首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Fire severity is thought to be an important determinant of landscape patterns of post‐fire regeneration, yet there have been few studies of the effects of variation in fire severity at landscape scales on floristic diversity and composition, and none within alpine vegetation. Understanding how fire severity affects alpine vegetation is important because fire is relatively infrequent in alpine environments. Globally, alpine ecosystems are at risk from climate change, which, in addition to warming, is likely to increase the severity and frequency of fire in south‐eastern Australia. Here we examine the effects of variation in fire severity on plant diversity and vegetation composition, 5 years after the widespread fires of 2003. We used floristic data from two wide‐spread vegetation types on the Bogong High Plains: open heathland and closed heathland. Three alternative models were tested relating variation in plant community attributes (e.g. diversity, ground cover of dominant species, amount of bare ground) to variation in fire severity. The models were (i) ‘linear’, attributes vary linearly with fire severity; (ii) ‘intermediate disturbance’, attributes are highest at intermediate fire severity and lowest at both low‐ and high‐severity; and (iii) ‘null’, attributes are unaffected by fire severity. In both heathlands, there were few differences in floristic diversity, cover of dominant species and community composition, across the strong fire severity gradient. The null model was most supported in the vast majority of cases, with only limited support for either the linear and intermediate disturbance models. Our data indicate that in both heathlands, vegetation attributes in burnt vegetation were converging towards that of the unburnt state. We conclude that fire severity had little impact on post‐fire regeneration, and that both closed and open alpine heathlands are resilient to variation in fire severity during landscape scale fires.  相似文献   

2.
Plant–microbial feedbacks are important drivers of plant community structure and dynamics. These feedbacks are driven by the variable modification of soil microbial communities by different plant species. However, other factors besides plant species can influence soil communities and potentially interact with plant–microbial feedbacks. We tested for plant–microbial feedbacks in two Eucalyptus species, E. globulus and E. obliqua, and the influence of forest fire on these feedbacks. We collected soils from beneath mature trees of both species within native forest stands on the Forestier Peninsula, Tasmania, Australia, that had or had not been burnt by a recent forest fire. These soils were subsequently used to inoculate seedlings of both species in a glasshouse experiment. We hypothesized that (i) eucalypt seedlings would respond differently to inoculation with conspecific versus heterospecific soils (i.e., exhibit plant–microbial feedbacks) and (ii) these feedbacks would be removed by forest fire. For each species, linear mixed effects models tested for differences in seedling survival and biomass in response to inoculation with conspecific versus heterospecific soils that had been collected from either unburnt or burnt stands. Eucalyptus globulus displayed a response consistent with a positive plant–microbial feedback, where seedlings performed better when inoculated with conspecific versus heterospecific soils. However, this effect was only present when seedlings were inoculated with unburnt soils, suggesting that fire removed the positive effect of E. globulus inoculum. These findings show that external environmental factors can interact with plant–microbial feedbacks, with possible implications for plant community structure and dynamics.  相似文献   

3.
Fire is a major determinant of vegetation structure worldwide, and structural vegetation change following fire exclusion is well documented throughout Australia. Such changes include the displacement of treeless ecosystems by forest and the transition of open forest to rainforest. These changes displace essential habitat for myriad plant and animal species and are likely drivers of localised species extinctions. Despite these potential consequences, research identifying the spatial extent of fire‐excluded ecosystems is largely absent from the ecological literature. This study identifies the spatial and temporal extent of fire exclusion in Byron Shire in north‐east New South Wales. GIS analysis compared modern fire history with recommended fire intervals for the maintenance of fire‐dependent vegetation types. Fire exclusion (low‐frequency fire) vastly exceeded high‐frequency fire, comprising 99.1% of areas affected by inappropriate fire frequency. Most fire‐dependent vegetation was fire‐excluded, with less than 10% within recommended fire interval thresholds. Most affected areas were fire‐excluded for multiple recommended fire‐return cycles, increasing the likelihood of vegetation change and localised extinctions. These findings demonstrate the operation of a major threatening process affecting Byron Shire's biodiversity that has previously been little recognised. A growing body of ecological literature suggests that irreversible change to fire‐excluded vegetation is likely wherever plant growth resources are sufficient to enable transition. Irreversible vegetation change and rapid species declines have been reported for several communities in Byron Shire, and there is compelling evidence that further change may be widespread. With increasing time since fire, efforts to restore these sites may be complicated by encroaching trees resistant to removal by fire alone and the difficulties of reintroducing low‐intensity understorey fires where the flammable understorey has been lost through shading. Further research into the impacts of fire exclusion is urgently required, as is the reinstatement of fire to fire‐excluded vegetation to prevent ongoing displacement of fire‐dependent biodiversity values.  相似文献   

