study demonstrates for the first time that the social context and the morphology of sperm donors are important predictors of the number of mates and sperm‐transfer success in a simultaneous hermaphrodite. Based on these findings, we hypothesize that sex allocation influences the mating behaviour and outcome of sperm competition.  相似文献   

2.
Hermaphroditic animals face the fundamental evolutionary optimization problem of allocating their resources to their male vs. female reproductive function (e.g. testes and sperm vs. ovaries and eggs), and this optimal sex allocation can be affected by both pre‐ and post‐copulatory sexual selection. For example, local sperm competition (LSC) – the competition between related sperm for the fertilization of a partner's ova – occurs in small mating groups and can favour a female‐biased sex allocation, because, under LSC, investment into sperm production is predicted to show diminishing fitness returns. Here, we test whether higher testis investment increases an individual's paternity success under sperm competition, and whether the strength of this effect diminishes when LSC is stronger, as predicted by sex allocation theory. We created two subsets of individuals of the simultaneously hermaphroditic flatworm Macrostomum lignano – by sampling worms from either the highest or lowest quartile of the testis investment distribution – and estimated their paternity success in group sizes of either three (strong LSC) or eight individuals (weak LSC). Specifically, using transgenic focal individuals expressing a dominant green‐fluorescent protein marker, we showed that worms with high testis investment sired 22% more offspring relative to those with low investment, corroborating previous findings in M. lignano and other species. However, the strength of this effect was not significantly modulated by the experienced group size, contrasting theoretical expectations of more strongly diminishing fitness returns under strong LSC. We discuss the possible implications for the evolutionary maintenance of hermaphroditism in M. lignano.  相似文献   

3.
Most sex allocation theory is based on the relationship between the resource investment into male and female reproduction and the consequent fitness returns (often called fitness-gain curves). Here we investigate the effects of resource availability on the sex allocation of a simultaneously hermaphroditic animal, the free-living flatworm Macrostomum lignano. We kept the worms under different resource levels and determined the size of their testes and ovaries over a period of time. At higher resource levels, worms allocated relatively more into the female function, suggesting a saturating male fitness-gain curve for this species. A large part of the observed effect was due to a correlated increase in body size, showing size-dependent sex allocation in M. lignano. However, a significant part of the overall effect was independent of body size, and therefore likely due to the differences in resource availability. Moreover, in accordance with a saturating male fitness-gain curve, the worms developed the male gonads first. As the group size was kept constant, our results contrast with expectations from sex allocation models that deal with local mate competition alone, and with previous experiments that test these models.  相似文献   

4.
Previous studies on sex allocation in simultaneous hermaphrodites have typically focused either on evolutionary or one-time, ontogenetic optimization of sex allocation, ignoring variation within an individual's lifetime. Here, we study whether hermaphrodites also possess facultative sex allocation, that is, a phenotypic flexibility, allowing them to distribute resources to either sex in an opportunistic way during their adult lifetime. We used the simultaneously hermaphroditic free-living flatworm Macrostomum lignano and raised individuals in pairs and groups of eight worms (further called octets) until sexual maturity was reached and sex allocation for the current conditions was expected to be set. Treatment groups were subsequently transferred to the alternative group size, that is, from pairs to octets or from octets to pairs, and compared to two control groups, which were transferred without changing group size. The results show that worms in treatment groups responded as expected by the local mate competition theory for simultaneous hermaphrodites: increasing group size resulted in a shift toward a more male-biased sex allocation and vice versa. These findings reveal that sex allocation in these animals is not fixed during ontogeny, but remains flexible after maturation. We argue that phenotypically flexible sex allocation in hermaphroditic animals may help us to understand the evolution and ecology of hermaphroditism.  相似文献   

5.
In the absence of sperm competition evolutionary theory predicts low mating rates and low ejaculate expenditure per mating, and sex allocation theory for simultaneous hermaphrodites predicts a strongly female‐biased sex allocation. In the presence of sperm competition a shift towards a more male‐biased sex allocation and a higher ejaculate expenditure are predicted. The free‐living flatworm Macrostomum lignano has been shown to respond plastically in mating rate, testis size, and sperm transfer to manipulation of the social group size, a proxy of the strength of sperm competition. However, manipulation of social group size may manipulate not only sperm competition, but also other factors, such as food supply and metabolite concentration. In this study we therefore manipulated sperm competition per se by repeatedly exposing individuals to partners that have either mated with rivals or not, while keeping the social group size constant. Our results suggest that M. lignano does not have the ability to detect sperm competition per se, as worms experimentally exposed to the presence or absence of sperm competition did not differ in sex allocation, sperm transfer or mating behavior. A response to our manipulation would have required individual recognition, the ability to detect self‐referencing tags, or tags or traces left by rivals on or in the mating partners. We first discuss the possibility that highly efficient sperm displacement may have decreased the difference between the treatment groups and then propose three alternative cues that may allow M. lignano to respond plastically to the social group size manipulation used in earlier studies: assessment of the mating rate, chemical cues, or tactile cues.  相似文献   