4.
Soil structure is often severely affected during high intensity burning, while low intensity prescribed burning has often been thought to have a low or neutral effect on soil aggregation. In this issue of Plant and Soil, (Albalasmeh et al. 2012) report a novel mechanism of aggregate disruption during low intensity burning that may explain some contradictory results reported in previous studies. Albalasmeh et al. (2012) suggest that during rapid heating of moist soil aggregates, intra-aggregate water is vaporized and the increased pressure causes rupture of the internal bonds and leads to aggregate breakdown. This mechanism can be compared to the aggregate breakdown due to slaking, when dry aggregates are suddenly wetted or submerged in water. Identification of the reasons for the aggregate disruption at low temperatures is important for choosing optimal soil and weather conditions for prescribed fires.  相似文献   

5.
6.
Fire plays an important role in the evolution of life-history characteristics of organisms living in fire-prone regions. Although there are many reports of plants exhibiting adaptations to reduce the harmful or lethal effects of fire, little is known about fire-resistance mechanisms among animals, other than fleeing responses. Here, we report observations that may represent a type of fire adaptation in a bird species: bowers in one population of the Great Bowerbird Chlamydera nuchalis remained unburned after fire. If a bower is destroyed by fire or other mechanisms during courtship and breeding season, the male may lose the opportunity to mate with females, thereby reducing his apparent fitness. Therefore, traits that minimise the damage to bowers from fires may be beneficial. By measuring the unburned areas surrounding bowers after fires, we showed that the survival of bowers after fires is unlikely to be solely related to chance. Our observations are consistent with the hypothesis that bower resistance to fire is an adaptation of the Great Bowerbird. However, it is also possible that unburned bowers are by-products of sexual selection.  相似文献   

7.
8.
E-cadherin downregulation in cancer: fuel on the fire?   总被引:10,自引:0,他引:10  
The development, maintenance and repair of tissue requires an exquisite balance between cell proliferation, cell adhesion and cell motility. Equally, tumour initiation and progression are characterized by not only the abnormal expression of genes involved in cell proliferation and survival but also by genes responsible for the control of cell adhesion and cell motility. Central to the process of cell-cell adhesion in epithelial tissues is E-cadherin. Loss of E-cadherin function in tumours results in the rapid progression of relatively benign adenomas to invasive, metastatic carcinomas. Germline mutation of the E-cadherin gene predisposes to diffuse, poorly differentiated gastric cancer, and its downregulation in sporadic tumours is associated with poor clinical prognosis.  相似文献   

9.
Fire is an important ecological factor that structures savannas, such as the cerrado, by selecting plant species and altering soil nutrient content. In Emas National Park, central Brazil, we compared soils under three different fire regimes and their relationship to the cerrado species they support. We collected 25 soil and vegetation samples at each site. We found differences in soil characteristics (p?<?0.05), with fertility and fire frequency positively related: in the annually burned site we found higher values of organic matter, nitrogen, and clay, whereas in the protected site we detected lower values of pH and higher values of aluminum. We also observed differences in plant community structure, with distinct floristic compositions in each site. Floristic composition was more related to sand proportion (intra-set correlation?=?0.834). Different fire frequencies increase environmental heterogeneity and beta diversity in the Brazilian cerrado.  相似文献   

10.
Invasive ants threaten native communities, in part, through their potential to disrupt mutualisms, yet invasive species may also facilitate native species. The red imported fire ant (Solenopsis invicta) is one of the most conspicuous invasive ants in North America and its high densities, combined with its potential to displace native ants, have led to concerns that it may disrupt ant-plant seed dispersal mutualisms. We examined the potential of fire ants to disperse seeds in the longleaf pine ecosystem by comparing the removal of elaiosome-bearing seeds by fire ants versus native ants. A total of 14 ant species were observed removing seeds, with fire ants responsible for more than half of all removals. While fire ants were the dominant seed remover in this system, they did not remove significantly more seeds than would be expected based on their population density (46% of ground-dwelling ants). Moreover, red imported fire ants were similar to native ants with respect to distance of seed movement and frequency of moving seeds back to the nest. Areas of higher fire ant densities were found to have greater rates of seed removal by ants without a subsequent drop in seed dispersal by native ants, suggesting that fire ant-invaded areas may experience overall higher levels of seed dispersal. Thus, fire ants may actually facilitate dispersal of elaiosome-bearing plant species in the longleaf pine ecosystem.  相似文献   

11.
How much seed remains in the soil after a fire?   总被引:2,自引:0,他引:2  
Soil seed banks that persist after a fire are important in fire-prone habitats as they minimise the risk of decline or local extinction in plants, should the fire-free interval be less than the primary juvenile periods of the species. In two common woody plant genera (Acacia and Grevillea) in southeastern Australia, we examined the size and location of the residual seed bank after fire across areas of varying seedling densities at three locations in comparison to the distribution of seeds in the soil at an unburnt site. We found viable dormant seeds remaining in the soil after fire (evidence of residual soil seed bank). A significantly lower proportion of seeds remained in the top 5 cm of soil than at 5–10 cm or 10–15 cm soil depths, independent of seedling density or plant genus. This was due to greater germination, and possibly some seed mortality, near the soil surface. Reduced germination below 5 cm was probably due to the reduced efficacy of the fire cues that break seed dormancy, a declining ability of seeds to emerge successfully from such depths, and the lower abundance of seeds in the soil at such depths. The magnitude of the residual seed bank was similar across 0–5, 5–10 and 10–15 cm soil depths in Acacia suaveolens. For two Grevillea species, most residual seeds were at 0–5 and 5–10 cm. The residual soil seed bank in the top 10 cm of soil after fire varied across sites with estimates of 0, 19 and 27% in G. speciosa and 23, 35, and 55% in A. suaveolens. At two sites, both species had similar residual seed bank sizes, while at a third, there were large differences between the species (0–55%). The observed patterns imply that the fire-related cues that break seed dormancy generally declined with soil depth. For Acacia, seed dormancy is broken by heat shock, a fire-cue that declines with soil depth. Some 250 species (approx 15% of the fire-prone flora) in the region are thought to have dormancy broken by heat shock. For Grevillea, where seed dormancy is broken by the interaction of smoke and heat shock, at two sites, we suggest three possibilities: (i) the smoke cue declined with soil depth; (ii) both heat and smoke are obligatory for breaking seed dormancy; or (iii) the cues may be independent and additive and below the zone of soil heating, only a proportion of available seeds had dormancy broken by smoke alone. At a third site (no residual seed bank detected) the smoke cue was predicted not to have declined with soil depth. Up to 900 species (just under half the fire-prone flora) in the study region are thought to have seed dormancy broken by the interaction of heat and smoke during the passage of a fire.  相似文献   

12.
Prescribed burning is commonly used to reduce the risk of severe wildfire. However, further information about the associated environmental effects is required to help forest managers select the most appropriate treatment. To address this question, we evaluated if fire severity during spring prescribed burning significantly affects the resprouting ability of two common shrub species in shrubland under a Mediterranean climate in NW Spain. Fire behaviour and temperatures were recorded in tagged individuals of Erica australis and Pterospartum tridentatum during prescribed burning. The number and length of resprouted shoots were measured three times (6, 12 and 18 months) after the prescribed burning. The influence of a series of fire severity indicators on some plant resprouting vigour parameters was tested by canonical correlation analysis. Six months and one year after prescribed burning, soil burn severity (measured by the absolute reduction in depth of the organic soil layer, maximum temperatures in the organic soil layer and the mineral soil surface during burning and the post-fire depth of the organic soil layer) reduced the resprouting vigour of E. australis and P. tridentatum. In contrast, direct measurements of fire effects on plants (minimum branch diameter, duration of temperatures above 300 °C in the shrub crown and fireline intensity) did not affect the post-fire plant vigour.Soil burn severity during spring prescribed burning significantly affected the short-term resprouting vigour in a mixed heathland in Galicia. The lack of effects eighteen months after prescribed burning indicates the high resilience of these species and illustrates the need to conciliate fire prevention and conservation goals.  相似文献   