6.
Sex allocation theory predicts that simultaneous hermaphrodites shift sex allocation facultatively in response to variation in local group size. This study was performed to evaluate the relative investment in each sex function by the simultaneously hermaphroditic polychaete worm Ophryotrocha diadema and to test whether allocation to each sex depends on the number of reproductive competitors. Four experimental groups were set up (in a 2 x 2 factorial design) with small or large group size and with small or large enclosures to control for potential confounding effects of density. We measured the proportion of female and male investment in focal individuals. Results revealed that individuals regulated their reproductive output so that when reproductive competitors were present, the number of female gametes was strongly reduced and the male function increased. In contrast, under monogamy, individuals in small groups produced lower numbers of sperm but had a higher egg output than worms in large groups. Density did not affect sex allocation in our experiment. Our findings provide qualitative support for Local Mate Competition theory, but also show that the pattern of sex allocation specific to this species is more complex than expected by current theory.  相似文献   

7.
Sexual selection is considered a potent evolutionary force in all sexually reproducing organisms, but direct tests in terms of experimental evolution of sexual traits are still lacking for simultaneously hermaphroditic animals. Here, we tested how evolution under enforced monogamy affected a suite of reproductive traits (including testis area, sex allocation, genital morphology, sperm morphology and mating behaviour) in the outcrossing hermaphroditic flatworm Macrostomum lignano, using an assay that also allowed the assessment of phenotypically plastic responses to group size. The experiment comprised 32 independent selection lines that evolved under either monogamy or polygamy for 20 generations. While we did not observe an evolutionary shift in sex allocation, we detected effects of the selection regime for two male morphological traits. Specifically, worms evolving under enforced monogamy had a distinct shape of the male copulatory organ and produced sperm with shorter appendages. Many traits that did not evolve under enforced monogamy showed phenotypic plasticity in response to group size. Notably, individuals that grew up in larger groups had a more male‐biased sex allocation and produced slightly longer sperm than individuals raised in pairs. We conclude that, in this flatworm, enforced monogamy induced moderate evolutionary but substantial phenotypically plastic responses.  相似文献   

8.
When applied to hermaphrodite organisms, the local mate competition hypothesis predicts an increase of the ratio of sperm to ova produced as the number of mates increases. Here we test this prediction using a hermaphroditic platyhelminth parasite (trematode), Echinostoma caproni. This worm inhabits the small intestine of vertebrates, inevitably inducing the formation of highly subdivided populations, a condition known to promote local mate competition. Moreover this echinostome exhibits an unrestricted mating pattern involving both selfing and outcrossing as well as multiple fertilizations. We quantified the investment in reproductive organs by estimations of testes, cirrus sac, ovary, and egg size and fecundity when echinostomes were isolated alone, in pairs, or in groups of 20 worms. Adult body size was also recorded as a covariate. When mating group size increases (singles, pairs, or groups) we observed a significant increase in resource allocation to male function in addition to a significant decrease in ovary size. Smaller ovaries do not seem to affect egg size, but do result in a reduction in fecundity. Finally, our results are in accordance with the expected theoretical relationship between male allocation and the number of potential mates given local mate competition.  相似文献   

9.
There are many ways to include stochastic effects in models of sex allocation evolution. These include variability in the number of mating partners and fecundity in a rich literature that goes back 20 years. The effects of variance in the fecundity and number of mating partners have typically been considered separately from the stochastic effects of mortality. However, I show that these processes produce mathematically equivalent models with subtly different biological details. These scenarios differ in the way that information becomes available to individuals because the parents often have information on mating partners while they are making sex allocation decisions, but must make these decisions before brood mortality takes place. This makes it possible to test which mechanism, stochastic mortality or variation in mating partners, is responsible for observed sex ratios. Alternatively, asymmetric variance between sexual functions can cause skewed sex allocation, even in the absence of local mate competition. This allows the evolution of either female- or male-biased sex ratios depending on which sexual function is more variable.  相似文献   