13.
Identifying where animals come from during population recovery can help to understand the impacts of disturbance events and regimes on species distributions and genetic diversity. Alternative recovery processes for animal populations affected by fire include external recolonization, nucleated recovery from refuges, or in situ survival and population growth. We used simulations to develop hypotheses about ecological and genetic patterns corresponding to these alternative models. We tested these hypotheses in a study of the recovery of two small mammals, the Australian bush rat and the agile antechinus, after a large (> 50 000 ha), severe wildfire. The abundance of both species was severely reduced by fire and recovered to near or above pre‐fire levels within two generations, yet we rejected a hypothesis of recovery by external recolonization. While the agile antechinus showed genetic evidence for far greater dispersal capacity than the bush rat, neither species showed gradients in abundance or genetic diversity with distance from unburnt forest during population recovery. Population recovery was driven by local‐scale processes. However, the mechanisms differed between species, resulting from the spatial impacts of fire on habitat suitability. Agile antechinus populations recovered through population growth from in situ survivors. The bush rat followed a model of nucleated recovery, involving local recolonization from micro‐refuges in topographic drainage lines. Nucleated recovery by the bush rat was associated with changes in dispersal, and fine‐scale patterns of genetic admixture. We identified increased dispersal by females during recovery, contrasting with male‐biased dispersal in unburnt forest. Such flexibility in dispersal can potentially increase recovery rates compared to expectations based on dispersal behavior within undisturbed populations. Our study shows how the initial distribution of survivors, determined by fire effects on resource distribution, determines the subsequent scaling of population recovery patterns, and the sensitivity of population distribution and genetic diversity to changing disturbance regimes.  相似文献   

14.
Wildfires often threaten natural and economic resources and human lives. Wildfire susceptibility assessments have become essential for efficient disaster management and increasing resilience. In this study, we assessed the forest fire susceptibility in Istanbul Province and Thrace Region, Türkiye using a well-known machine learning technique, Artificial Neural Networks (ANN). Benefiting from freely available Earth Observation datasets such as Sentinel-2 images, Tree Cover Density from European Union (EU) European Environment Agency (EEA) Copernicus Land Monitoring Service, Shuttle Radar Topography Mission (SRTM) data, etc., and a forest inventory with ignition locations recorded over a period of eight years, we utilized a total of 16 independent and one dependent variables. The variables can be categorized as anthropogenic, topographic, vegetation, and hydrological factors. A ratio of 1:2 was preferred for the fire/non-fire location samples. The results show that the ANN exhibited high prediction performance with Area Under the Receiver Operating Characteristic Curve (AUC) value and F-1 score of 0.94 and 0.80, respectively. Based on feature importance analyses, we found that a human-related factor, proximity to forest roads, was the most predictive input variable. The ANN model trained with openly available data (i.e., without forest database) also yielded a high F-1 score, but produced maps with fewer details. Our results confirm that data-driven machine learning methods are promising for regional forest fire susceptibility assessments and can be extended further for other regions by deriving similar parameters from freely available Earth Observation datasets.  相似文献   

15.
In the Mediterranean Basin, most cultivated areas were abandoned in the last century and are now in various stages of old-field succession. The aim of this work was to analyse the successional trajectories of these ecosystems, and to assess possible deviations in these pathways due to fire occurrence at high or low recurrence levels. Old-fields abandoned either about 50 or about 100 years ago were selected in SE Spain. Within the 50-year-old abandoned fields, plots were established which had been burned by 1, 2 and 3 fires in the last 25 years. Cover values of vascular species were sampled and then analysed by means of multivariate analysis. Euclidean distances between resulting communities were used as an indicator of the possible deviation from the unburned successional pathway. Our results pointed to the possibility that different successional pathways may exist depending on fire occurrence and recurrence. In the absence of fire, the vegetation is dominated by pioneer species, mainly Pinus. With the passage of time this vegetation will become dominated by later successional tree species (Quercus). However, when early-successional communities are affected by fire, the succession can be diverted. A single fire is enough to change Pinus forests into alternative stable states dominated by Rosmarinus officinalis shrub communities, where the colonisation of species in later successional stages is arrested. This deviation increases in high fire recurrence regimes where the vegetation changes to dwarf shrubs and herbs.  相似文献   