10.
Limited availability of mating partners has been proposed as an explanation for the occurrence of simultaneous hermaphroditism in animals with pair mating. When low population density or low mobility of a species limits the number of potential mates, simultaneous hermaphrodites may have a selective advantage because, first, they are able to adjust the allocation of resources between male and female functions in order to maximize fitness; second, in a hermaphroditic population the likelihood of meeting a partner is higher because all individuals are potential mates; and, third, in the absence of mating partners, many simultaneously hermaphroditic animals have the option of reproducing through self-fertilization. Recognizing that mate availability is central to the existing theory of hermaphroditism in animals, it is important to examine the effects of mate search on predictions of the stability of hermaphroditism. Many hermaphroditic animals can increase the number of potential mates they contact by active searching. However, since mate search has costs in terms of time and energy, the increased number of potential mates will be traded off against the amount of resources that can be allocated to the production of gametes. We explore the consequences of this trade-off to the evolution of mating strategies and to the selective advantage of self-fertilization. We show that in low and moderate population densities, poor mate-search efficiency and high costs of searching stabilize hermaphroditism and bias sex allocation toward female function. In addition, in very low population densities, there is strong selective advantage for self-fertilization, but this advantage decreases considerably in species with high mate-search efficiency. Most important, however, we present a novel evolutionary prediction: when mate search is efficient, disruptive frequency-dependent selection on time allocation to mate search leads to the evolution of searching and nonsearching phenotypes and, ultimately, to the evolution of males and females.  相似文献   

11.
In the mating system of simultaneously hermaphroditic animals, sexual allocation is predicted to vary as a function of the number of potential mates. According to the Hermaphrodite's Dilemma, sexual conflict over the preferred sexual role in hermaphroditic animals is resolved by reciprocity (i.e. by alternating sexual roles), accompanied by the animals' occasional cheating in the preferred role at a relatively low frequency. In a 350‐generation‐old laboratory strain of the pair‐mating outcrossing hermaphroditic polychaete worm Ophryotrocha diadema, we show that 9% of the individuals mated only in the male role over long periods, indicating a male‐role preference (temporary functional males). Furthermore, 2% of the individuals mated for their whole lifetime exclusively as males (permanent functional males). These findings indicate that the sex allocation of some individuals may vary from the predicted optimal sex allocation for the population. Morphologically, functional males exhibited a hermaphroditic phenotype (i.e. they matured a single batch of oocytes that they never laid and acted as functional males). We show that temporary functional males appeared in hermaphroditic populations under promiscuous mating regimes significantly more often than under monogamous ones. Indeed, under promiscuity, there are many mating opportunities and O. diadema hermaphrodites compete for mates, whereas, under monogamy, the two partners regularly take turns in laying cocoons and fertilizing their partner's cocoon. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 451–456.  相似文献   

12.
Sex allocation theory has long generated insights into the nature of natural selection. Classical models have elucidated causal phenomena such as local mate competition and inbreeding on the degree of female bias exhibited by various invertebrates. Typically, these models assume mothers facultatively adjust sex allocation using predictive cues of future offspring mating conditions. Here we relax this assumption by developing a sex allocation model for haplodiploid mothers experiencing local mate competition that lay a fixed number of male eggs first. Female egg number is determined by remaining oviposition sites or remaining eggs of the mother, depending on which is exhausted first. Our model includes parameters for variation in foundress number, patch size, fecundity and offspring mortality that allow us to generate secondary sex ratio predictions based on specific parameterizations for natural populations. Simulations show that: 1) in line with classical models, factors that increase sib‐mating result in mothers laying relatively more female eggs; 2) high offspring mortality leads to relatively more males as fertilization insurance; 3) unlike classical model predictions, sub‐optimal predictions, such as more males than females are possible. In addition, our model provides the first quantitative predictions for the expected number of males and females in a patch where typically only one mother utilizes a given patch. We parameterized the model with data obtained from seven species of southern African fig wasps to predict expected means and variances for numbers of male and female offspring for typical numbers of mothers utilizing a patch. These predictions were compared to secondary sex ratio data from single foundress patches, the most commonly encountered situation for these species. Our predictions matched both the observed number and variance of male and female offspring with a high degree of accuracy suggesting that facultative adjustment is not required to produce evolutionary stable sex ratios.  相似文献   

13.
Evolutionary theory predicts an influence of mating group size on sex allocation in simultaneous hermaphrodites. We experimentally manipulated the social situation during reproduction in a simultaneous hermaphrodite parasite, the tapeworm Schistocephalus solidus, by placing worms as singles, pairs or triplets into an in vitro system that replaces the final host. We then determined the reproductive allocation patterns after 24 h (i.e. before the start of egg release) and after 72 h (i.e. around the peak of egg release rate) using stereology. After 24 h, sex allocation strongly depended on worm volume (which is determined in the second intermediate host), but was not significantly affected by the social situation experienced during reproduction. After 72 h, worms in groups had less vesicular sperm (i.e. sperm to be used in future inseminations) than singles. They also stored significantly more received sperm in their seminal receptacles than singles, suggesting that more sperm had been transferred in groups. Moreover, worms in triplets stored significantly more received sperm than worms in pairs, suggesting that they either mated more often and/or transferred more sperm per mating. This suggests a behavioural response to the increased risk of sperm competition in triplets. We further discuss the relative importance of sex allocation decisions at different life‐history stages.  相似文献   

14.
While simultaneous hermaphroditism occurs in most animal phyla, theories for its adaptive significance remain untested. Sex allocation theory predicts that combined sexes are favored in sedentary and sessile organisms because localized gamete dispersal and local mate competition (LMC) among gametes promote decelerating fitness “gain curves” that relate male investment to reproductive success. Under this LMC model, males fertilize all locally available eggs at low sperm output, additional output leads to proportionally fewer fertilizations, and combined sexes with female-biased sex allocation are favored. Decelerating male gain curves have been found in hermaphroditic flowering plants, but the present paper reports the first analysis in an animal. The colonial hermaphroditic bryozoan Celleporella hyalina forms unisexual male and female zooids that can be counted to estimate absolute and relative gender allocations. I placed “sperm donor” colonies—each with different numbers of male zooids, and each homozygous for diagnostic allozyme alleles—among target maternal colonies on field mating arrays, and estimated donor fertilization success by scoring allozyme markers in target-colony progeny. Fertilization success increased with numbers of donor male zooids, but linear and not decelerating curves fit the data best. Mean sex allocation was not female biased, consistent with nondecelerating male gain. Sperm donors, moreover, did not monopolize matings as expected under high LMC, but rather shared paternity with rival colonies. Hence localized water-borne gamete dispersal alone may not yield decelerating male gain and favor the maintenance of hermaphroditism; relaxed sperm competition in low density populations might also be required. In free-spawning marine organisms, males cannot control access to fertilizations, intense sperm competition may be commonplace, and high male sex allocation may be selected to enhance siring success under competition.  相似文献   

15.
In polygamous mating systems, a capability to discriminate against familiar mates may be beneficial to both sexes. Polyandrous females, for instance, may enhance the odds of finding sires with optimal genetic compatibility or high genetic quality by mating with multiple different males; polygynous males, in addition, may more efficiently invest their limited ejaculates across multiple (rather than single) females. The Coolidge effect facilitates this kind of mate discrimination, as sexual motivation declines across consecutive copulations with a familiar partner but resurrects with a novel mate. In simultaneous hermaphrodites, we expect the Coolidge effect to show sex role‐dependent patterns and vary with previous sex‐specific mating activity. Using the promiscuous hermaphroditic sea slug Chelidonura sandrana, we investigated (1) whether sexual motivation indeed declines when repeatedly exposed to familiar partners, (2) whether the Coolidge effect occurs in a sex‐specific manner and (3) whether ejaculation is strategic with respect to partner familiarity. We found neither mating latency, nor penis intromission duration, mating propensity or the frequency of sex role alternations to vary significantly with treatments. Furthermore, slugs did not donate larger ejaculates to novel than to familiar partners. Partner novelty thus elicited no detectable response in sexual motivation or mating effort in C. sandrana. We suggest that the sea slugs' promiscuous mating system in often large mating aggregations makes mate discrimination based on novelty obsolete in comparison with more relevant criteria such as partner body size or mating history.  相似文献   

16.
Inbreeding depression has become a central theme in evolutionary biology and is considered to be a driving force for the evolution of reproductive morphology, physiology, behavior, and mating systems. Despite the overwhelming body of empirical work on the reproductive consequences of inbreeding, relatively little is known on whether inbreeding depresses male and female fitness to the same extent. However, sex‐specific inbreeding depression has been argued to affect the evolution of selfing rates in simultaneous hermaphrodites and provides a powerful approach to test whether selection is stronger in males than in females, which is predicted to be the consequence of sexual selection. We tested for sex‐specific inbreeding depression in the simultaneously hermaphroditic freshwater snail Physa acuta by comparing the reproductive performance of both sex functions between selfed and outcrossed focal individuals under different levels of male–male competition. We found that inbreeding impaired both male and female reproductive success and that the magnitude of male inbreeding depression exceeded female inbreeding depression when the opportunity for sperm competition was highest. Our study provides the first evidence for sex‐specific inbreeding depression in a hermaphroditic animal and highlights the importance of considering the level of male–male competition when assessing sex differences in inbreeding depression.  相似文献   