16.
《Acta Oecologica》2000,21(4-5):245-256
Fire is selectively shaping most of the traits of plants growing in fire-prone environments. However, seed size and other features related to seed production have not been studied in the light of the evolutionary role of fire. Our research tests the hypothesis that larger seeds have a higher chance of surviving wildfires and produce more vigorous seedlings with a lower death rate. To test this hypothesis the germination and early seedling growth of five Spanish pine species were studied. Weight, length and width of all seeds were measured. The biomass (fresh and dry weight) and length (root and total) of subsequent seedlings were also measured after 30 d from emergence. Seeds were submitted to elevated temperatures for periods in which the chance of survival was 50 % (calculated by means of a logistic model for each pine species). The differences observed among species suggests that fire may be adaptively shaping seed size in pines with larger seeds (Pinus canariensis and P. pinaster), because larger seeds are more likely to survive after heat shocks. Furthermore, in P. canariensis, seedlings after heat treatment are even larger than those submitted to control. In P. halepensis, despite being well adapted to fire, our results indicated no relationships between fire and seed characteristics. Finally, although heat treatment has a general adverse effect on seedling growth in the case of the two subalpine pines, we have detected a positive relationship between seed size and seedling growth but only in the largest seeds. This might also suggest the relevance of fire as a selective force for these pines which is outperformed by the relevance of dispersal and emergence time as adaptive traits in the post-fire scenario.  相似文献   

17.
18.
The objective of this study was to investigate how the management practices of prescribed fire and understorey vegetation removal affect water and nutrient relations of old, yet prematurely declining Eucalyptus gomphocephala. Long unburnt sites were established in Yalgorup National Park, Western Australia, adjacent to frequently burnt state forest sites. Trees were allocated to vegetation clearing, prescribed fire or no prescribed fire treatments. Prescribed fire was achieved in only one long unburnt national park site so that the results were pseudoreplicated but analysed accordingly. Soil chemistry, plant nutrient availability and tree foliar carbon and nitrogen isotope ratio and nutrient concentration were investigated. No effects of vegetation clearing were found. Prescribed fire sites were associated with sky exposure and bare ground whereas no prescribed fire sites were associated with shrub and litter cover and litter depth. Foliar carbon isotope ratios were significantly more negative in prescribed fire, relative to no prescribed fire, treatments on long unburnt sites. Soil exchangeable Zn and Mn and plant available (estimated by charged resin beads) Mg were higher on prescribed fire, relative to no prescribed fire, long unburnt sites. Seedling bioassays indicated elevated P and Cu availability on prescribed fire, relative to no prescribed fire, treatments. In overstorey E. gomphocephala, foliar N levels were elevated (but not to excessive levels), and there was a trend toward elevated foliar Mn, in prescribed fire relative to no prescribed fire treatments on long unburnt sites. In the context of our large-scale pseudoreplicated case study, prescribed fire provided a pulse of water and N, (with some indications towards provision of elevated Mn, Cu and Mg) availability to E. gomphocephala in decline on sites with a history of a long absence of fire that may in part underpin observations of elevated tree health on sites that have a history of relatively frequent fire.  相似文献   

19.
The occurrence of large burnt areas has increased considerably in southern Europe in recent years. In order to design management plans to prevent large wildfires while preserving biodiversity, understanding of the ways in which birds respond to these fires is required. We investigated the spatial variability of both avifauna and habitat structure in three zones: unburnt, burnt in 1982, and burnt in 1994. The habitat structure of the unburnt zone was the most variable spatially. However, bird species composition between sampling points was very homogeneous in space. In contrast, the bird communities inhabiting burnt zones were more spatially heterogeneous. This pattern was caused by distinct specific responses to variations in habitat structure. Open-space species responded to small changes in habitat structure with large changes in local abundance, whereas the response of forest species to these structural variations was much less. We suggest that land managers should select specific zones with limited vegetation recovery within large burnt areas and maintain them as open space to keep combustibility low and provide an appropriate habitat for several open space species that are of conservation concern.  相似文献   

20.

Background

An acceleration of model-data synthesis activities has leveraged many terrestrial carbon datasets, but utilization of soil respiration (RS) data has not kept pace.

Scope

We identify three major challenges in interpreting RS data, and opportunities to utilize it more extensively and creatively: (1) When RS is compared to ecosystem respiration (RECO) measured from EC towers, it is not uncommon to find RS > RECO. We argue this is most likely due to difficulties in calculating RECO, which provides an opportunity to utilize RS for EC quality control. (2) RS integrates belowground heterotrophic and autotrophic activity, but many models include only an explicit heterotrophic output. Opportunities exist to use the total RS flux for data assimilation and model benchmarking methods rather than less-certain partitioned fluxes. (3) RS is generally measured at a very different resolution than that needed for comparison to EC or ecosystem- to global-scale models. Downscaling EC fluxes to match the scale of RS, and improvement of RS upscaling techniques will improve resolution challenges.

Conclusions

RS data can bring a range of benefits to model development, particularly with larger databases and improved data sharing protocols to make RS data more robust and broadly available to the research community.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号