17.
Some convincing support for sex ratio theory comes from the cross-species relationship between sex ratio and brood size in gregarious bethylid wasps (Hymenoptera: Bethylidae), in which the proportion males declines as brood size increases as predicted under local mate competition. It is unknown how widely such relationships hold within parasitoid wasps as a whole. We assemble a dataset on sex ratio and brood size for gregarious Braconidae and Ichneumonidae. Their sex ratios deviate substantially from those of bethylids; sex ratios differ widely across species; and they are not significantly related to brood size across species. Several factors explain the heterogeneity in sex ratios including across-species differences in mating system, sex determining mechanism, and sexual asymmetries in larval competition and polyembryony leading to single-sexed broods.  相似文献   

18.
Sex allocation (SA) theory for simultaneous hermaphrodites predicts an influence of group size on SA. Since group size can vary within an individual's lifetime, this can favor the evolution of phenotypically plastic SA. In an emerging comparative context, we here report on SA plasticity in three closely related Macrostomum flatworm species, namely Macrostomum janickei, Macrostomum cliftonensis, and Macrostomum mirumnovem. For each species, we experimentally raised worms in three group sizes (isolated, pairs, and octets) and two enclosure sizes (small and large) in all factorial combinations and studied the effects of these factors on different estimates of SA. In addition, we also evaluated whether isolated worms engage in self‐fertilization. We found that all species have plastic SA, with M. cliftonensis being more plastic than the other two species, as assessed by comparing standardized effect sizes of (a) the presence/absence of mating partners and (b) the strength of sexual competition. Moreover, we found that sperm production rate—but not sperm morphology—is plastic in M. cliftonensis, and that only M. mirumnovem self‐fertilized during our observation period. Our study suggests that both SA and SA plasticity can diverge even between closely related species.  相似文献   

19.
The expression of an individual's phenotypic traits can be influenced by genes expressed in its social partners. Theoretical models predict that such indirect genetic effects (IGEs) on reproductive traits should play an important role in determining the evolutionary outcome of sexual conflict. However, empirical tests of (i) whether reproductive IGEs exist, (ii) how they vary among genotypes, and (iii) whether they are uniform for different types of reproductive traits are largely lacking. We addressed this in a series of experiments in the simultaneously hermaphroditic flatworm Macrostomum lignano. We found strong evidence for IGEs on both morphological and behavioral reproductive traits. Partner genotype had a significant impact on the testis size of focal individuals—varying up to 2.4‐fold—suggesting that IGEs could mediate sexual conflicts that target the male sex function. We also found that time to first copulation was affected by a genotype × genotype interaction between mating partners, and that partner genotype affected the propensity to copulate and perform the postcopulatory suck behavior, which may mediate conflicts over the fate of received ejaculate components. These findings provide clear empirical evidence for IGEs on multiple behavioral and morphological reproductive traits, which suggests that the evolutionary dynamics of these traits could be altered by genes contained in the social environment.  相似文献   

20.
Sex allocation theory predicts that, in hermaphroditic organisms,individuals allocate a fixed amount of resources divided amongmale and female functions to reproduction and that the proportiondevoted to each sex depends on the mating group size. As themating group size increases, hermaphrodites are predicted toallocate proportionally more resources to the male and lessresources to the female function (approaching equal allocationto both sexes) to face increased sperm competition. Up to nowlittle experimental evidence has been provided to support thetheory in hermaphroditic animals. Facultative shift betweenmale and female allocation in response to variation in localgroup size does occur in several taxa but not always in theexpected direction and not with similar patterns. In the protandricand then simultaneously hermaphroditic polychaete worm Ophryotrochadiadema reproductive resources are flexibly allocated in theprotandrous and the hermaphroditic phase. The cost of male reproductionduring adolescence is spread over the whole energy budget ofthe animal as shown by the shortening of lifespan and the loweringof growth rate in individuals with enhanced male expenditureduring the protandrous phase. Moreover, in this species, shortterm sex allocation adjustments differ from those describedin other taxa. Individuals regulate their reproductive outputso that where reproductive competitors are present, the numberof female gametes is strongly reduced but the number of malegametes (although it changes) is not significantly increased.Resources subtracted from the female function are not directlyallocated to sperm production, but to expensive male behaviorsthat are likely to enhance male reproductive success. Theseresults are discussed in the light of the relevance of sexualselection in large populations of hermaphrodites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号